245
Views
3
CrossRef citations to date
0
Altmetric
Review

Polymer/nanodisk nanocomposite: futuristic vision toward advanced materials

Pages 488-503 | Received 21 Jul 2020, Accepted 12 Oct 2020, Published online: 08 Nov 2020

References

  • Kausar, A.;. Nanocarbon in Polymeric Nanocomposite Hydrogel—Design and Multi-Functional Tendencies. Polym.-Plast. Technol. Mater. 2020, 59, 1505–1521.
  • Khalifa, M.; Anandhan, S.; Wuzella, G.; Lammer, H.; Mahendran, A. R. Thermoplastic Polyurethane Composites Reinforced with Renewable and Sustainable Fillers–a Review. Polym.-Plast. Technol. Mater. 2020, 59, 1751–1769.
  • Kausar, A.;. Thermally Conducting Polymer/nanocarbon and Polymer/inorganic Nanoparticle Nanocomposite: A Review. Polym.-Plast. Technol. Mater. 2020, 59, 895–909.
  • Kausar, A.;. Technical Imprint of Polymer Nanocomposite Comprising Graphene Quantum Dot. Polym.-Plast. Technol. Mater. 2019, 58, 597–617.
  • Chi, H.; Qiao, Y.; Wang, B.; Hou, Y.; Li, Q.; Li, K.; Liu, Z. Swelling, Thermal Stability, Antibacterial Properties Enhancement on Composite Hydrogel Synthesized by Chitosan-acrylic Acid and ZnO Nanowires. Polym.-Plast. Technol. Mater. 2019, 58, 1649–1661.
  • Seki, Y.; Ince, M.; Yıldız, N.; Seki, Y.; Ergül, O.; Sever, K.; Sarıkanat, M. The Effect of Methyl-tri-n-butylammonium Methylsulfate and Graphite Nanoplates on Production of Antistatic Acrylic Polymer. Polym.-Plast. Technol. Mater. 2019, 58, 1471–1479.
  • Kuai, R.; Ochyl, L. J.; Bahjat, K. S.; Schwendeman, A.; Moon, J. J. Designer Vaccine Nanodiscs for Personalized Cancer Immunotherapy. Nat. Mater. 2017, 16, 489–496.
  • Dolatabady, A.; Granpayeh, N.; Nezhad, V. F. A Nanoscale Refractive Index Sensor in Two Dimensional Plasmonic Waveguide with Nanodisk Resonator. Optic. Communicat. 2013, 300, 265–268. DOI: 10.1016/j.optcom.2013.02.037.
  • Maiti, S.; Maiti, S.; Joseph, Y.; Wolf, A.; Brütting, W.; Dorfs, D.; Schreiber, F.; Scheele, M. Electronically Coupled, Two-Dimensional Assembly of Cu1. 1S Nanodiscs for Selective Vapor Sensing Applications. J. Phys. Chem. C. 2018, 122, 23720–23727. DOI: 10.1021/acs.jpcc.8b05276.
  • Zhang, J.; Li, Y.; Zhang, X.; Yang, B. Colloidal Self‐assembly Meets Nanofabrication: From Two‐dimensional Colloidal Crystals to Nanostructure Arrays. Adv. Mater. 2010, 22, 4249–4269.
  • Zhao, Y.; Jiang, L.; Shangguan, L.; Mi, L.; Liu, A.; Liu, S. Synthesis of Porphyrin-based Two-dimensional Metal–organic Framework Nanodisk with Small Size and Few Layers. J. Mater. Chem. A. 2018, 6, 2828–2833.
  • Chandrappa, K.; Venkatesha, T.; Praveen, B.; Shylesha, B. Generation of Nanostructured MgO Particles by Solution Phase Method. Res. J. Chem. Sci. 2015, 2231, 606X.
  • Seo, S. D.; Jin, Y. H.; Lee, S. H.; Shim, H. W.; Kim, D. W. Low-temperature Synthesis of CuO-interlaced Nanodiscs for Lithium Ion Battery Electrodes. Nanoscale. Res. Lett. 2011, 6, 397. DOI: 10.1186/1556-276X-6-397.
  • Liu, Y.; Goebl, J.; Yin, Y. Templated Synthesis of Nanostructured Materials. Chem. Soc. Rev. 2013, 42, 2610–2653.
  • Tekobo, S.; Richter, A. G.; Dergunov, S. A.; Pingali, S. V.; Urban, V. S.; Yan, B.; Pinkhassik, E. Synthesis, Characterization, and Controlled Aggregation of Biotemplated Polystyrene Nanodisks. J. Nanoparti. Res. 2011, 13, 6427–6437. DOI: 10.1007/s11051-011-0395-y.
  • Hsu, S. W.; Xu, T. Tailoring Co-assembly of Nanodiscs and Block Copolymer-based Supramolecules by Manipulating Interparticle Interactions. Macromolecules. 2019, 52, 2833–2842. DOI: 10.1021/acs.macromol.9b00069.
  • Nagahama, K.; Kawano, D.; Oyama, N.; Takemoto, A.; Kumano, T.; Kawakami, J. Self-assembling Polymer Micelle/clay Nanodisk/doxorubicin Hybrid Injectable Gels for Safe and Efficient Focal Treatment of Cancer. Biomacromolecules. 2015, 16, 880–889. DOI: 10.1021/bm5017805.
  • Merino, S.; Martin, C.; Kostarelos, K.; Prato, M.; Vazquez, E. Nanocomposite Hydrogels: 3D Polymer–nanoparticle Synergies for On-demand Drug Delivery. ACS. Nano. 2015, 9, 4686–4697. DOI: 10.1021/acsnano.5b01433.
  • Tekobo, S.; Pinkhassik, E. Directed Covalent Assembly of Rigid Organic Nanodisks Using Self-assembled Temporary Scaffolds. Chem. Commun. 2009, 9, 1112-1114.
  • Li, L.; Wang, S.; Hui, D.; Qiu, J. Ordered Multiphase Polymer Nanocomposites for High-performance Solid-state Supercapacitors. Compos. B Eng. 2015, 71, 40–44. DOI: 10.1016/j.compositesb.2014.11.039.
  • Minutolo, P.; Commodo, M.; Santamaria, A.; De Falco, G.; D’Anna, A. Characterization of Flame-generated 2-D Carbon Nano-disks. Carbon. 2014, 68, 138–148. DOI: 10.1016/j.carbon.2013.10.073.
  • Chen, J. S.; Zhu, T.; Yang, X. H.; Yang, H. G.; Lou, X. W. Top-down Fabrication of α-Fe2O3 Single-crystal Nanodiscs and Microparticles with Tunable Porosity for Largely Improved Lithium Storage Properties. J. Am. Chem. Soc. 2010, 132, 13162–13164. DOI: 10.1021/ja1060438.
  • Tiwari, J. N.; Tiwari, R. N.; Kim, K. S. Zero-dimensional, One-dimensional, Two-dimensional and Three-dimensional Nanostructured Materials for Advanced Electrochemical Energy Devices. Prog. Mater. Sci. 2012, 57, 724–803. DOI: 10.1016/j.pmatsci.2011.08.003.
  • Zhang, C.; Yin, H.; Han, M.; Dai, Z.; Pang, H.; Zheng, Y.; Lan, Y. Q.; Bao, J.; Zhu, J. Two-dimensional Tin Selenide Nanostructures for Flexible All-solid-state Supercapacitors. ACS Nano. 2014, 8, 3761–3770. DOI: 10.1021/nn5004315.
  • Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science. 2008, 319, 1229–1232. DOI: 10.1126/science.1150878.
  • Cox, J. D.; Singh, M. R.; Gumbs, G.; Anton, M. A.; Carreno, F. Dipole-dipole Interaction between a Quantum Dot and a Graphene Nanodisk. Phys. Rev. B. 2012, 86, 125452. DOI: 10.1103/PhysRevB.86.125452.
  • Ezawa, M.;. Spin Filter, Spin Amplifier and Spin Diode in Graphene Nanodisk. Eur. Phys. J. B. 2009, 67, 543–549. DOI: 10.1140/epjb/e2009-00041-7.
  • Cong, C. X.; Yu, T.; Ni, Z. H.; Liu, L.; Shen, Z. X.; Huang, W. Fabrication of Graphene Nanodisk Arrays Using Nanosphere Lithography. J. Phys. Chem. C. 2009, 113, 6529–6532. DOI: 10.1021/jp900011s.
  • Ezawa, M.;. Metallic Graphene Nanodisks: Electronic and Magnetic Properties. Phys. Rev. B. 2007, 76, 245415. DOI: 10.1103/PhysRevB.76.245415.
  • Ezawa, M.;. Graphene Nanoribbon and Graphene Nanodisk. Phys E: Low-dimensional Syst Nanostruct. 2008, 40, 1421–1423. DOI: 10.1016/j.physe.2007.09.031.
  • Ezawa, M.;. Generation and Manipulation of Spin Current in Graphene Nanodisks: Robustness against Randomness and Lattice Defects. Phys E: Low-dimensional Syst Nanostruct. 2010, 42, 703–706. DOI: 10.1016/j.physe.2009.11.046.
  • Smirnova, D. A.; Noskov, R. E.; Smirnov, L. A.; Kivshar, Y. S. Dissipative Plasmon Solitons in Graphene Nanodisk Arrays. Phys. Rev. B. 2015, 91, 075409. DOI: 10.1103/PhysRevB.91.075409.
  • Zundel, L.; Manjavacas, A. Spatially Resolved Optical Sensing Using Graphene Nanodisk Arrays. ACS Photon. 2017, 4, 1831–1838.
  • Ramirez, F. V.; McGaughey, A. J. Plasmonic Thermal Transport in Graphene Nanodisk Waveguides. Phys. Rev. B. 2017, 96, 165428. DOI: 10.1103/PhysRevB.96.165428.
  • Karanikolas, V. D.; Marocico, C. A.; Bradley, A. L. Tunable and Long-range Energy Transfer Efficiency through a Graphene Nanodisk. Phys. Rev. B. 2016, 93, 035426. DOI: 10.1103/PhysRevB.93.035426.
  • Garberg, T.; Naess, S. N.; Helgesen, G.; Knudsen, K. D.; Kopstad, G.; Elgsaeter, A. A Transmission Electron Microscope and Electron Diffraction Study of Carbon Nanodisks. Carbon. 2008, 46, 1535–1543. DOI: 10.1016/j.carbon.2008.06.044.
  • Su, P.; Jiang, L.; Zhao, J.; Yan, J.; Li, C.; Yang, Q. Mesoporous Graphitic Carbon Nanodisks Fabricated via Catalytic Carbonization of Coordination Polymers. Chem. Commun. 2012, 48, 8769–8771. DOI: 10.1039/c2cc34234k.
  • Černák, J.; Helgesen, G.; Skjeltorp, A. T.; Kováč, J.; Voltr, J.; Čižmár, E. Magnetic Properties of Carbon Nanodisk and Nanocone Powders. Phys. Rev. B. 2013, 87, 014434. DOI: 10.1103/PhysRevB.87.014434.
  • Wang, T.; Yang, R.; Shi, N.; Yang, J.; Yan, H.; Wang, J.; Ding, Z.; Huang, W.; Luo, Q.; Lin, Y.; et al. N‐Codoped Carbon Nanodisks with Biomimic Stomata‐Like Interconnected Hierarchical Porous Topology as Efficient Electrocatalyst for Oxygen Reduction Reaction. Small. 2019, 15, 1902410.
  • Meguro, T.; Tsuji, N.; Saito, S.; Yamamoto, Y.; Mise, T.; Watanabe, K. Formation of Convex Carbon Micro-and Nano-disk by Atmospheric Plasma System. Surf. Coat. Technol. 2008, 202, 5356–5359. DOI: 10.1016/j.surfcoat.2008.06.012.
  • Maillard, M.; Giorgio, S.; Pileni, M. P. Silver Nanodisks. Adv. Mater. 2002, 14, 1084–1086.
  • Chen, S.; Fan, Z.; Carroll, D. L. Silver Nanodisks: Synthesis, Characterization, and Self-assembly. J. Phys. Chem. B. 2002, 106, 10777–10781. DOI: 10.1021/jp026376b.
  • Zheng, Y. B.; Juluri, B. K.; Mao, X.; Walker, T. R.; Huang, T. J. Systematic Investigation of Localized Surface Plasmon Resonance of Long-range Ordered Au Nanodisk Arrays. J. Appl. Phys. 2008, 103, 014308. DOI: 10.1063/1.2828146.
  • Lee, S. W.; Lee, K. S.; Ahn, J.; Lee, J. J.; Kim, M. G.; Shin, Y. B. Highly Sensitive Biosensing Using Arrays of Plasmonic Au Nanodisks Realized by Nanoimprint Lithography. ACS Nano. 2011, 5, 897–904. DOI: 10.1021/nn102041m.
  • Langhammer, C.; Zorić, I.; Kasemo, B.; Clemens, B. M. Hydrogen Storage in Pd Nanodisks Characterized with a Novel Nanoplasmonic Sensing Scheme. Nano Lett. 2007, 7, 3122–3127. DOI: 10.1021/nl071664a.
  • Zoric, I.; Zach, M.; Kasemo, B.; Langhammer, C. Gold, Platinum, and Aluminum Nanodisk Plasmons: Material Independence, Subradiance, and Damping Mechanisms. ACS Nano. 2011, 5, 2535–2546. DOI: 10.1021/nn102166t.
  • Bhattacharyya, S.; Gedanken, A. A Template-free, Sonochemical Route to Porous ZnO Nano-disks. Micropor. Mesopor. Mater. 2008, 110, 553–559. DOI: 10.1016/j.micromeso.2007.06.053.
  • Zhai, T.; Xie, S.; Zhao, Y.; Sun, X.; Lu, X.; Yu, M.; Xu, M.; Xiao, F.; Tong, Y. Controllable Synthesis of Hierarchical ZnO Nanodisks for Highly Photocatalytic Activity. Cryst. Eng. Commun. 2012, 14, 1850–1855.
  • Umar, A.; Lee, J. H.; Kumar, R.; Al-Dossary, O. Synthesis and Characterization of CuO Nanodisks for High-sensitive and Selective Ethanol Gas Sensor Applications. J. Nanosci. Nanotechnol. 2017, 17, 1455–1459. DOI: 10.1166/jnn.2017.12727.
  • Jagadeesan, M. S.; Movlaee, K.; Krishnakumar, T.; Leonardi, S. G.; Neri, G. One-step Microwave-assisted Synthesis and Characterization of Novel CuO Nanodisks for Non-enzymatic Glucose Sensing. J. Electroanalyt. Chem. 2019, 835, 161–168. DOI: 10.1016/j.jelechem.2019.01.024.
  • Wang, X.; Wan, L.; Yu, T.; Zhou, Y.; Guan, J.; Yu, Z.; Li, Z.; Zou, Z. Non-basic Solution Eco-routes to Nano-scale NiO with Different Shapes: Synthesis and Application. Mater. Chem. Phys. 2011, 126, 494–499. DOI: 10.1016/j.matchemphys.2011.01.040.
  • Zhang, S.; Zhang, L. High Sensitive Formaldehyde Gas Sensing Devices Based on Nickel Oxide Nanowires and Nanodisks. J. Nanoelectr. Optoelectr. 2017, 12, 1355–1359. DOI: 10.1166/jno.2017.2255.
  • Li, G.; Zhang, C.; Peng, H. Facile Synthesis of Self‐Assembled Polyaniline Nanodisks. Macromolecul. Rapid Communicat. 2008, 29, 63–67. DOI: 10.1002/marc.200700584.
  • Xiao, J.; Hu, Y.; Du, J. Polymer Nanodisks by Collapse of Nanocapsules. Sci. China Chem. 2018, 61, 569–575. DOI: 10.1007/s11426-017-9209-3.
  • Hardin, N. Z.; Ravula, T.; Mauro, G. D.; Ramamoorthy, A. Hydrophobic Functionalization of Polyacrylic Acid as a Versatile Platform for the Development of Polymer Lipid Nanodisks. Small. 2019, 15, 1804813. DOI: 10.1002/smll.201804813.
  • Ausanio, G.; Barone, A. C.; Campana, C.; Iannotti, V.; Luponio, C.; Pepe, G. P.; Lanotte, L. Giant Resistivity Change Induced by Strain in a Composite of Conducting Particles in an Elastomer Matrix. Sens. Actuat. 2005, 127, 56–62. DOI: 10.1016/j.sna.2005.12.002.
  • Zavickis, J.; Knite, M.; Ozols, K.; Malefan, G. Development of Percolative Electroconductive Structure in Piezoresistive Polyisoprene-nanostructured Carbon Composite during Vulcanization. Mater. Sci. Eng. C. 2010, 31, 472–476. DOI: 10.1016/j.msec.2010.11.006.
  • Natsuki, T.; Endo, M.; Takahashi, T. Percolation Study of Orientated Short-fiber Composites by a Continuum Model. Phys. A. 2005, 352, 498–508. DOI: 10.1016/j.physa.2004.12.059.
  • Oskouyi, A. B.; Mertiny, P. Monte Carlo Model for the Study of Percolation Thresholds in Composites Filled with Circular Conductive Nano-disks. Proced. Engineer. 2011, 10, 403–408. DOI: 10.1016/j.proeng.2011.04.068.
  • Almohamad, H. A.; Selim, S. Z. An Algorithm for Computing the Distance between Two Circular Disks. Appl. Math. Model. 2003, 27, 115–124. DOI: 10.1016/S0307-904X(02)00080-X.
  • Ren, L.; Qiu, J.; Wang, S. Photovoltaic Properties of Graphene Nanodisk-integrated Polymer Composites. Compos. B Eng. 2013, 55, 548–557. DOI: 10.1016/j.compositesb.2013.07.017.
  • Zhang, Y.; Ren, L.; Wang, S.; Marathe, A.; Chaudhuri, J.; Li, G. Functionalization of Graphene Sheets through Fullerene Attachment. J. Mater. Chem. 2011, 21, 5386–5391. DOI: 10.1039/c1jm10257e.
  • Pei, J.; Tao, J.; Zhou, Y.; Dong, Q.; Liu, Z.; Li, Z.; Chen, F.; Zhang, J.; Xu, W.; Tian, W. Efficiency Enhancement of Polymer Solar Cells by Incorporating a Self-assembled Layer of Silver Nanodisks. Sol. Ener. Mater. Sol. Cell. 2011, 95, 3281–3286. DOI: 10.1016/j.solmat.2011.07.007.
  • Tang, B.; Wang, J.; Xu, S.; Afrin, T.; Xu, W.; Sun, L.; Wang, X. Application of Anisotropic Silver Nanoparticles: Multifunctionalization of Wool Fabric. J. Coll. Interf. Sci. 2011, 356, 513–518. DOI: 10.1016/j.jcis.2011.01.054.
  • Geldmeier, J. A.; Mahmoud, M. A.; Jeon, J. W.; El-Sayed, M.; Tsukruk, V. V. The Effect of Plasmon Resonance Coupling in P3HT-coated Silver Nanodisk Monolayers on Their Optical Sensitivity. J. Mater. Chem. C. 2016, 4, 9813–9822. DOI: 10.1039/C6TC01999D.
  • Samanta, S.; Sarkar, P.; Pyne, S.; Sahoo, G. P.; Misra, A. Synthesis of Silver Nanodiscs and Triangular Nanoplates in PVP Matrix: Photophysical Study and Simulation of UV–vis Extinction Spectra Using DDA Method. J. Mol. Liq. 2012, 165, 21–26. DOI: 10.1016/j.molliq.2011.10.002.
  • Sarkar, P.; Pyne, S.; Sahoo, G. P.; Bhui, D. K.; Bar, H.; Samanta, S.; Misra, A. Solution-phase Synthesis of Silver Nanodiscs in HPMC-matrix and Simulation of UV–vis Extinction Spectra Using DDA Based Method. Spectrochim. Acta A: Molecul. Biomolecul. Spectr. 2011, 82, 368–374. DOI: 10.1016/j.saa.2011.07.064.
  • Xu, C.; Yang, K.; Huang, L.; Wang, H. Vertically Aligned ZnO Nanodisks and Their Uses in Bulk Heterojunction Solar Cells. J. Renew. Sustain. Energy. 2010, 2, 053101. DOI: 10.1063/1.3478880.
  • Chetia, T. R.; Ansari, M. S.; Qureshi, M. Ethyl Cellulose and Cetrimonium Bromide Assisted Synthesis of Mesoporous, Hexagon Shaped ZnO Nanodisks with Exposed±{0001} Polar Facets for Enhanced Photovoltaic Performance in Quantum Dot Sensitized Solar Cells. ACS Appl. Mater. Interfac. 2015, 7, 13266–13279. DOI: 10.1021/acsami.5b01039.
  • Lu, Y.; Hou, Y.; Wang, Y.; Feng, Z.; Liu, X.; Lü, Y. Effect of Monodisperse Cu2S Nanodisks on Photovoltaic Performance of P3HT/PCBM Polymer Solar Cells. Syn. Met. 2011, 161, 906–910. DOI: 10.1016/j.synthmet.2011.02.023.
  • Sigman, M. B.; Ghezelbash, A.; Hanrath, T.; Saunders, A. E.; Lee, F.; Korgel, B. A. Solventless Synthesis of Monodisperse Cu2S Nanorods, Nanodisks, and Nanoplatelets. J. Am. Chem. Soc. 2003, 125, 16050–16057. DOI: 10.1021/ja037688a.
  • Arciniegas, M. P.; Stasio, F. D.; Li, H.; Altamura, D.; De Trizio, L.; Prato, M.; Scarpellini, A.; Moreels, I.; Krahne, R.; Manna, L. Self‐Assembled Dense Colloidal Cu2Te Nanodisk Networks in P3HT Thin Films with Enhanced Photocurrent. Adv. Funct. Mater. 2016, 26, 4535–4542. DOI: 10.1002/adfm.201600751.
  • Zhu, Z. S.; Qu, J.; Hao, S. M.; Han, S.; Jia, K. L.; Yu, Z. Z. α-Fe2O3 Nanodisk/Bacterial Cellulose Hybrid Membranes as High-Performance Sulfate-Radical-Based Visible Light Photocatalysts under Stirring/Flowing States. ACS Appl. Mater. Interface. 2018, 10, 30670–30679. DOI: 10.1021/acsami.8b10128.
  • Broecker, J.; Eger, B. T.; Ernst, O. P. Crystallogenesis of Membrane Proteins Mediated by Polymer-bounded Lipid Nanodiscs. Structure. 2017, 25, 384–392. DOI: 10.1016/j.str.2016.12.004.
  • Arenas, R. C.; Danielczak, B.; Martel, A.; Porcar, L.; Breyton, C.; Ebel, C.; Keller, S. Fast Collisional Lipid Transfer among Polymer-bounded Nanodiscs. Scientif. Rep. 2017, 7, 45875. DOI: 10.1038/srep45875.
  • Ravula, T.; Hardin, N. Z.; Ramadugu, S. K.; Ramamoorthy, A. pH Tunable and Divalent Metal Ion Tolerant Polymer Lipid Nanodiscs. Langmuir. 2017, 33, 10655–10662. DOI: 10.1021/acs.langmuir.7b02887.
  • Schmidt, V.; Sturgis, J. N. Modifying Styrene-maleic Acid Co-polymer for Studying Lipid Nanodiscs. Biochim. Biophys. Acta Biomembr. 2018, 1860, 777–783. DOI: 10.1016/j.bbamem.2017.12.012.
  • Fiori, M. C.; Jiang, Y.; Altenberg, G. A.; Liang, H. Polymer-encased Nanodiscs with Improved Buffer Compatibility. Scientif. Rep. 2017, 7, 1–10.
  • Sahoo, B. R.; Genjo, T.; Moharana, K. C.; Ramamoorthy, A. Self-assembly of Polymer-encased Lipid Nanodiscs and Membrane Protein Reconstitution. J. Phys. Chem. B. 2019, 123, 562–4570. DOI: 10.1021/acs.jpcb.9b03681.
  • Lin, L.; Wang, X.; Li, X.; Yang, Y.; Yue, X.; Zhang, Q.; Dai, Z. Modulating Drug Release Rate from Partially Silica-coated Bicellar Nanodisc by Incorporating PEGylated Phospholipid. Bioconjug. Chem. 2017, 28, 53–63. DOI: 10.1021/acs.bioconjchem.6b00508.
  • Akbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic Nanoparticles: Preparation, Physical Properties, and Applications in Biomedicine. Nanoscal. Res. Lett. 2012, 7, 144. DOI: 10.1186/1556-276X-7-144.
  • Cavallaro, G.; Lazzara, G.; Milioto, S. Dispersions of Nanoclays of Different Shapes into Aqueous and Solid Biopolymeric Matrices. Extended Physicochemical Study. Langmuir. 2011, 27, 1158–1167. DOI: 10.1021/la103487a.
  • Patel, J. P.; Xiang, Z. G.; Hsu, S. L.; Schoch, A. B.; Carleen, S. A.; Matsumoto, D. Characterization of the Crosslinking Reaction in High Performance Adhesives. Int. J. Adhes. Adhes. 2017, 78, 256–262. DOI: 10.1016/j.ijadhadh.2017.08.006.
  • Patel, J. P.; Deshmukh, S.; Zhao, C.; Wamuo, O.; Hsu, S. L.; Schoch, A. B.; Carleen, S. A.; Matsumoto, D. An Analysis of the Role of Nonreactive Plasticizers in the Crosslinking Reactions of a Rigid Resin. J. Polym. Sci. B: Polym. Phys. 2017, 55, 206–213. DOI: 10.1002/polb.24261.
  • González-Gálvez, D.; Janer, G.; Vilar, G.; Vílchez, A.; Vázquez-Campos, S. The Life Cycle of Engineered Nanoparticles. In In Modelling the Toxicity of Nanoparticles; Tran, L., Bañares, M. A., Rallo, R., Eds.; Springer: Cham, 2017; pp pp. 41–69.
  • Nan, B.; Xiao, L.; Kun, W.; Chang-an, X.; Zhang, E.; Zheng, H.; Zhan, Y.; Zhang, Q.; Shi, J.; Mangeng, L. Covalently Introducing Amino-functionalized Nanodiamond into Waterborne Polyurethane via in Situ Polymerization: Enhanced Thermal Conductivity and Excellent Electrical Insulation. Coll. Surf. A: Physicochem. Engineer. Asp. 2020, 596, 124752. DOI: 10.1016/j.colsurfa.2020.124752.
  • Zare, Y.;. Study on Interfacial Properties in Polymer Blend Ternary Nanocomposites: Role of Nanofiller Content. Computation. Mater, Sci. 2016, 111, 334–338. DOI: 10.1016/j.commatsci.2015.09.053.
  • Patel, J. P.; Zhao, C. X.; Deshmukh, S.; Zou, G. X.; Wamuo, O.; Hsu, S. L.; Schoch, A. B.; Carleen, S. A.; Matsumoto, D. An Analysis of the Role of Reactive Plasticizers in the Crosslinking Reactions of a Rigid Resin. Polymer. 2016, 107, 12–18. DOI: 10.1016/j.polymer.2016.11.005.
  • Patel, J. P.; Xiang, Z. G.; Hsu, S. L.; Schoch, A. B.; Carleen, S. A.; Matsumoto, D. Path to Achieving Molecular Dispersion in a Dense Reactive Mixture. J. Polym. Sci. B: Polym. Phys. 2015, 53, 1519–1526. DOI: 10.1002/polb.23789.
  • Fang, Z.; Wang, Y.; Schlather, A. E.; Liu, Z.; Ajayan, P. M.; García de Abajo, F. J.; Nordlander, P.; Zhu, X.; Halas, N. J. Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays. Nano Lett. 2014, 14, 299–304. DOI: 10.1021/nl404042h.
  • Angamuthu, M.; Satishkumar, G.; Landau, M. V. Precisely Controlled Encapsulation of Fe3O4 Nanoparticles in Mesoporous Carbon Nanodisk Using Iron Based MOF Precursor for Effective Dye Removal. Micropor. Mesopor. Mater. 2017, 251, 58–68.
  • Qiu, Y.; Yang, S.; Deng, H.; Jin, L.; Li, W. A Novel Nanostructured Spinel ZnCo2O4 Electrode Material: Morphology Conserved Transformation from A Hexagonal Shaped Nanodisk Precursor and Application in Lithium Ion Batteries. J. Mater. Chem. 2010, 20, 4439–4444. DOI: 10.1039/c0jm00101e.
  • Deng, R.; Liang, F.; Zhou, P.; Zhang, C.; Qu, X.; Wang, Q.; Li, J.; Zhu, J.; Yang, Z. Janus Nanodisc of Diblock Copolymers. Adv. Mater. 2014, 26, 4469–4472. DOI: 10.1002/adma.201305849.
  • Mörs, K.; Roos, C.; Scholz, F.; Wachtveitl, J.; Dötsch, V.; Bernhard, F.; Glaubitz, C. Modified Lipid and Protein Dynamics in Nanodiscs. Biochim. Biophys. Acta Biomembr. 2013, 1828, 1222–1229. DOI: 10.1016/j.bbamem.2012.12.011.
  • Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H. Graphene‐based Materials: Synthesis, Characterization, Properties, and Applications. Small. 2011, 7, 1876–1902.
  • Wei, D.; Liu, Y. Controllable Synthesis of Graphene and Its Applications. Adv. Mater. 2010, 22, 3225–3241. DOI: 10.1002/adma.200904144.
  • Soldano, C.; Mahmood, A.; Dujardin, E. Production, Properties and Potential of Graphene. Carbon. 2010, 48, 2127–2150. DOI: 10.1016/j.carbon.2010.01.058.
  • Hong, G.; Diao, S.; Antaris, A. L.; Dai, H. Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. Chem. Rev. 2015, 115, 10816–10906. DOI: 10.1021/acs.chemrev.5b00008.
  • Avouris, P.;. Graphene: Electronic and Photonic Properties and Devices. Nano Lett. 2010, 10, 4285–4294. DOI: 10.1021/nl102824h.
  • Su, K. H.; Wei, Q. H.; Zhang, X. Tunable and Augmented Plasmon Resonances of Au∕ SiO2∕ Au Nanodisks. Appl. Phys. Lett. 2006, 88, 063118. DOI: 10.1063/1.2172712.
  • Zhong, S. L.; Zhang, L. F.; Wang, L.; Huang, W. X.; Fan, C. M.; Xu, A. W. Uniform and Porous Ce1–x Zn X O2− δ Solid Solution Nanodisks: Preparation and Their CO Oxidation Activity. J. Phys. Chem. C. 2012, 116, 13127–13132.
  • Hong, Z.; Kang, M.; Chen, X.; Zhou, K.; Huang, Z.; Wei, M. Synthesis of Mesoporous Co2+-doped TiO2 Nanodisks Derived from Metal Organic Frameworks with Improved Sodium Storage Performance. ACS Appl. Mater. Interface. 2017, 9, 32071–32079. DOI: 10.1021/acsami.7b06290.
  • Langhammer, C.; Schwind, M.; Kasemo, B.; Zoric, I. Localized Surface Plasmon Resonances in Aluminum Nanodisks. Nano Lett. 2008, 8, 1461–1471. DOI: 10.1021/nl080453i.
  • Zhang, B.; Zhao, Y.; Hao, Q.; Kiraly, B.; Khoo, I. C.; Chen, S.; Huang, T. J. Polarization-independent Dual-band Infrared Perfect Absorber Based on a Metal-dielectric-metal Elliptical Nanodisk Array. Optics Exp. 2011, 19, 15221–15228. DOI: 10.1364/OE.19.015221.
  • Meng, Q.; Honda, N.; Uchida, S.; Hashimoto, K.; Shibata, H.; Fujimori, A. Creation of Giant Two-dimensional Crystal of Zinc Oxide Nanodisk by Method of Single-particle Layer of Organo-modified Inorganic Fine Particles. J. Coll. Interf. Sci. 2015, 453, 90–99. DOI: 10.1016/j.jcis.2015.04.058.
  • Lee, D. U.; Scott, J.; Park, H. W.; Abureden, S.; Choi, J. Y.; Chen, Z. Morphologically Controlled Co3O4 Nanodisks as Practical Bi-functional Catalyst for Rechargeable Zinc–air Battery Applications. Electrochem. Commun. 2014, 43, 109–112. DOI: 10.1016/j.elecom.2014.03.020.
  • Ren, S.; Yang, C.; Sun, C.; Hui, Y.; Dong, Z.; Wang, J.; Su, X. Novel NiO Nanodisks and Hollow Nanodisks Derived from Ni(OH)2 Nanostructures and Their Catalytic Performance in Epoxidation of Styrene. Mater. Lett. 2012, 80, 23–25. DOI: 10.1016/j.matlet.2012.04.063.
  • Kuriakose, S.; Satpati, B.; Mohapatra, S. Enhanced Photocatalytic Activity of Co Doped ZnO Nanodisks and Nanorods Prepared by a Facile Wet Chemical Method. Phys. Chem. Chem. Phys. 2014, 16, 12741–12749. DOI: 10.1039/c4cp01315h.
  • Chi, M. H.; Kao, Y. H.; Wei, T. H.; Lee, C. W.; Chen, J. T. Curved Polymer Nanodiscs by Wetting Nanopores of Anodic Aluminum Oxide Templates with Polymer Nanospheres. Nanoscale. 2014, 6, 1340–1346. DOI: 10.1039/C3NR04431A.
  • Das, A.; Zhao, J.; Schatz, G. C.; Sligar, S. G.; Van Duyne, R. P. Screening of Type I and II Drug Binding to Human Cytochrome P450-3A4 in Nanodiscs by Localized Surface Plasmon Resonance Spectroscopy. Anal. Chem. 2009, 81, 3754–3759. DOI: 10.1021/ac802612z.
  • Glück, J. M.; Koenig, B. W.; Willbold, D. Nanodiscs Allow the Use of Integral Membrane Proteins as Analytes in Surface Plasmon Resonance Studies. Anal. Biochem. 2011, 408, 46–52.
  • Chang, Y. C.; Chung, H. C.; Lu, S. C.; Guo, T. F. A Large-scale Sub-100 Nm Au Nanodisk Array Fabricated Using Nanospherical-lens Lithography: A Low-cost Localized Surface Plasmon Resonance Sensor. Nanotechnology. 2013, 24, 095302. DOI: 10.1088/0957-4484/24/9/095302.
  • Zhao, Q.; Shen, Q.; Yang, F.; Zhao, H.; Liu, B.; Liang, Q.; Wei, A.; Yang, H.; Liu, S. Direct Growth of ZnO Nanodisk Networks with an Exposed (0 0 0 1) Facet on Au Comb-shaped Interdigitating Electrodes and the Enhanced Gas-sensing Property of Polar {0 0 0 1} Surfaces. Sens. Actuat. B Chem. 2014, 195, 71–79. DOI: 10.1016/j.snb.2014.01.001.
  • Navaneethan, M.; Archana, J.; Arivanandhan, M.; Hayakawa, Y. Chemical Synthesis of ZnO Hexagonal Thin Nanodisks and Dye‐sensitized Solar Cell Performance. Phys. Stat. Solid. (RRL)–Rap. Res. Lett. 2012, 6, 120–122. DOI: 10.1002/pssr.201105517.
  • Xue, Y.; Wang, Y. A Review of the α-Fe2O3 (Hematite) Nanotube Structure: Recent Advances in Synthesis, Characterization, and Applications. Nanoscale. 2020, 12, 10912–10932.
  • Qu, J.; Yu, Y.; Cao, C. Y.; Song, W. G. α‐Fe2O3 Nanodisks: Layered Structure, Growth Mechanism, and Enhanced Photocatalytic Property. Chemistry–A Eur. J. 2013, 19, 11172–11177. DOI: 10.1002/chem.201301295.
  • Alhmoud, H.; Delalat, B.; Elnathan, R.; Cifuentes‐Rius, A.; Chaix, A.; Rogers, M. L.; Durand, J. O.; Voelcker, N. H. Porous Silicon Nanodiscs for Targeted Drug Delivery. Adv. Funct. Mater. 2015, 25, 1137–1145.
  • Wu, Y.; Guo, R.; Wen, S.; Shen, M.; Zhu, M.; Wang, J.; Shi, X. Folic Acid-modified Laponite Nanodisks for Targeted Anticancer Drug Delivery. J. Mater. Chem. B. 2014, 2, 7410–7418. DOI: 10.1039/C4TB01162G.
  • Murakami, T.;. Phospholipid Nanodisc Engineering for Drug Delivery Systems. Biotechnol. J. 2012, 7, 762–767. DOI: 10.1002/biot.201100508.
  • Fiori, M. C.; Jiang, Y.; Zheng, W.; Anzaldua, M.; Borgnia, M. J.; Altenberg, G. A.; Liang, H. Polymer Nanodiscs: Discoidal Amphiphilic Block Copolymer Membranes as a New Platform for Membrane Proteins. Scientif. Rep. 2017, 7, 1–9.
  • Farajollahi, F.; Seidenstücker, A.; Altintoprak, K.; Walther, P.; Ziemann, P.; Plettl, A.; Marti, O.; Wege, C.; Gliemann, H. Electrochemically-driven Insertion of Biological Nanodiscs into Solid State Membrane Pores as a Basis for “Pore-in-pore” Membranes. Nanomaterials. 2018, 8, 237. DOI: 10.3390/nano8040237.
  • Ali, M. A. M.; Ostrikov, K. K.; Khalid, F. A.; Majlis, B. Y.; Kayani, A. A. Active Bioparticle Manipulation in Microfluidic Systems. RSC Adv. 2016, 6, 113066–113094.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.