279
Views
1
CrossRef citations to date
0
Altmetric
Review

Maleimides – a versatile platform for polymeric materials designed/tailored for high performance applications

, , &
Pages 253-270 | Received 03 Apr 2020, Accepted 18 Jul 2020, Published online: 28 Aug 2020

References

  • Wu, C.; Bell, J. P.; Davis, G. D. Enhancement of Corrosion Resistance of Protective Coatings Formed by Spontaneous Surface Polymerization. Int. J. Adhes. Adhes. 2003, 23, 499–506. DOI: 10.1016/S0143-7496(03)00092-7.
  • Altıntaş, Z.; Karataş, S.; Kayaman‐Apohan, N. The Maleimide Modified Epoxy Resins for the Preparation of UV‐curable Hybrid Coatings. Polym. Adv. Technol. 2011, 22, 270–278. DOI: 10.1002/pat.1529.
  • Ramesh, S.; Sivasamy, A.; Kim, J. H. Synthesis and Characterization of Maleimide-functionalized polystyrene-SiO2/TiO2 Hybrid Nanocomposites by Sol–gel Process. Nanoscale Res. Lett. 2012, 7, Article number. 350.
  • Qi, H.; Liu, F.; Zhang, N.; Chen, Y.; Yang, H.; Wang, Z. Studies on High Performance Nonvolatile Polyimides Coating: Gamma Ray Initiated Bulk Copolymerization of Vinyl Polar Monomer and Maleimide-terminated Polyimides with Flexible Backbone and the Modifications. Prog.Org. Coat. 2012, 73, 33–41. DOI: 1016/j.porgcoat.2011.08.016.
  • Samyn, P. Corrosion Protection of Aluminum by Hydrophobization Using Nanoparticle Polymer Coatings Containing Plant Oil. J. Braz. Chem. Soc. 2014, 25, 947–960. DOI: 10.5935/0103-5053.20140066.
  • Hsu, Y. T.; Wu, C. Y.; Guan, Z. Y.; Sun, H. Y.; Mei, C.; Chen, W. C.; Cheng, N. C.; Yu, J.; Chen, H. Y. Characterization of Mechanical Stability and Immunological Compatibility for Functionalized Modification Interfaces. Sci. Rep. 2019, 9, Article number. 7644.
  • Brancart, J.; Verhelle, R.; Mangialetto, J.; Assche, G. V. Coupling the Microscopic Healing Behaviour of Coatings to the Thermoreversible Diels-Alder Network Formation. Coatings. 2019, 9, 13. DOI: 10.3390/coatings9010013.
  • Vauthier, M.; Jierry, L.; Martinez Mendez, M. L.; Durst, Y.-M.; Kelber, J.; Roucoules, V.; Bally-Le Gall, F. Interfacial Diels–Alder Eeaction between Furan-functionalized Polymer Coatings and Maleimide-terminated Poly(ethylene Glycol). J. Phys. Chem. C. 2019, 123(7), 4125–4132. DOI: 10.1021/acs.jpcc.8b10533.
  • Maradiya, H. R.; Patel, V. S. Synthesis, Characterization and Application of Monomeric and Polymeric Dyes Based on N-arylmaleimides. High Perform. Polym. 2000, 12, 335–348. DOI: 10.1088/0954-0083/12/2/308.
  • Maradiya, H. R.; Patel, V. S. N-arylmaleimide Based Monomeric and Polymeric Dyes for Cellulose Triacetate Fiber. Int. J. Polym. Mater. 2003, 52, 119–131. DOI: 10.1080/00914030390119280.
  • Lin, Z.; Chen, H. C.; Sun, -S.-S.; Hsu, C.-P.; Chow, T. J. Bifunctional Maleimide Dyes as Selective Anion Sensors. Tetrahedron. 2009, 65, 5216–5221. DOI: 10.1016/j.tet.2009.04.090.
  • Takao, Y.; Miyagawa, N.; Takahara, S.; Yamaoka, T. Synthesis of Cyclized Copolymer from N-substituted Dimethacrylamide and Application to a Photoresist with a Photo-acid Generator. J. Photopolym. Sci. Tec. 2000, 13, 207–210. DOI: 10.2494/photopolymer.13.207.
  • Chiang, W.-Y.; Lin, Y.-C. Synthesis and Characterization of Novel Copolymers with the Trimethylsilyl Group for deep-UV Photoresists. J. Appl. Polym. Sci. 2002, 83, 2791–2798. DOI: 10.1002/app.10255.
  • Shu, W.-J. Studies of Novel Copolymers for deep-UV Photoresists. I. Synthesis and Properties of Poly(styrene-co-silicon Containing Maleimide). J. Appl. Polym. Sci. 2006, 102, 3369–3375. DOI: 10.1002/app.24814.
  • Jin, S.-H.; Seo, H.-U.; Nam, D.-H.; Shin, W. S.; Choi, J.-H.; Yoon, U. C.; Lee, J.-W.; Song, J.-G.; Shine, D.-M.; Gal, Y.-S. Surface-induced Alignment of Pentacene by Photo-alignment Technology for Organic Thin Film Transistors. J. Mater. Chem. 2005, 15, 5029–5036. DOI: 10.1039/b510731h.
  • Lee, C. W.; Kim, J. W.; Lee, J.-H.; Ahn, K.-D. Synthesis of Cyanato-functional Polymaleimides and Their Application in Negative-tone Photoimaging by Post-crosslinking. React. Funct. Polym. 2009, 69, 737–742. DOI: 10.1016/j.reactfunctpolym.2009.06.001.
  • Abt, D.; Schmidt, B. V. K. J.; Pop-Georgievski, O.; Quick, A. S.; Danilov, D.; Kostina, N. Y. U.; Bruns, M.; Wenzel, W.; Wegener, M.; Rodriguez-Emmenegger, C.; et al. Designing Molecular Printboards: A Photolithographic Platform for Recodable Surfaces. Chem. Eur. J. 2015, 21, 13186–13190. DOI: 10.1002/chem.201501707.
  • Guo, Y.; Ji, Z.; Zhang, Y.; Wang, X.; Zhou, F. Solvent-free and Photocurable Polyimide Inks for 3D Printing. J. Mater. Chem. A. 2017, 5, 16307–16314. DOI: 10.1039/c7ta01952a.
  • Gironda, R.; Miozzo, L.; Tondelier, D.; Chaigneau, M.; Ghabboun, J.; Faroun, M.; Papagni, A.; Salamone, M. M.; Ruffo, R.; Yassar, A. Functional π-conjugated Polymers Based on Maleimide for Photovoltaic Applications. Organic Photon. Photovol. 2013, 1, 56–66. DOI: 10.2478oph-2013-0004.
  • Ak, M.; Camurlu, P.; Yılmaz, F.; Cianga, L.; Yagci, Y.; Toppare, L. Electrochromic Properties and Electrochromic Device Application of Copolymer of N-(4-(3-thienyl Methylene)-oxycarbonylphenyl)maleimide with Thiophene. J. Appl. Polym. Sci. 2006, 102, 4500–4505. DOI: 10.1002/app.24834.
  • Arslan, M.; Kiskan, B.; Ceylan Cengiz, E.; Demir-Cakan, R.; Yagci, Y. Inverse Vulcanization of Bismaleimide and Divinylbenzene by Elemental Sulfur for Lithium Sulfur Batteries. Eur. Polm. J. 2016, 80, 70–77. DOI: 10.1016/j.eurpolymj.2016.05.007.
  • Sharma, N.; Kumar, S.; Chandrasekaran, Y.; Patil, S. Maleimide-based donor-π-acceptor-π-donor Derivative for Efficient Organic Light-emitting Diodes. Org. Electron. 2016, 38, 180–185. DOI: 10.1016/j.orgel.2016.08.013.
  • Xi, X.; Jiang, L.; Sun, W.; Shen, Z. Metal-Induced Supramolecular Chirality in Optically Active Polymers of Oxazoline-Substituted N-Phenylmaleimides. Chirality. 2007, 19, 521–527. DOI: 10.1002/chir.20369.
  • Lou, L.; Jiang, L.; Liu, J.; Sun, W.; Shen, Z. Synthesis and Characterization of Optically Active Star-shaped poly(N-phenylmaleimide)s with a Calixarene Core. Polym. Int. 2007, 56, 796–802. DOI: 10.1002/pi.2211.
  • Xi, X.; Lou, L.; Jiang, L.; Sun, W.; Shen, Z. Poly(N-phenylmaleimides) Bearing Chiral Oxazolinyl Pendant: Supramolecular Aggregation and Enantioselectivity in Fluorescence Response. Polymer. 2008, 49, 2065–2070. DOI: 10.1016/j.polymer.2008.03.013.
  • Lou, L.; Jiang, L.; Sun, W.; Shen, Z. A Novel Optically Active Diblock Copolymer Composed of Poly(ethylene Glycol) and poly[N-{o-(4-Phenyl-4,5-dihydro-1,3-oxazol-2-yl)phenyl}maleimide]: Synthesis, Micellization Behavior, and Chiroptical Property. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 1025–1033. DOI: 10.1002/pola.22445.
  • Onimura, K.; Zhang, Y.; Yagyu, M.; Oishi, T. Asymmetric Anionic Polymerization of Optically Active N-1-cyclohexylethylmaleimide. J. Polym. Sci. Polym. Chem. 2004, 42, 4682–4692. DOI: 10.1002/pola.20358.
  • Azechi, M.; Yamabuki, K.; Onimura, K.; Oishi, T. Asymmetric Anionic Polymerization of Maleimide Bearing an N-4ʹ-benzo 15-crown-5 Ether with an Organometal/chiral Ligand Complex. Polym. J. 2010, 42, 632–639. DOI: 10.1038/pj.2010.54.
  • Azechi, M.; Toyota, N.; Yamabuki, K.; Onimura, K.; Oishi, T. Anionic Polymerization of N-substituted Maleimide with Achiral and Chiral Amines as an Initiator. Polym. Bull. 2011, 64, 631–640. DOI: 10.1007/s00289-010-0416-5.
  • Cianga, L. Synthesis and Characterization of Optically Active Polyimidothioethers. High Perform. Polym. 2005, 17, 117–134. DOI: 10.1177/0954008305042758.
  • Costanzo, P. J.; Beyer, F. L. Thermoresponsive, Optically Active Films Based on Diels–Alder Chemistry. Chem. Mater. 2007, 19, 6168–6173. DOI: 10.1021/cm701864r.
  • Nouh, S. A.; Radwan, M. M.; Abdel-Naby, A. S.; Agami, W. R.; Morsy, M. Structure and Optical Investigation of the Effect of Laser Radiation in Stabilized Poly (Vinyl Chloride). Radiat. Eff. Defect. S. 2002, 157, 265–274. DOI: 10.1080/1042015021000005144.
  • Howell, B. A.; Zhang, J. Stabilization of Vinyl Chloride/vinylidene Chloride Copolymers Using N-substitutedmaleimides. Polym. Prepr. 2001, 42, 880. DOI: 10.1002/vnl.20076.
  • Howell, B. A.; Zhang, J. Thermal Degradation of Vinylidene Chloride/vinyl Chloride Copolymers in the Presence of N-substituted Maleimides. J. Therm. Anal. Calorim. 2006, 83, 83–86. DOI: 10.1007/s10973-005-7254-y.
  • Mohammed, F. S.; Conley, M.; Rumple, A. C.; Saunders, S. R.; Switzer, J.; Urena-Benavides, E.; Jha, R.; Cogen, J. M.; Chaudhary, B. I.; Pollet, P.; et al. Enhanced Thermal Stabilization and Reduced Color Formation of Plasticized Poly(vinyl Chloride) Using Zinc and Calcium Salts of 11-maleimideoundecanoic Acid. Polym. Degrad. Stabil. 2015, 111, 64–70. DOI: 10.1016/j.polymdegradstab.2014.10.021.
  • Iepishkina, I.; Iukhymenko, N.; Kolendo, A.; Demchenko, O.; Shyichuk, A. Maleimidophenylmethacrylates and Their Derivatives as Polystyrene Thermal Stabilizers. Mol. Cryst. Liq. Cryst. 2008, 486, 340/[1382]–347/[1389]. DOI: 10.1080/15421400801921991.
  • Nestorak, Y.; Kolendo, A.; Demchenko, O.; Yukhymenko, N.; Shyichuk, A. Thermal Stabilizing Properties of Maleimidophenylmethacrylate Derivatives with Substitutes of Various Molecular Arhitectures in the Imide Cycle. Mol. Cryst. Liq. Cryst. 2008, 497, 299/[631]–306/[638]. DOI: 10.1080/15421400802463357.
  • Dumas, L.; Bonnaud, L.; Olivier, M.; Poorteman, M.; Dubois, P. Bio-based High Performance Thermosets: Stabilization and Reinforcement of Eugenol-based Benzoxazine Networks with BMI and CNT. Eur. Polym. J. 2015, 67, 494–502. DOI: 10.1016/j.eurpolymj.2014.11.030.
  • Grosse-Puppendahl, T.; Hellermann, W. Dr. EP 1041104 A2, 2000.
  • Uchino, O.; Nakamura, S. EP 1205315 A2, 2001. US 2002/0088522 A1.
  • Nath Majumdar, R.; Padovan, J.; Wayne Tipton, M.; Blair Dotts, D. EP 1243391 A2, 2002. US 2002/0179214 A1.
  • Halimatuddahliana,; Ismail, H.; Akil, H., Md. The Effects of Dynamic Vulcanization by Dicumyl Peroxide (DCP) and N,N-m-phenylene Bismaleimide (HVA-2) on the Properties of Polypropylene (Pp)/ethylene-propylene Diene Terpolymer (Epdm)/natural Rubber (NR) Blends. Polym. Plast. Technol. Eng. 2005, 44, 1217–1234. DOI: 10.1081/PTE-200065172.
  • Halimatuddahliana,; Ismail, H.; Akil, H., Md. Flow Behavior of polypropylene/Ethylene-propylene Diene Terpolymer/natural Rubber (PP/EPDM/NR) Blends by Torque Rheometer: The Effect of N,N-m-phenylene Bismaleimide (HVA-2) Addition. Polym. Plast. Technol. Eng. 2005, 44, 1429–1442. DOI: 10.1080/03602550500210067.
  • Soares, B. G.; Oliveira, M.; Meireles, D.; Sirqueira, A. S.; Mauler, R. S. Dynamically Vulcanized Polypropylene/nitrile Rubber Blends: The Effect of Peroxide/bismaleimide Curing System and Different Compatibilizing Systems. J. Appl. Polym. Sci. 2008, 110, 3566–3573. DOI: 10.1002/app.28946.
  • Halimatuddahliana,; Ismail, H. Properties of Polypropylene (Pp)/ethylene-propylene Diene Terpolymer (Epdm)/natural Rubber (NR) Vulcanized Blends: The Effect of N,N-m-phenylenebismaleimide (HVA-2) Addition. Polym. Plast. Technol. Eng. 2009, 48, 25–33. DOI: 10.1080/03602550802539155.
  • Shanmugam, K. V. S.; Parent, J. S.; Whitney, R. A. Design, Synthesis, and Characterization of Bismaleimide Co-curing Elastomers. Ind. Eng. Chem. Res. 2012, 51, 8957–8965. DOI: 10.1021/ie300795b.
  • Du, M.; Guo, B.; Jia, D. Effects of Thermal and UV-induced Grafting of Bismaleimide on Mechanical Performance of Reclaimed Rubber/natural Rubber Blends. J. Polym. Res. 2005, 12, 473–482. DOI: 10.1007/s10965-005-3046-0.
  • Shibulal, G. S.; Jang, J. Y.; Jeong, K. U.; Nah, C. Thermally Stable Bromobutyl Rubber with a High Crosslinking Density Based on a 4,4′‐bismaleimidodiphenylmethane Curing Agent. J. Appl. Polym. Sci. 2016, 133, 1–14. DOI: 10.1002/app.44092.
  • Shibulal, G. S.; Kim, H.; Seong, Y.; Kang, G.; Nah, C. Enhancing the Dispersion and Adhesion of Short Aramid Fibers in Bromo‐isobutylene‐isoprene Rubber Using Maleated Polybutadiene Resin via Co‐vulcanization with 4, 4ʹ Bis(maleimido)diphenylmethane. Polym.Composites. 2019, 40, 2993–3004. DOI: 10.1002/pc.25141.
  • Shibulal, G. S.; Jang, J. Y.; Jeong, K. U.; Nah, C. Synergistic Effect of 4,4′‐bis(maleimido) Diphenylmethane and Zinc Oxide on the Vulcanization Behavior and Thermo‐mechanical Properties of Chlorinated Isobutylene–isoprene Rubber. Poly. Adv. Technol. 2017, 28, 742–753. DOI: 10.1002/pat.3976.
  • Al-Muaikel, N. S.; Al-Diab, S. S.; Al-Salamah, A. A.; Zaid, A. M. A. Synthesis and Characterization of Novel Organotin Monomers and Copolymers and Their Antibacterial Activity. J. Appl. Polym. Sci. 2000, 77, 740–746. DOI: 10.1002/(SICI)1097-4628(20000725)77:4<740::AID-APP4>3.0.CO;2-P.
  • Soykan, C.; Erol, I. Synthesis, Characterization, and Biological Activity of N-(4-acetylphenyl)maleimide and Its Oxime, Carbazone, Thiosemicarbazone Derivatives and Their Polymers. J. Polym. Sci. Polym. Chem. 2003, 41, 1942–1951. DOI: 10.1002/pola.10738.
  • Patil, N. S.; Deshmukh, G. B.; Patil, S. V.; Bholay, A. D.; Gaikwad, N. D. Synthesis and Biological Evaluation of Novel N-aryl Maleimide Derivatives Clubbed with α-hydroxyphosphonates. Eur. J. Med. Chem. 2014, 83, 490–497. DOI: 10.1016/j.ejmech.2014.06.053.
  • Jung, E.-Y.; Chung, I.-D.; Lee, N.-J.; Park, J.-S.; Ha, C.-S.; Cho, W.-J. Syntheses, Antitumor Activities, and Antiangiogenesis of a Monomer and Its Medium Molecular Weight Polymers: Maleimidoethanoyl-5-fluorouracil and Its Polymers. J. Polym. Sci. Polym. Chem. 2000, 38, 1247–1256. DOI: 10.1002/(SICI)1099-0518(20000415)38:8%3C1247::AID-POLA8%3E3.0.CO;2-F.
  • Kratz, F.; Müller-Driver, R.; Hofmann, I.; Drevs, J.; Unger, C. A Novel Macromolecular Prodrug Concept Exploiting Endogenous Serum Albumin as A Drug Carrier for Cancer Chemotherapy. J. Med. Chem. 2000, 43, 1253–1256. DOI: 10.1021/jm9905864.
  • Warnecke, A.; Kratz, F. Maleimide-oligo(ethylene Glycol) Derivatives of Camptothecin as Albumin-binding Prodrugs: Synthesis and Antitumor Efficacy. Bioconjugate Chem. 2003, 14, 377–387. DOI: 10.1021/bc0256289.
  • Kratz, F.; Mansour, A.; Soltau, J.; Warnecke, A.; Fichtner, I.; Unger, C.; Drevs, J. Development of Albumin-binding Doxorubicin Prodrugs that are Cleaved by Prostate-specific Antigen. Arch. Pharm. Chem. Life Sci. 2005, 338, 462–472. DOI: 10.1002/ardp.200500130.
  • Antczak, C.; Bauvois, B.; Monnereta, C.; Florenta, J.-C. A New Acivicin Prodrug Designed for Tumor-targeted Delivery. Bioorg. Med. Chem. 2001, 9, 2843–2848. DOI: 10.1016/S0968-0896(01)00145-6.
  • Chong, H.; Torti, F. M.; Torti, S. V.; Brechbiel, M. W. Synthesis of 1,3,5-cis,cis-triaminocyclohexane N-pyridyl Derivatives as Potential Antitumor Agents. J. Org. Chem. 2002, 67, 8072–8078. DOI: 10.1021/jo0204911.
  • Blessing, T.; Kursa, M.; Holzhauser, R.; Kircheis, R.; Wagner, E. Different Strategies for Formation of PEGylated EGF-conjugated PEI/DNA Complexes for Targeted Gene Delivery. Bioconjugate Chem. 2001, 12, 529–537. DOI: 10.1021/bc0001488.
  • Visser, C. C.; Voorwinden, L. H.; Harders, L. R.; Eloualid, M.; Van Bloois, L.; Crommelin, D. J. A.; Danhof, M.; De Boer, A. G. Coupling of Metal Containing Homing Devices to Liposomes via a Maleimide Linker: Use of TCEP to Stabilize Thiol-groups without Scavenging Metals. J. Drug Target. 2004, 12, 569–573. DOI: 10.1080/10611860400010689.
  • Li, T.; Takeoka, S. A Novel Application of Maleimide for Advanced Drug Delivery: In Vitro and in Vivo Evaluation of Maleimide-modified pH-sensitive Liposomes. Int. J. Nanomed. 2013, 8, 3855–3866. DOI: 10.2147/IJN.S47749.
  • King, M.-J.; Behrens, J.; Rogers, C.; Flynn, C.; Greenwood, D.; Chambers, K. Rapid Flow Cytometric Test for the Diagnosis of Membrane Cytoskeleton-associated Haemolytic Anaemia. Br. J. Haematol. 2000, 111, 924–933. DOI: 10.1111/j.1365-2141.2000.02416.x.
  • King, M.-J.; Smythe, J. S.; Mushens, R. Eosin-5-maleimide Binding to Band 3 and Rh-related Proteins Forms the Basis of a Screening Test for Hereditary Spherocytosis. Br. J. Haematol. 2004, 124, 106–113. DOI: 10.1046/j.1365-2141.2003.04730.x.
  • Demehin, A. A.; Abugo, O. O.; Jayakumar, R.; Lakowicz, J. R.; Rifkind, J. M. Binding of Hemoglobin to Red Cell Membranes with Eosin-5-maleimide-labeled Band 3: Analysis of Centrifugation and Fluorescence Lifetime Data. Biochemistry. 2002, 41, 8630–8637. DOI: 10.1021/bi012007e.
  • Kedar, P. S.; Colah, R. B.; Kulkarni, S.; Ghosh, K.; Mohanty, D. Experience with Eosin-5ʹ-maleimide as a Diagnostic Tool for Red Cell Membrane Cytoskeleton Disorders. Clin. Lab. Haem. 2003, 25, 373–376. DOI: 10.1046/j.0141-9854.2003.00557.x.
  • Fanhchaksai, K.; Manowong, S.; Natesirinilkul, R.; Sathitsamitphong, L.; Charoenkwan, P. Flow Cytometric Test with Eosin-5-maleimide for a Diagnosis of Hereditary Spherocytosis in a Newborn. Case Rep. Hematol. 2019, Article ID 5925731. 5. DOI: 10.1155/2019/5925731.
  • Vive`s, E.; Lebleu, B. One-pot Labeling and Purification of Peptides and Proteins with Fluorescein Maleimide. Tetrahedron Lett. 2003, 44, 5389–5391. DOI: 10.1016/S0040-4039(03)01304-2.
  • Higashi, Y.; Yamashiro, M.; Yamamoto, R.; Fujii, Y. HPLC Analysis of Bucillamine by Derivatization with N-(1-pyrenyl)maleimide in Human Blood. J. Liq. Chrom. Relat. Tech. 2003, 26(19), 3265–3275. DOI: 10.1081/JLC-120025522.
  • Li, J.; Bigelow, D. J.; Squier Thomas, C. Phosphorylation by cAMP-dependent Protein Kinase Modulates the Structural Coupling between the Transmembrane and Cytosolic Domains of Phospholamban. Biochemistry. 2003, 42, 10674–10682. DOI: 10.1021/bi034708c.
  • Schouten, J. A.; Bagga, S.; Lloyd, A. J.; de Pascale, G.; Dowson, C. G.; Roper, D. I.; Bugg, T. D. H. Fluorescent Reagents for in Vitro Studies of Lipid-linked Steps of Bacterial Peptidoglycan Biosynthesis: Derivatives of UDPMurNAc-pentapeptide Containing D-cysteine at Position 4 or 5. Mol. BioSyst. 2006, 2, 484–491. DOI: 10.1039/b607908c.
  • Enjeti, A. K.; Lincz, L.; Seldon, M. Bio-maleimide as a Generic Stain for Detection and Quantitation of Microparticles. Int. J. Lab. Hem. 2008, 30, 196–199. DOI: 10.1111/j.1751-553X.2007.00937.x.
  • Guo, X.-F.; Chen, J.-B.; Wang, H.; Zhang, H.-S.; Huang, W.-H.; Guo, J. Real-time and In-situ Cell Imaging of Thiol Compounds in Living Cells Using Maleimide BODIPY Labeling. Talanta. 2012, 99, 1046–1050. DOI: 10.1016/j.talanta.2012.06.018.
  • Pudney, C. R.; Lane, R. S. K.; Fielding, A. J.; Magennis, S. W.; Hay, S.; Scrutton, N. S. Enzymatic Single-molecule Kinetic Isotope Effects. J. Am. Chem. Soc. 2013, 135, 3855–3864. DOI: 10.1021/ja309286r.
  • Lamichhane, R.; Berezhna, S. Y.; Gill, J. P.; Van der Schans, E.; Millar, D. P. Dynamics of Site Switching in DNA Polymerase. J. Am. Chem. Soc. 2013, 135, 4735–4742. DOI: 10.1021/ja31141b.
  • Liu, Y.; Yehl, K.; Narui, Y.; Salaita, K. Tension Sensing Nanoparticles for Mechano-imaging at the Living/nonliving Interface. J. Am. Chem. Soc. 2013, 135, 5320–5323. DOI: 10.1021/ja401494e.
  • Lanza, G. M.; Winter, P. M.; Caruthers, S. D.; Hughes, M. S.; Marsh, J. N.; Yu, X.; Fuhrhop, R.; Zhang, H.; Allen, J. S.; Wickline, S. A. Molecular Imaging and Targeted Drug Delivery: A New Paradigm in Medicine. Abstracts Papers Am. Chem. Soc. 2003, 226, U473–U473.
  • Bullok, K. E.; Gammon, S. T.; Violini, S.; Prantner, A. M.; Villalobos, V. M.; Sharma, V.; Piwnica-Worms, D. Permeation Peptide Conjugates for in Vivo Molecular Imaging Applications. Mol. Imaging. 2006, 5(1), 1–15. DOI: 10.2310/7290.2006.00001.
  • Fonge, H.; de Saint Hubert, M.; Vunckx, K.; Rattat, D.; Nuyts, J.; Bormans, G.; Ni, Y.; Reutelingsperger, C.; Verbruggen, A. Preliminary in Vivo Evaluation of a Novel 99mTc-labeled HYNIC-cys-annexin A5 as an Apoptosis Imaging Agent. Bioorg. Med. Chem. Lett. 2008, 18, 3794–3798. DOI: 10.1016/j.bmcl.2008.05.044.
  • Förster, C.; Schubert, M.; Pietzsch, H.-J.; Steinbach, J. Maleimido-functionalized NOTA Derivatives as Bifunctional Chelators for Site-specific Radiolabeling. Molecules. 2011, 16, 5228–5240. DOI: 10.3390/molecules16065228.
  • Cheng, K.; Kothapalli, S.-R.; Liu, H.; Koh, A. L.; Jokerst, J. V.; Jiang, H.; Yang, M.; Li, J.; Levi, J.; Wu, J. C.; et al. Construction and Validation of Nano Gold Tripods for Molecular Imaging of Living Subjects. J. Am. Chem. Soc. 2014, 136, 3560–3571. DOI: 10.1021/ja412001e.
  • Fleiner, M.; Benzinger, P.; Fichert, T.; Massing, U. Studies on Protein-liposome Coupling Using Novel Thiol-reactive Coupling Lipids: Influence of Spacer Length and Polarity. Bioconjugate Chem. 2001, 12, 470–475. DOI: 10.1021/bc000101m.
  • Mandler, R.; Dadachova, E.; Brechbiel, J. K.; Waldmann, T. A.; Brechbiel, M. W. Synthesis and Evaluation of Antiproliferative Activity of a geldanamycin-HerceptinTM Immunoconjugate. Bioorg. Med. Chem. Lett. 2000, 10, 1025–1028. DOI: 10.1016/S0960-894X(00)00155-4.
  • Mandler, R.; Kobayashi, H.; Davis, M. Y.; Waldmann, T. A.; Brechbiel, M. W. Modifications in Synthesis Strategy Improve the Yield and Efficacy of geldanamycin-Herceptin Immunoconjugates. Bioconjugate Chem. 2002, 13, 786–791. DOI: 10.1021/bc010124g.
  • Sun, C.; Wirsching, P.; Janda, K. D. Syntheses of Dendritic Linkers Containing Chlorambucil Residues for the Preparation of Antibody–multidrug Immunoconjugates. Bioorg. Med. Chem. Lett. 2002, 12, 2213–2215. DOI: 10.1016/S0960-894X(02)00361-X.
  • Wu, W.; Hsiao, S. C.; Carrico, Z. M.; Francis, M. B. Genome-free Viral Capsids as Multivalent Carriers for Taxol Delivery. Angew. Chem. Int. Ed. 2009, 48, 9493–9497. DOI: 10.1002/anie.200902426.
  • Burke, P. J.; Toki, B. E.; Meyer, D. W.; Miyamoto, J. A. B.; Kissler, K. M.; Anderson, M.; Senter, P. D.; Jeffrey, S. C. Novel Immunoconjugates Comprised of Streptonigrin and 17-amino-geldanamycin Attached via a Dipeptide-p-aminobenzyl-amine Linker System. Bioorg. Med. Chem. Lett. 2009, 19, 2650–2653. DOI: 10.1016/j.bmcl.2009.03.145.
  • Wang, L.-X.; Ni, J.; Singh, S. Carbohydrate-centered Maleimide Cluster as a New Type of Templates for Multivalent Peptide Assembling: Synthesis of Multivalent HIV-1 Gp41 Peptides. Bioorg. Med. Chem. 2003, 11, 159–166. DOI: 10.1016/s0968-0896(02)00339-5.
  • Lee, J. Y.; Yoon, K. J.; Lee, Y. S. Catechol-substituted L-chicoric Acid Analogues as HIV Integrase Inhibitors. Bioorg. Med. Chem. 2003, 13, 4331–4334. DOI: 10.1016/j.bmcl.2003.09.046.
  • Sahabuddin, S.; Chang, T.-C.; Lin, C.-C.; Jan, F.-D.; Hsiao, H.-Y.; Huang, K.-T.; Chen, J.-H.; Horng, J.-C.; Ho, J. A.; Lin, C.-C. Synthesis of N-modified sTn Analogs and Evaluation of Their Immunogenicities by Microarray-based Immunoassay. Tetrahedron. 2010, 66, 7510–7519. DOI: 10.1016/j.tet.2010.07.050.
  • Liu, X.; Wang, H.; Herron, J. N.; Prestwich, G. D. Photopatterning of Antibodies on Biosensors. Bioconjugate Chem. 2000, 11, 755–761. DOI: 10.1021/bc000006d.
  • Burgener, M.; Sänger, M.; Candrian, U. Synthesis of a Stable and Specific Surface Plasmon Resonance Biosensor Surface Employing Covalently Immobilized Peptide Nucleic Acids. Bioconjugate Chem. 2000, 11, 749–754. DOI: 10.1021/bc0000029.
  • Lee, S. W.; Kang, C. D.; Yang, D. H.; Lee, J.-S.; Kim, J. M.; Ahn, D. J.; Sim, S. J. The Development of a Generic Bioanalytical Matrix Using Polydiacetylenes. Adv. Funct. Mater. 2007, 17, 2038–2044. DOI: 10.1002/adfm.200600398.
  • Mukthavaram, R.; Wrasidlo, W.; Hall, D.; Kesari, S.; Makale, M. Assembly and Targeting of Liposomal Nanoparticles Encapsulating Quantum Dots. Bioconjugate Chem. 2011, 22, 1638–1644. DOI: 10.1021/bc200201e.
  • Phelps, E. A.; Enemchukwu, N. O.; Fiore, V. F.; Sy, J. C.; Murthy, N.; Sulchek, T. A.; Barker, T. H.; García, A. J. Maleimide Cross-linked Bioactive PEG Hydrogel Exhibits Improved Reaction Kinetics and Cross-linking for Cell Encapsulation and in Situ Delivery. Adv. Mater. 2012, 24, 64–70. DOI: 10.1002/adma.201103574.
  • Headen, D. M.; Aubry, G.; Lu, H.; García, A. J. Microfluidic-based Generation of Size-controlled, Biofunctionalized Synthetic Polymer Microgels for Cell Encapsulation. Adv. Mater. 2014, 26, 3003–3008. DOI: 10.1002/adma.201304880.
  • Hai, T. T.; Pereira, D. E.; Nelson, D. J.; Catarello, J.; Srnak, A. Surface Modification of Diaspirin Cross-linked Hemoglobin (Dclhb) with Chondroitin-4-sulfate Derivatives. Part 1. Bioconjugate Chem. 2000, 11, 705–713. DOI: 10.1021/bc000021i.
  • Khan, I.; Dantsker, D.; Samuni, U.; Friedman, A. J.; Bonaventura, C.; Manjula, B.; Acharya, S. A.; Friedman, J. M. β93 Modified Hemoglobin: Kinetic and Conformational Consequences. Biochemistry. 2001, 40, 7581–7592. DOI: 10.1021/bi010051o.
  • Juszczak, L. J.; Manjula, B. N.; Bonaventura, C.; Acharya, S. A.; Friedman, J. M. UV Resonance Raman Study of β93-modified Hemoglobin A: Chemical Modifier-specific Effects and Added Influences of Attached Poly(ethylene Glycol) Chains. Biochemistry. 2002, 41, 376–385. DOI: 10.1021/bi011212r.
  • Manjula, B. N.; Tsai, A.; Upadhya, R.; Perumalsamy, K.; Smith, P. K.; Malavalli, A.; Vandegriff, K.; Winslow, R. M.; Intaglietta, M.; Prabhakaran, M.; et al. Site-specific PEGylation of Hemoglobin at cys-93(β): Correlation between the Colligative Properties of the PEGylated Protein and the Length of the Conjugated PEG Chain. Bioconjugate Chem. 2003, 14, 464–472. DOI: 10.1021/bc0200733.
  • Vandegriff, K. D.; Malavalli, A.; Wooldridge, J.; Lohman, J.; Winslow, R. M. MP4, a New Nonvasoactive PEG-Hb Conjugate. Transfusion. 2003, 43, 509–516. DOI: 10.1046/j.1537-2995.2003.00341.x.
  • Vandegriff, K. D.; Bellelli, A.; Samaja, M.; Malavalli, A.; Brunori, M.; Winslow, R. M. Kinetics of NO and O2 Binding to a Maleimide Poly(ethylene Glycol)-conjugated Human Haemoglobin. Biochem. J. 2004, 382, 183–189. DOI: 10.1042/BJ20040156.
  • Spahn, D. R.; Kocian, R. Artificial O2 Carriers: Status in 2005. Curr. Pharm. Des. 2005, 11, 4099–4114. DOI: 10.2174/138161205774913354.
  • Nacharaju, P.; Boctor, F. N.; Manjula, B. N.; Acharya, S. A. Surface Decoration of Red Blood Cells with Maleimidophenylpolyethylene Glycol Facilitated by Thiolation with Iminothiolane: An Approach to Mask A, B, and D Antigens to Generate Universal Red Blood Cells. Transfusion. 2005, 45, 374–383. DOI: 10.1111/j.1537-2995.2005.04290.x.
  • Li, D.; Manjula, B. N.; Ho, N. T.; Simplaceanu, V.; Ho, C.; Acharya, A. S. Molecular Aspects of the High Oxygen Affinity of Non-hypertensive Hexa Pegylated Hemoglobin, [(sp-peg5k)6-hb. Artif. Cells Blood Substit. Immobil. Biotechnol. 2007, 35, 19–29. DOI: 10.1080/10731190600974376.
  • Acharya, S. A.; Friedman, J. M.; Manjula, B. N.; Intaglietta, M.; Tsai, A. G.; Winslow, R. M.; Malavalli, A.; Vandegriff, K.; Smith, P. K. Enhanced Molecular Volume of Conservatively Pegylated Hb: (Sp-peg5k)6-hba Is Non-hypertensive. Artif. Cells Blood Substit. Immobil. Biotechnol. 2005, 33, 239–255. DOI: 10.1081/bio-200066365.
  • Alagic, A.; Koprianiuk, A.; Kluger, R. Hemoglobin-superoxide Dismutases-chemical Linkages that Create a Dual-function Protein. J. Am. Chem. Soc. 2005, 127, 8036–8043. DOI: 10.1021/ja050339r.
  • Tarasov, E.; Blaszak, M. M.; LaMarre, J. M.; Olsen, K. W. Synthesis of a Hemoglobin Polymer Containing Antioxidant Enzymes Using Complementary Chemistry of Maleimides and Sulfhydryls. Biotechnology. 2007, 35, 31–43. DOI: 10.1080/10731190600974434.
  • MacPhee, C. E.; Dobson, C. M. Formation of Mixed Fibrils Demonstrates the Generic Nature and Potential Utility of Amyloid Nanostructures. J. Am. Chem. Soc. 2000, 122(51), 12707–12713. DOI: 10.1021/ja0029580.
  • Viitala, T.; Vikholm, I.; Peltonen, J. Protein Immobilization to a Partially Cross-linked Organic Monolayer. Langmuir. 2000, 16, 4953–4961. DOI: 10.1021/la990817.
  • Jacobsen, R. B.; Sale, K. L.; Ayson, M. J.; Novak, P.; Hong, J.; Lane, P.; Wood, N. L.; Kruppa, G. H.; Young, M. M.; Schoeniger, J. S. Structure and Dynamics of Dark-state Bovine Rhodopsin Revealed by Chemical Cross-linking and High-resolution Mass Spectrometry. Protein Sci. 2006, 15, 1303–1317. DOI: 10.1110/ps.052040406.
  • Schelte, P.; Boeckler, C.; Frisch, B.; Schuber, F. Differential Reactivity of Maleimide and Bromoacetyl Functions with Thiols: Application to the Preparation of Liposomal Diepitope Constructs. Bioconjugate Chem. 2000, 11(1), 118–123. DOI: 10.1021/bc990122k.
  • Elliott, J. T.; Prestwich, G. D. Maleimide-functionalized Lipids that Anchor Polypeptides to Lipid Bilayers and Membranes. Bioconjugate Chem. 2000, 11, 832–841. DOI: 10.1021/bc000022a.
  • Lateef, S. S.; Boateng, S.; Hartman, T. J.; Crot, C. A.; Russell, B.; Hanley, L. GRGDSP Peptide-bound Silicone Membranes Withstand Mechanical Flexing in Vitro and Display Enhanced Fibroblast Adhesion. Biomaterials. 2002, 23, 3159–3168. DOI: 10.1016/s0142-9612(02)00062-5.
  • Shin, I.; Jung, H.-J.; Cho, J. W. Chemoselective Ligation of Acetylated 1-maleimidosugars to Peptides for the Preparation of Neoglycopeptides. Bull. Korean Chem. Soc. 2000, 21(9), 845–846. DOI: 10.1002/chin.200112196.
  • Ni, J.; Singh, S.; Wang, L. X. Synthesis of Maleimide-Activated Carbohydrates as Chemoselective Tags for Site-Specific Glycosylation of Peptides and Proteins. Bioconjugate Chem. 2003, 14, 232–238. DOI: 10.1021/bc025617f.
  • Wegner, G. J.; Lee, H. J.; Marriott, G.; Corn, R. M. Fabrication of Histidine-tagged Fusion Protein Arrays for Surface Plasmon Resonance Imaging Studies of Protein-protein and protein-DNA Interactions. Anal. Chem. 2003, 75, 4740–4746. DOI: 10.1021/ac0344438.
  • Li, H.; Wang, L.-X. Cholic Acid as Template for Multivalent Peptide Assembly. Org. Biomol. Chem. 2003, 1, 3507–3513. DOI: 10.1039/b307995c.
  • Su, J.; Bringer, M. R.; Ismagilov, R. F.; Mrksich, M. Combining Microfluidic Networks and Peptide Arrays for Multi-enzyme Assays. J. Am. Chem. Soc. 2005, 127, 7280–7281. DOI: 10.1021/ja051371o.
  • Milanesi, L.; Reid, G. D.; Beddard, G. S.; Hunter, C. A.; Waltho, J. P. Synthesis and Photochemistry of a New Class of Photocleavable Protein Cross-linking Reagents. Chem. Eur. J. 2004, 10, 1705–1710. DOI: 10.1002/chem.200305405.
  • Chen, C.-P.; Park, Y.; Rice, K. G. An Improved Large-scale Synthesis of PEG-peptides for Gene Delivery. J. Peptide Res. 2004, 64, 237–243. DOI: 10.1111/j.1399-3011.2004.00195.x.
  • Hao, Y.; Chen, J.; Wang, X.; Zhu, H.; Rong, Z. Effects of Site-specific Polyethylene Glycol Modification of Recombinant Human Granulocyte Colony-stimulating Factor on Its Biologic Activities. Biodrugs. 2006, 20(6), 357–362. DOI: 10.2165/00063030-200620060-00006.
  • Qie, J.; Ma, J.; Wang, L.; Xu, X.; Zhou, W.; Qi, C.; Zhao, X.; Zhang, Y.; Liu, K. Site-directed PEGylations of Thymosin α 1 Analogs and Evaluation of Their Immunoactivity. Chin. J. Chem. 2009, 27, 805–809. DOI: 10.1002/cjoc.200990134.
  • Xue, X.; Li, D.; Yu, J.; Ma, G.; Su, Z.; Hu, T. Phenyl Linker-induced Dense PEG Conformation Improves the Efficacy of C-terminally monoPEGylated Staphylokinase. Biomacromolecules. 2013, 14, 331–341. DOI: 10.1021/bm301511w.
  • Qian, X.; Dong, H.; Tian, H.; Tong, Y.; Guo, L.; Hu, X.; Gao, X.; Yao, W. Characterization of a Site-specific PEGylated Analog of Exendin-4 and Determination of the PEGylation Site. Int. J. Pharm. 2013, 15, 454–553. DOI: 10.1016/j.ijpharm.2013.06.059.
  • Chi, Y. S.; Lee, B. S.; Kil, M.; Jung, H. J.; Oh, E.; Choi, I. S. Asymmetrically Functionalized, Four-armed, Poly(ethylene Glycol) Compounds for Construction of Chemically Functionalizable Non-biofouling Surfaces. Chem. Asian J. 2009, 4, 135–142. DOI: 10.1002/asia.200800344.
  • Kashiwada, A.; Sakakibara, A.; Nakamura, Y.; Matsuda, K. Monodispersed Dimerization of Isoleucine Zipper-coiled Coil Trimer. Bull. Chem. Soc. Jpn. 2007, 80(7), 1296–1301. DOI: 10.1246/bcsj.80.1296.
  • Radu, L. C.; Yang, J.; Kopecêk, J. Self-assembling Diblock Ccopolymers of poly[N-(2-hydroxypropyl)methacrylamide]and a β-sheet Peptide. Macromol. Biosci. 2009, 9, 36–44. DOI: 10.1002/mabi.200800193.
  • Rothnie, A.; Storm, J.; McMahon, R.; Taylor, A.; Kerr, I. D.; Callaghan, R. The Coupling Mechanism of P-glycoprotein Involves Residue L339 in the Sixth Membrane Spanning Segment. FEBS Lett. 2005, 579, 3984–3990. DOI: 10.1016/j.febslet.2005.06.030.
  • Watzke, A.; Gutierrez-Rodriguez, M.; Köhn, M.; Wacker, R.; Schroeder, H.; Breinbauer, R.; Kuhlmann, J.; Alexandrov, K.; Niemeyer, C. M.; Goody, R. S.; et al. A Generic Building Block for C- and N-terminal Protein-labeling and Protein-immobilization. Bioorg. Med. Chem. 2006, 14, 6288–6306. DOI: 10.1016/j.bmc.2006.05.006.
  • Wängler, C.; Schirrmacher, R.; Bartenstein, P.; Wängler, B. Simple and Convenient Radiolabeling of Proteins Using a Prelabeling-approach with thiol-DOTA. Bioorg. Med. Chem. Lett. 2009, 19, 1926–1929. DOI: 10.1016/j.bmcl.2009.02.052.
  • Ravi, S.; Krishnamurthy, V. R.; Caves, J. M.; Haller, C. A.; Chaikof, E. L. Maleimide–thiol Coupling of a Bioactive Peptide to an Elastin-like Protein Polymer. Acta Biomater. 2012, 8, 627–635. DOI: 10.1016/j.actbio.2011.10.027.
  • Han, J.; Huang, X.; Sun, L.; Li, Z.; Qian, H.; Huang, W. Novel Fatty Chain-modified Glucagon-like Peptide-1 Conjugates with Enhanced Stability and Prolonged in Vivo Activity. Biochem. Pharmacol. 2013, 86, 297–308. DOI: 10.1016/j.bcp.2013.05.012.
  • Koehler, K. C.; Alge, D. L.; Anseth, K. S.; Bowman, C. N. Development of a Maleimide Amino Acid for Use as a Tool for Peptide Conjugation and Modification. Int. J. Pept. Res. Ther. 2013, 19, 265–274. DOI: 10.1007/s10989-013-9347-y.
  • Elduque, X.; Pedroso, E.; Grandas, A. Straightforward Synthesis of Cyclic and Bicyclic Peptides. Org. Lett. 2013, 15(8), 2038–2041. DOI: 10.1021/ol400726y.
  • Madl, C. M.; Mehta, M.; Duda, G. N.; Heilshorn, S. C.; Mooney, D. J. Presentation of BMP-2 Mimicking Peptides in 3D Hydrogels Directs Cell Fate Commitment in Osteoblasts and Mesenchymal Stem Cell. Biomacromolecules. 2014, 15, 445–455. DOI: 10.1021/bm401726u.
  • Hemantha, H. P.; Bavikar, S. N.; Herman-Bachinsky, Y.; Haj-Yahya, N.; Bondalapati, S.; Ciechanover, A.; Brik, A. Nonenzymatic Polyubiquitination of Expressed Proteins. J. Am. Chem. Soc. 2014, 136, 2665–2673. DOI: 10.1021/ja412594d.
  • Dantas de Araffljo, A.; Palomo, J. M.; Cramer, J.; Seitz, O.; Alexandrov, K.; Waldmann, H. Diels-Alder Ligation of Peptides and Proteins. Chem. Eur. J. 2006, 12, 6095–6109. DOI: 10.1002/chem.200600148.
  • Smeenk, J. M.; Ayres, L.; Stunnenberg, H. G.; van Hest, J. C. M. Polymer Protein Hybrids. Macromol. Sympos. 2005, 225, 1–8. DOI: 10.1002/masy.200550701.
  • Smeenk, J. M.; Schön, P.; Otten, M. B. J.; Speller, S.; Stunnenberg, H. G.; van Hest, J. C. M. Fibril Formation by Triblock Copolymers of Silklike β-sheet Polypeptides and Poly(ethylene Glycol). Macromolecules. 2006, 39, 2989–2997. DOI: 10.1021/ma0521654.
  • Lee, M. H.; Adams, C. S.; Boettiger, D.; DeGrado, W. F.; Shapiro, I. M.; Composto, R. J.; Ducheyne, P. Adhesion of MC3T3-E1 Cells to RGD Peptides of Different Flanking Residues: Detachment Strength and Correlation with Long-term Cellular Function. J. Biomed. Mater. Res. A. 2007, 81, 150–160. DOI: 10.1002/jbm.a.31065.
  • Schumacher, F. F.; Nobles, M.; Ryan, C. P.; Smith, M. E. B.; Tinker, A.; Caddick, S.; Baker, J. R. In Situ Maleimide Bridging of Disulfides and a New Approach to Protein PEGylation. Bioconjugate Chem. 2011, 22, 132–136. DOI: 10.1021/bc1004685.
  • Petrelli, A.; Borsali, R.; Fort, S.; Halila, S. Oligosaccharide-based Block Copolymers: Metal-free Thiol–maleimide Click Conjugation and Self-assembly into Nanoparticles. Carbohydr. Polym. 2015, 124, 109–116. DOI: 10.1016/j.carbpol.2015.01.079.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.