121
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Polymer/inorganic hybrids containing silver nanoparticles and their activity in the disinfection of fish aquariums/ponds

, , , , , & show all
Pages 369-391 | Received 04 May 2020, Accepted 13 Aug 2020, Published online: 19 Oct 2020

References

  • Matvienko, N. M.; Vashchenko, A. V.; Tsiganok, I. O.; Buchatsky, L. P. Results of Surveillance Studies of Infectious Fish Diseases in Freshwater Aquaculture of Ukraine. Agric. Sci. Pract. 2015, 2, 32–37. http://nbuv.gov.ua/UJRN/asp_2015_2_7.
  • Praveen, P. K.; Debnath, C.; Shekhar, S.; Dalai, N.; Ganguly, S. Incidence of Aeromonas Spp. Infection in Fish and Chicken Meat and Its Related Public Health Hazards: A Review. Vet. World. 2016, 9, 6–11. https://doi:10.14202/vetworld.2016.6-11.
  • Lopez, J. R.; Lorenzo, L.; Marcelino-Pozuelo, C.; Marin-Arjona, M. C.; Navas, J. I. Pseudomonas Baetica: Pathogenicity for Marine Fish and Development of Protocols for Rapid Diagnosis. FEMS Microbiol. Lett. 2017, 364, fnw286. DOI: 10.1093/femsle/fnw286.
  • Wamala, S. P.; Mugimba, K. K.; Mutoloki, S.; Evensen, O.; Mdegela, R.; Byarugaba, D. K.; Sorum, H. Occurrence and Antibiotic Susceptibility of Fish Bacteria Isolated from Oreochromis Niloticus (Nile Tilapia) and Clarias Gariepinus (African Catfish) in Uganda. Fish Aquatic. Sci. 2018, 21, 6. DOI: 10.1186/s41240-017-0080-x.
  • Klasen, H. J.;. A Historical Review of the Use of Silver in the Treatment of Burns. II. Renewed Interest for Silver. Burns. 2000, 26, 131–138. DOI: 10.1016/S0305-4179(99)00116-3.
  • Barmatov, E. V.; Medvedev, A. V.; Barmatova, M. V. Particulate Silver Biocides and Methods for Biocide Use in Fracturing Fluids. U.S. Patent, 11/942839, 2008.
  • Ravishankar, R. V.; Jamuna, B. A. Nanoparticles and Their Potential Application as Antimicrobials. In Science against Microbial Pathogens: Communicating Current Research and Technological Advances, Méndez-Vilas, A. Ed; Formatex, 2011; pp. 197–209. https://pdfs.semanticscholar.org/1d44/3a4aa4a23dc545ea09c2f12fe77b603f4f6d.pdf
  • Tran, Q. H.; Nguyen, V. Q.; Le, A.-T. Silver Nanoparticles: Synthesis, Properties, Toxicology, Applications and Perspectives. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2013, 4, 033001. DOI: 10.1088/2043-6262/4/3/033001.
  • Maity, D.; Bain, M. K.; Bhowmick, B.; Sarkar, J.; Saha, S.; Acharya, K.; Chakraborty, M.; Chattopadhyay, D. In Situ Synthesis, Characterization and Antimicrobial Activity of Silver Nanoparticles Using Water Soluble Polymer. J. Appl. Polym. Sci. 2011, 122, 2189–2196. DOI: 10.1002/app.34266.
  • Lara, H. H.; Garza-Trevino, E. N.; Ixtepan-Turrent, L.; Singh, D. K. Silver Nanoparticles are Broad-spectrum Bactericidal and Virucidal Compounds. J. Nanobiotechnol. 2011, 9, 30. DOI: 10.1186/1477-3155-9-30.
  • Martinez-Castaňón, G. A.; Niňo-Martinez, N.; Martinez-Gutierrez, F.; Martinez, J. R.; Ruiz, F. Synthesis and Antibacterial Activity of Silver Nanoparticles with Different Sizes. J. Nanoparticle Res. 2008, 10, 1343–1348. DOI: 10.1007/s11051-008-9428-6.
  • Murphy, M.; Ting, K.; Zhang, X.; Soo, C.; Zheng, Z. Current Development of Silver Nanoparticle Preparation, Investigation, and Application in the Field of Medicine. J. Nanomaterials Hindawi Publ. Corp. 2015, 696918. DOI: 10.1155/2015/696918.
  • Korbekandi, H.; Iravani, S. Silver Nanoparticles. In The Delivery of Nanoparticles, Hashim, A. A. Ed; Iran: InTech, 2012; pp. 3–36. http://www.issp.ac.ru/ebooks/books/open/The_Delivery_of_Nanoparticles.pdf
  • Reidy, B.; Haase, A.; Luch, A.; Dawson, K. A.; Lynch, I. Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications. Materials. 2013, 6, 2295–2350. DOI: 10.3390/ma6062295.
  • AshaRani, P. V.; Prakash, H. M.; Valiyaveettil, S. Anti-proliferative Activity of Silver Nanoparticles. BMC Cell Biol. 2009, 10, 65. DOI: 10.1186/1471-2121-10-65.
  • Foldbjerg, R.; Olesen, P.; Hougaard, M.; Dang, D. A.; Hoffmann, H. J.; Autrup, H. PVP-coated Silver Nanoparticles and Silver Ions Induce Reactive Oxygen Species, Apoptosis and Necrosis in THP-1 Monocytes. Toxicol. Lett. 2009, 190, 156–162. DOI: 10.1016/j.toxlet.2009.07.009.
  • Park, M. V.; Neigh, A. M.; Vermeulen, J. P.; Briedé, J. J.; van Loveren, H.; de Jong, W. H. The Effect of Particle Size on the Cytotoxicity, Inflammation, Developmental Toxicity and Genotoxicity of Silver Nanoparticles. Biomaterials. 2011, 32, 9810–9817. DOI: 10.1016/j.biomaterials.2011.08.085.
  • Kim, T.-H.; Kim, M.; Park, H.-S.; Shin, U. S.; Gong, M.-S.; Kim, H.-W. Size-dependent Cellular Toxicity of Silver Nanoparticles. J. Biomed. Mater. Res. Part A. 2012, 100A, 1033–1043. DOI: 10.1002/jbm.a.34053.
  • Kennedy, D. C.; Orts-Gil, G.; Lai, C.-H.; Miller, S.; Haase, A.; Luch, A.; Seeberger, P. H. Carbohydrate Functionalization of Silver Nanoparticles Modulates Cytotoxicity and Sellular Uptake. J. Nanobiotechnol. 2014, 12, 59. DOI: 10.1186/s12951-014-0059-z.
  • Wen, Y.; Geitner, N. K.; Chen, R.; Ding, F.; Chen, P.; Andorfer, R. E.; Govindan, P. N.; Ke, P. C. Binding of Cytoskeletal Proteins with Silver Nanoparticles. RSC Adv. 2013, 3, 22002–22007. DOI: 10.1039/c3ra43281e.
  • Li, Y.; Bhalli, J. A.; Ding, W.; Yan, J.; Pearce, M. G.; Sadiq, R.; Cunningham, C. K.; Jones, M. Y.; Monroe, W. A.; Howard, P. C.; et al. Cytotoxicity and Genotoxicity Assessment of Silver Nanoparticles in Mouse. Nanotoxicology. 2014, 8, 36–45. DOI: 10.3109/17435390.2013.855827.
  • Massarsky, A.; Trudeau, V. L.; Moon, T. W. Predicting the Environmental Impact of Nanosilver. Environ. Toxicol. Pharmacol. 2014, 38, 861–873. DOI: 10.1016/j.etap.2014.10.006.
  • Monfared, A. L.; Bahrami, A. M.; Hosseini, E.; Soltani, S.; Shaddel, M. Effects of Nano-particles on Histo-pathological Changes of the Fish. J. Environ. Health Sci. Eng. 2015, 13, 62. DOI: 10.1186/s40201-015-0216-9.
  • Asharani, P. V.; Wu, Y. L.; Gong, Z.; Valiyaveettil, S. Toxicity of Silver Nanoparticles in Zebrafish Models. Nanotechnology. 2008, 19, 255102. https://iopscience.iop.org/article/10.1088/0957-4484/19/25/255102.
  • Wang, H.; Ho, K. T.; Scheckel, K. G.; Wu, F.; Cantwell, M. G.; Katz, D. R.; Horowitz, D. B.; Boothman, W. S.; Burgess, R. M. Toxicity, Bioaccumulation, and Biotransformation of Silver Nanoparticles in Marine Organisms. Environ. Sci. Technol. 2014, 48, 13711–13717. DOI: 10.1021/es502976y.
  • Kumari, M.; Mukherjee, A.; Chandrasekaran, N. Genotoxicity of Silver Nanoparticles in Allium Cepa. Sci. Total Environ. 2009, 407, 5243–5246. DOI: 10.1016/j.scitotenv.2009.06.024.
  • Rozenberg, B. A.; Tenne, R. Polymer-assisted Fabrication of Nanoparticles and Nanocomposites. Prog. Polym. Sci. 2008, 33, 40–112. DOI: 10.1016/j.progpolymsci.2007.07.004.
  • Natsuki, J.; Natsuki, T.; Hashimoto, Y. A Review of Silver Nanoparticles: Synthesis Methods, Properties and Applications. Int. J. Mater. Sci. Appl. 2015, 4, 325–332. DOI: 10.11648/j.ijmsa.20150405.17.
  • Hood, M. A.; Mari, M.; Munoz-Esp, R. Synthetic Strategies in the Preparation of Polymer/inorganic Hybrid Nanoparticles. Materials. 2014, 7, 4057–4087. DOI: 10.3390/ma7054057.
  • Lee, S. H.; Jun, B.-H. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int. J. Mol. Sci. 2019, 20, 865. DOI: 10.3390/ijms20040865.
  • Kvitek, L.; Panáček, A.; Soucupová, J.; Kolář, M.; Večeřová, R.; Prucek, R.; Holecová, M.; Zbořil, R. Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs). J. Phys. Chem. C. 2008, 112, 5825–5834. DOI: 10.1021/jp711616v.
  • Chou, K.-S.; Lai, Y.-S. Effect of Polyvinyl Pyrrolidone Molecular Weights on the Formation of Nanosized Silver Colloids. Mater. Chem. Phys. 2004, 83, 82–88. DOI: 10.1016/j.matchemphys.2003.09.026.
  • Xiong, Y.; Siekkinen, A. R.; Wang, J.; Yin, Y.; Kim, M. J.; Xia, Y. Synthesis of Silver Nanoplates at High Yields by Slowing down the Polyol Reduction of Silver Nitrate with Polyacrylamide. J. Mater. Chem. 2007, 17, 2600–2602. DOI: 10.1039/B705253G.
  • Falletta, E.; Bonini, M.; Fratini, E.; Lo Nostro, A.; Pesavento, G.; Becheri, A.; Lo Nostro, P.; Canton, P.; Baglioni, P. Clusters of Poly(acrylates) and Silver Nanoparticles: Structure and Applications for Antimicrobial Fabrics. J. Phys. Chem. C. 2008, 112, 11758–11766. DOI: 10.1021/jp8035814.
  • Prozorova, G. F.; Pozdnyakov, A. S.; Kuznetsova, N. P.; Korzhova, S. A.; Emel’yanov, A. I.; Ermakova, T. G.; Fadeeva, T. V.; Sosedova, L. M. Green Synthesis of Water-soluble Nontoxic Polymeric Nanocomposites Containing Silver Nanoparticles. Int. J. Nanomed. 2014, 9, 1883–1889. DOI: 10.2147/IJN.S57865.
  • Guo, L.; Nie, J.; Du, B.; Peng, Z.; Tesche, B.; Kleinermanns, K. Thermoresponsive Polymerstabilized Silver Nanoparticles. J. Colloid Interface Sci. 2008, 319, 175–181. DOI: 10.1016/j.jcis.2007.11.022.
  • Kaliammal, P.; Rosemary, M. J.; Khadar, M. A. Synthesis, Characterization and Applications of Polymer Protected Silver and Silver Iodide Nanoparticles. Indian J. Nanotechnol. Appl. 2013, 1, 49–60. http://www.gbspublisher.com.
  • Maidul Islam, A. K. M.; Makherjee, M. Effect of Temperature in Synthesis of Silver Nanoparticles in Triblock Copolymer Micellar Solution. J. Exper. Nanosci. 2011, 6, 596–611. DOI: 10.1080/17458080.2010.506518.
  • Fedorchuk, S. V.; Zheltonozhskaya, T. B.; Gomza, Y. P.; Klymchuk, D. O.; Kunitskaya, L. R. Morphology of Silver Nanoparticles in the Micelle-forming Block Copolymers. Mol. Cryst. Liq. Cryst. 2014, 590, 172–178. DOI: 10.1080/15421406.2013.874213.
  • Abdel-Halima, E. S.; El-Rafieb, M. H.; Al-Deyab, S. S. Polyacrylamide/guar Gum Graft Copolymer for Preparation of Silver Nanoparticles. Carbohydr. Polym. 2011, 85, 692–697. DOI: 10.1016/j.carbpol.2011.03.039.
  • Fedorchuk, S. V.; Zheltonozhskaya, T. B.; Gomza, Y. P.; Nessin, S. D.; Klymchuk, D. O. Morphology of Silver Nanoparticles in the Graft Copolymer Matrices. J. Proc. Int. Conf. “Nanomaterials: Applications and Properties”. 2013, 2(2), 02PCN31. https://nap.sumdu.edu.ua/index.php/nap/nap2013/paper/view/1190.
  • Voets, I. K.; de Keizer, A.; Frederik, P. M.; Jellema, R.; Cohen Stuart, M. A. Environment-sensitive Stabilisation of Silver Nanoparticles in Aqueous Solutions. J. Colloid Interface Sci. 2009, 339, 317–324. DOI: 10.1016/j.jcis.2009.07.065.
  • Aguilar-Méndez, M. A.; Martín-Martínez, E. S.; Ortega-Arroyo, L.; Cobián-Portillo, G.; Sánchez-Espíndola, E. Synthesis and Characterization of Silver Nanoparticles: Effect on Phytopathogen Colletotrichun Gloesporioides. J. Nanopart. Res. 2011, 13, 2525–2532. DOI: 10.1007/s11051-010-0145-6.
  • Medina-Ramirez, I.; Bashir, S.; Luo, Z.; Liu, J. L. Green Synthesis and Characterization of Polymer-stabilized Silver Nanoparticles. Colloids Surf. B Biointerfaces. 2009, 73, 185–191. DOI: 10.1016/j.colsurfb.2009.05.015.
  • Huang, H.; Yuan, Q.; Yang, X. Preparation and Characterization of Metal-Chitosan Nanocomposites. Colloids Surf. B. 2004, 39, 31–37. DOI: 10.1016/j.colsurfb.2004.08.014.
  • Bankura, K. P.; Maity, D.; Mollick, M. M.; Mondal, D.; Bhowmick, B.; Bain, M. K.; Chakraborty, A.; Sarkar, J.; Acharya, K.; Chattopadhyay, D. Synthesis, Characterization and Antimicrobial Activity of Dextran Stabilized Silver Nanoparticles in Aqueous Medium. Carbohydr. Polym. 2012, 89, 1159–1165. DOI: 10.1016/j.carbpol.2012.03.089.
  • Liu, Y.; Chen, S.; Zhong, L.; Wu, G. Preparation of High-stable Silver Nanoparticle Dispersion by Using Sodium Alginate as a Stabilizer under Gamma Radiation. Radiation Phys. Chem. 2009, 78, 251–255. DOI: 10.1016/j.radphyschem.2009.01.003.
  • Popa, M.; Pradell, T.; Crespo, D.; Calderón-Moreno, J. M. Stable Silver Colloidal Dispersions Using Short Chain Polyethylene Glycol. Colloids Surf. A Physicochem. Eng. Aspects. 2007, 303, 184–190. DOI: 10.1016/j.colsurfa.2007.03.050.
  • Hoppe, C. E.; Lazzari, M.; Pardiñas-Blanco, I.; López-Quintela, M. A. One-step Synthesis of Gold and Silver Hydrosols Using Poly(N-vinyl-2-pyrrolidone) as a Reducing Agent. Langmuir. 2006, 22, 7027–7034. DOI: 10.1021/la060885d.
  • Hebeish, A.; El-Naggar, M. E.; Foudaa, M. M. G.; Ramadanb, M. A.; Al-Deyabc, S. S.; El-Rafie, M. H. Highly Effective Antibacterial Textiles Containing Green Synthesized Silver Nanoparticles. Carbohydr. Polym. 2011, 86, 936–940. DOI: 10.1016/j.carbpol.2011.05.048.
  • El-Sheikh, M. A.;. A Novel Photosynthesis of Carboxymethyl Starch-stabilized Silver Nanoparticles. Sci. World J. Art. ID 514563. 2014. DOI: 10.1155/2014/514563.
  • Nadagouda, M. N.; Varma, R. S. Microwave-assisted Shape-controlled Bulk Synthesis of Ag and Fe Nanorods in Poly(ethylene Glycol) Solutions. Cryst. Growth Des. 2008, 8, 291–295. DOI: 10.1021/cg070473i.
  • Huang, C.-K.; Chen, C.-Y.; Han, J.-L.; Chen, C.-C.; Jiang, M.-D.; Hsu, J.-S.; Chan, C.-H.; Hsieh, K.-H. Immobilization of Silver Nanoparticles on Silica Microspheres. J. Nanopart. Res. 2010, 12, 199–207. DOI: 10.1007/s11051-009-9594-1.
  • Liong, M.; France, B.; Bradley, K. A.; Zink, J. I. Antimicrobial Activity of Silver Nanocrystals Encapsulated in Mesoporous Silica Nanoparticles. Adv. Mater. 2009, 21, 1684–1689. DOI: 10.1002/adma.200802646.
  • Nyyssola, A.; Ahlgren, J. Microbial Degradation of Polyacrylamide and the Deamination Product Polyacrylate. Int. Biodeterior. Biodegrad. 2019, 139, 24–33. DOI: 10.1016/j.ibiod.2019.02.005.
  • Stocco, A.; Drenckhan, W.; Rio, E.; Langevin, D.; Binks, B. P. Particle-stabilised Foams: An Interfacial Study. Soft Matter. 2009, 5, 2215–2222. DOI: 10.1039/B901180C.
  • SCCS (Scientific Committee on Consumer Safety), Opinion on Solubility of Synthetic Amorphous Silica (SAS), 20-21 June 2019, SCCS/1606/2019. Corrigendum of 6 December 2019. https://ec.europa.eu/health/sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_228.pdf.
  • Huang, S.-Y.; Lipp, D. W.; Farinato, R. S. Acrylamide Polymers. Encyclopedia of Polymer Science and Technology.; 304–342: 2001, Vol. 1. John Wiley & Sons. DOI: 10.1002/0471440264.pst004.
  • Craciun, G.; Ighigeanu, D.; Manaila, E.; Stelescu, M. D. Synthesis and Characterization of Poly(acrylamide-co-acrylic Acid) Flocculant Obtained by Electron Beam Irradiation. Materials Res. 2015, 18, 984–993. DOI: 10.1590/1516-1439.008715.
  • Sobczak-Kupiec, A.; Malina, D.; Wzorec, Z.; Zimovska, M. Influence of Silver Nitrate Concentration on the Properties of Silver Nanoparticles. Micro Nano Lett. 2011, 6, 656–660. DOI: 10.1049/mnl.2011.0152.
  • Zheltonozhskaya, T.; Partsevskaya, S.; Fedorchuk, S.; Klymchuk, D.; Gomza, Y.; Permyakova, N.; Kunitskaya, L. Micellar Nanocontainers Based on PAAm-b-PEO-b-PAAm Triblock Copolymers for Poorly Soluble Drugs. Eur. Polym. J. 2013, 49, 405–418. DOI: 10.1016/j.eurpolymj.2012.10.028.
  • Kovalenko, V. F.; Zlatskii, I. A.; Goncharuk, V. V. Adaptive Capabilities of Hydrobionts to Aqueous Medium with Different Physicochemical Parameters. J. Water Chem. Technol. 2016, 38, 56–61. DOI: 10.3103/S1063455X16010100.
  • Murphy, F.; Quinn, B. The Effects of Microplastic on Freshwater Hydra Attenuata Feeding, Morphology & Reproduction. Environ. Pollut. 2018, 234, 487–494. DOI: 10.1016/j.envpol.2017.11.029.
  • Test, O. E. C. D.;. No. 202: Daphnia Sp. Acute Immobilisation Test. In OECD Guidelines for the Testing of Chemicals, Section 2. Paris: OECD Publishing, 2004. doi:10.1787/9789264069947-en2004
  • Chakraborty, C.; Sharma, A. R.; Sharma, G.; Lee, S. S. Zebrafish: A Complete Animal Model to Enumerate the Nanoparticle Toxicity. J. Nanobiotechnology. 2016, 14, 65. DOI: 10.1186/s12951-016-0217-6.
  • ISO 6341:2012 (R2018). Water Quality - Determination of the Inhibition of the Mobility of Daphnia Magna Straus (Cladocera, Crustacea). Acute Toxicity Test. 4th ed. 2012. https://www.iso.org/standard/54614.html
  • Braunbeck, T.; Kais, B.; Lammer, E.; Otte, J.; Schneider, K.; Stengel, D.; Strecker, R. The Fish Embryo Test (FET): Origin, Applications, and Future. Environ. Sci. Pollut. Res. 2015, 22, 16247–16261. DOI: 10.1007/s11356-014-3814-7.
  • Zheltonozhskaya, T.; Permyakova, N.; Momot, L. Intramolecular Polycomplexes in Block and Graft Copolymers. Ch. 5. In Hydrogen-bonded Interpolymer Complexes: Formation, Structure and Applications, Khutoryanskiy, V. V., Staikos, G. Eds; New Jersey-London-Singapore etc.: World Scientific, 2009; pp. 85–153. ISBN-10: 9812707859, ISBN-13: 978-9812707857https://www.amazon.com/Hydrogen-Bonded-Interpolymer-Complexes-Formation-Applications/dp/9812707859
  • Pretsch, E.; Bullman, F.; Affolter, C. Structure Determination of Organic Compounds. Tables of Spectral Data; Springer-Verlag: Berlin Heideberg, 2000. DOI: 10.1007/978-3-662-04201-4.
  • Zheltonozhskaya, T.; Permyakova, N.; Eremenko, B. Inter- and Intramolecular Polycomplexes in Polydispersed Colloidal Systems. Ch. 8. In Hydrogen-bonded Interpolymer Complexes:; Formation, Structure and Application, Khutoryanskiy, V. V., Staikos, G. Eds; New Jersey-London-Singapore etc.: World Scientific, 2009; pp. 201–234. ISBN-10: 9812707859, ISBN-13: 978-9812707857https://www.amazon.com/Hydrogen-Bonded-Interpolymer-Complexes-Formation-Applications/dp/9812707859
  • Kutsevol, N. V.; Zheltonozhskaya, T. B.; Demchenko, O. V.; Kunitskaya, L. R.; Syromyatnikov, V. G. Effect of the Structure of Poly(vinyl Alcohol)-graft-polyacrylamide Copolymers on Their Thermooxidative Stability. Polym. Sci., Ser. A. 2004, 46(5), 518–525. PRINT: 0965-545, ONLINE: 1555-6107 http://pleiades.online/contents/polscia/polscia5_4v46cont.htm
  • Romanov, V.; Siu, C.-K.; Verkerk, U. H.; Aribi, H. E.; Hopkinson, A. C.; Siu, K. W. M. Binding Energies of the Silver Ion to Alcohols and Amides: A Theoretical and Experimental Study. J. Phys. Chem. A. 2008, 112, 10912–10920. DOI: 10.1021/jp8055653.
  • Noble Metal-metal Oxide Hybrid Nanoparticles. Fundamentals and Applications. A Volume in Micro and Nano Technologies. Mohapatra, S., Nguyen, T. A., Nguyen-Tri, P. Eds. Elsevier: Woodhead Publishing, 2018. doi:10.1016/C2017-0-00847-9
  • Link, S.; El-Sayed, M. A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J. Phys. Chem. B. 1999, 103, 8410–8426. DOI: 10.1021/jp9917648.
  • Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B. 2003, 107, 668–677. DOI: 10.1021/jp026731y.
  • Evanoff, D. D., Jr.; Chumanov, G. Synthesis and Optical Properties of Silver Nanoparticles and Arrays. Chem. Phys. Chem. 2005, 6, 1221–1231. DOI: 10.1002/cphc.200500113.
  • Liz-Marzan, L. M.;. Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles. Langmuir. 2006, 22, 32–41. DOI: 10.1021/la0513353.
  • Zheltonozhskaya, T. B.; Fedorchuk, S. V.; Klymchuk, D. O.; Gomza, Y. P.; Nessin, S. D. Прищеплені Кополімери ПВС-g-ПАА як Ефективні Матриці для Формування і Стабілізації Наночастинок Срібла. Polym. J. 2016, 38(3), 244–254. http://nbuv.gov.ua/UJRN/Polimer_2016_38_3_12.
  • Debnath, D.; Kim, C.; Kim, S. H.; Geckeler, K. E. Solid-state Synthesis of Silver Nanoparticles at Room Temperature: Poly(vinyl pyrrolidone) as a Tool. Macromol. Rapid. Commun. 2010, 31, 549–553. DOI: 10.1002/marc.200900656.
  • Silvestry-Rodriguez, N.; Bright, K. R.; Uhlmann, D. R.; Slack, D. C.; Gerba, C. P. Innactivation of Pseudomonas Aeruginosa and Aeromonashydrophila by Silver in Tap Water. J. Environ. Sci. Health Part A. 2007, 42, 1579–1584. DOI: 10.1080/10934520701517689.
  • Guidelines for Drinking Water Quality. 4th ed. Geneva, Switzerland: World Health Organization, 2011; pp. 415–416. https://apps.who.int/iris/bitstream/handle/10665/254637/9789241549950-eng.pdf?sequence=1
  • Shaalan, M. I.; El-Mahdy, M. M.; Theiner, S.; El-Matbouli, M.; Saleh, M. In Vitro Assessment of the Antimicrobial Activity of Silver and Zinc Oxide Nanoparticles against Fish Pathogens. Acta Vet. Scand. 2017, 59, 49. DOI: 10.1186/s13028-017-0317-9.
  • Shaffiey, S. F.; Shapoori, M.; Bozorgnia, A.; Ahmadi, M. Synthesis and Evaluation of Bactericidal Properties of CuO Nanoparticles against Aeromonas Hydrophila. Nanomed. J. 2014, 1, 198–204. DOI: 10.7508/NMJ.2014.03.010.
  • Meyers, J. R.;. Zebrafish: Development of a Vertebrate Model Organism. Curr. Protoc. Essent. Lab. Tech. 2018, 16, e19. DOI: 10.1002/cpet.19.
  • Murugadas, A.; Zeeshan, M.; Thamaraiselvi, K.; Ghaskadbi, S.; Akbarsha, M. A. Hydra as a Model Organism to Decipher the Toxic Effects of Copper Oxide Nanorod: Eco-toxicogenomics Approach. Sci. Rep. 2016, 6, 29663. DOI: 10.1038/srep29663.
  • VuLe, Q.-A.; Sekhon, S. S.; Lee, L.; Ko, J. H.; Min, J. Daphnia in Water Quality Biomonitoring - “Omic” Approaches. Toxicol. Environ. Health Sci. 2016, 8, 1–6. DOI: 10.1007/s13530-016-0255-3.
  • Ivanets, O.;. Ecological and Morphological Characteristics of Daphnia of Müller, 1785 (Crustacea, Cladocera) Genus in Ukrainian Roztochia. Studia Biol. 2014, 2, 169–186. DOI: 10.30970/sbi.0802.341.
  • WHO Monographs on Selected Medicinal Plants, Vol. 4. Geneva: World Health Organization, 2009. https://www.who.int/medicines/areas/traditional/SelectMonoVol4.pdf?ua=1.
  • Liman, R.; Acikbas, Y.; Ciğerci, İ. H. Cytotoxicity and Genotoxicity of Cerium Oxide Micro and Nanoparticles by Allium and Comet Tests. Ecotoxicol. Environ. Saf. 2019, 168, 408–414. doi:10.1016/j.ecoenv.2018.10.088.
  • Doak, S. H.; Manshian, B.; Jenkins, G. J. S.; Singh, N. In Vitro Genotoxicity Testing Strategy for Nanomaterials and the Adaptation of Current OECD Guidelines. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2012, 745, 104–111. DOI: 10.1016/j.mrgentox.2011.09.013.
  • Hussain, B.; Sultana, T.; Sultana, S.; Masoud, M. S.; Ahmed, Z.; Mahboob, S. Fish Eco-genotoxicology: Comet and Micronucleus Assay in Fish Erythrocytes as in Situ Biomarker of Freshwater Pollution. Saudi J. Biol. Sci. 2018, 2, 393–398. DOI: 10.1016/j.sjbs.2017.11.048.
  • Belanger, S. E.; Rawlings, J. M.; Carr, G. J. Use of Fish Embryo Toxicity Tests for the Prediction of Acute Fish Toxicity to Chemicals. Environ. Toxicol. Chem. 2013, 32, 1768–1783. DOI: 10.1002/etc.2244.
  • Pereira, A. C.; Gomes, T.; Machado, M. R. F.; Rocha, T. L. The Zebrafish Embryotoxicity Test (ZET) for Nanotoxicity Assessment: From Morphological to Molecular Approach. Environ. Pollut. 2019, 252(B), 1841–1853. DOI: 10.1016/j.envpol.2019.06.100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.