1,343
Views
29
CrossRef citations to date
0
Altmetric
Review

Review on nanomaterials/conducting polymer based nanocomposites for the development of biosensors and electrochemical sensors

, &
Pages 504-521 | Received 27 Jul 2020, Accepted 12 Oct 2020, Published online: 11 Nov 2020

References

  • Kwon, O. S.; Song, H. S.; Park, T. H.; Jang, J. Conducting Nanomaterial Sensor Using Natural Receptors. Chem. Rev. 2019, 119, 36–93. DOI: 10.1021/acs.chemrev.8b00159.
  • Hatchett, D. W.; Josowicz, M. Composites of Intrinsically Conducting Polymers as Sensing Nanomaterials. Chem. Rev. 2008, 108, 746–769. DOI: 10.1021/cr068112h.
  • Zhang, L.; Du, W.; Nautiyal, A.; Liu, Z.; Zhang, X. Recent Progress on Nanostructured Conducting Polymers and Composites: Synthesis, Application and Future Aspects. Sci. China Mater. 2018, 61, 303–352.
  • Wang, G.; Morrin, A.; Li, M.; Liu, N.; Luo, X. Nanomaterial-doped Conducting Polymers for Electrochemical Sensors and Biosensors. J. Mater. Chem. B. 2018, 6, 4173–4190. DOI: 10.1039/C8TB00817E.
  • El Rhazi, M.; Majid, S.; Elbasri, M.; Salih, F. E.; Oularbi, L.; Lafdi, K. Recent Progress in Nanocomposites Based on Conducting Polymer: Application as Electrochemical Sensors. Int. Nano Lett. 2018, 8, 79–99.
  • John, B. Polymer nanocomposite-Based Electrochemical Sensors and Biosensors; IntechOpen: London, 2020.
  • Liu, Z.; Zhang, L.; Poyraz, S.; Zhang, X. Conducting Polymer-metal Nanocomposites Synthesis and Their Sensory Applications. Curr. Org. Chem. 2013, 17, 2256–2267. DOI: 10.2174/13852728113179990048.
  • Naseri, M.; Fotouhi, L.; Ehsani, A. Recent Progress in the Development of Conducting Polymer-based Nanocomposites for Electrochemical Biosensors Applications: A Mini-review. Chem. Rec. 2018, 18, 599–618. DOI: 10.1002/tcr.201700101.
  • Elbasri, M.; Majid, S.; Lafdi, K.; El Rhazi, M. Highly Improved Electrocatalytic Oxidation of Methanol on Poly(1,5-diaminophthalene)/nickel Nanoparticles Film Modified Carbon Nanofibers. JMES. 2017, 8, 2860–2869.
  • Huang, J. Syntheses and Applications of Conducting Polymer Polyaniline Nanofibers. Pure Apple. Chem. 2006, 78, 15–27. DOI: 10.1351/pac200678010015.
  • Vernitskaya, T. V.; Efimov, O. N. Polypyrrole: A Conducting Polymer; Its Synthesis, Properties and Applications. Russ. Chem. Rev. 1997, 66, 443–457. DOI: 10.1070/RC1997v066n05ABEH000261.
  • Gueye, M. N.; Carella, A.; Faure-Vincent, J.; Demadrille, R.; Simonato, J.-P. Progress in Understanding Structure and Transport Properties of PEDOT-based Materials: A Critical Review. Prog. Mater. Sci. 2020, 108, 100616. DOI: 10.1016/j.pmatsci.2019.100616.
  • Mahore, R. P.; Burghate, D. K.; Kondawa, S. B. Development of Nanocomposites Based on Polypyrrole and Carbon Nanotubes for Supercapacitors. Adv. Mat. Lett. 2014, 5, 400–405. DOI: 10.5185/amlett.2014.amwc.1038.
  • Al-Mashat, L.; Shin, K.; Kalantar-zadeh, K.; Plessis, J. D.; Han, S. H.; Kojima, R. W.; Kaner, R. B.; Li, D.; Gou, X.; Ippolito, S. J.; et al. Graphene/polyaniline Nanocomposite for Hydrogen Sensing. J. Phys. Chem. C. 2010, 114, 16168–16173. DOI: 10.1021/jp103134u.
  • Said, R. A. M.; Hasan, M. A.; Abdelzaher, A. M.; Abdel-Raoof, A. M. Review-Insights into the Developments of Nanocomposites for Its Processing and Application as Sensing Materials. J. Electrochem. Soc. 2020, 167, 037549. DOI: 10.1149/1945-7111/ab697b.
  • Mansour, A.; Poncin-Epaillard, F.; Debarnot, D. Affinity and Distribution of Silver Nanoparticles within Plasma Polymer Matrices. J. Mater. Sci. 2019, 54, 12972–12987. DOI: 10.1007/s10853-019-03772-6.
  • Gangopadhyay, R.; De, A. Conducting Polymer Nanocomposites: A Brief Overview. Chem. Mater. 2000, 12, 608–622. DOI: 10.1021/cm990537f.
  • Li, M.; Zhang, Y.; Yang, L.; Liu, Y.; Ma, J. Excellent Electrochemical Performance of Homogeneous Polypyrrole/graphene Composites as Electrode Material for Supercapacitors. J. Mater. Sci.: Mater. Electron. 2015, 26, 485–492.
  • Gaikwad, G.; Patil, P.; Patil, D.; Naik, J. Synthesis and Evaluation of Gas Sensing Properties of PANI Based Graphene Oxide Nanocomposites. Mat. Sci. Eng. B. 2017, 218, 14–22. DOI: 10.1016/j.mseb.2017.01.008.
  • Alqarni, S. A.; Hussein, M. A.; Ganash, A. A.; Khan, A. Composite Material–based Conducting Polymers for Electrochemical Sensor Applications: A Mini Review. Bionanoscience. 2020, 10, 351–364. DOI: 10.1007/s12668-019-00708-x.
  • Dubey, N.; Kushwaha, C. S.; Shukla, S. K. A Review on Electrically Conducting Polymer Bionanocomposites for Biomedical and Other Applications. Int. J. Polym. Mater. 2020, 69, 709–727. DOI: 10.1080/00914037.2019.1605513.
  • Du, J.; Cheng, H.-M. The Fabrication, Properties and Uses of Graphene/polymer Composites. Macromol. Chem. Phys. 2012, 213, 1060–1077. DOI: 10.1002/macp.201200029.
  • El-Said, W. A.; Abdelshakour, M.; Choi, J.-H.; Choi, J.-W. Application of Conducting Polymer Nanostructures to Electrochemical Biosensors. Molecules. 2020, 25, 307. DOI: 10.3390/molecules25020307.
  • Abdel-Karim, R.; Reda, Y.; Abdel-Fattah, A. Review – Nanostructured Materials-based Nanosensors. J. Electrochem. Soc. 2020, 167, 037554. DOI: 10.1149/1945-7111/ab67aa.
  • Kour, R.; Arya, S.; Young, S.-J.; Gupta, V.; Bandhoria, P.; Khosla, A. Review-Recent Advances in Carbon Nanomaterials as Electrochemical Biosensors. J. Electrochem. Soc. 2020, 167, 037555. DOI: 10.1149/1945-7111/ab6bc4.
  • Salavagione, H.; Díez-Pascual, A. M.; Lázaro, E.; Vera, S.; Gómez-Fatou, M. A. Chemical Sensors Based on Polymer Composites with Carbon Nanotubes and Graphene. The Role of the Polymer. J. Mater. Chem. A. 2014, 2, 14289–14328.
  • Kadhim, G. A.; Suhail, M. H. The Nanocomposites Film of Polypyrrole and Functionalized Single Walled Carbon Nanotubes as Gas Sensor of NO2 Oxidizing Gas. IJONS. 2019, 9, 16536–16543.
  • Yan, J.; Wang, Q.; Wei, T.; Fan, Z. Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities. Adv. Energy Mater. 2013, 4, 1300816.
  • Bekhoukh, A.; Mekhloufi, M.; Berenguer, R.; Benyoucef, A.; Morallon, E. PANI-derived polymer/Al2O3 Nanocomposites: Synthesis, Characterization and Electrochemical Studies. Colloid Polym. Sci. 2016, 12, 1877–1885.
  • Mangu, R.; Rajaputra, S.; Singh, V. P. MWCNT-polymer Composites as Highly Sensitive and Selective Room Temperature Gas Sensors. Nanotechnology. 2011, 22, 215502. DOI: 10.1088/0957-4484/22/21/215502.
  • Ijiima, S. Helical Microtubules of Graphitic Carbon. Nature. 1991, 354, 56–58. DOI: 10.1038/354056a0.
  • Monthioux, M.; Kunetsov, V. L. Who Should Be Given the Credit for the Discovery of Carbon Nanotubes? Carbon. 2006, 44, 1621–1623. DOI: 10.1016/j.carbon.2006.03.019.
  • Karousis, N.; Tagmatarchis, N.; Tasis, D. Current Progress on the Chemical Modification of Carbon Nanotubes. Chem. Rev. 2010, 110, 5366–5397. DOI: 10.1021/cr100018g.
  • Kim, P.; Shi, L.; Majumdar, A.; McEuen, P. L. Thermal Transport Measurements of Individual Multiwalled Nanotubes. Phys. Rev. Lett. 2001, 87, 215502. DOI: 10.1103/PhysRevLett.87.215502.
  • Oueiny, C.; Berlioz, S.; Perrin, F.-X. Carbon nanotubes-polyaniline composites. Prog. Polym. Sci. 2014, 39, 707–748. DOI: 10.1016/j.progpolymsci.2013.08.009.
  • Suckeveriene, R. Y.; Zelikman, E.; Mechrez, G.; Narkis, M. Literature Review: Conducting Carbon Nanotubes/polyaniline Nanocomposites. Rev. Chem. Eng. 2011, 27, 15–21. DOI: 10.1515/revce.2011.004.
  • Sivakkumar, S. R.; Kim, W. J.; Choi, J.-A.; MacFarlanr, D. R.; Forsyth, M.; Kim, D.-W. Electrochemical Performance of Polyaniline Nanofibres and Polyaniline/multi-walled Carbon Nanotube Composite as an Electrode Material for Aqueous Redox Supercapacitors. J. Power Sources. 2007, 171, 1062–1068.
  • Suhail, M. H.; Abdullah, O. G.; Kadhim, G. A. Hydrogen Sulfide Sensors Based on PANI/f-SWCNT Polymer Nanocomposite Thin Films Prepared by Electrochemical Polymerization. J. Sci. Adv. Mater. Dev. 2019, 4, 143–149.
  • Chatterjee, M. J.; Ghoshb, A.; Mondalb, A.; Banerjee, D. Polyaniline–single Walled Carbon Nanotube Composite – A Photocatalyst to Degrade Rose Bengal and Methyl Orange Dyes under Visible-light Illumination. RSC Adv. 2017, 7, 36403–36415. DOI: 10.1039/C7RA03855K.
  • Srivastava, S.; Sharma, S. S.; Agrawal, S.; Kumar, S.; Singh, M.; Vijay, Y. K. Study of Chemiresistor Type CNT Doped Polyaniline Gas Sensor. Synth. Met. 2010, 160, 529–534. DOI: 10.1016/j.synthmet.2009.11.022.
  • Sharma, S.; Hussain, S.; Singh, S.; Islam, S. S. MWCNT-conducting Polymer Composite Based Ammonia Gas Sensors: A New Approach for Complete Recovery Process. Sens. Actuators B Chem. 2014, 194, 213–219. DOI: 10.1016/j.snb.2013.12.050.
  • Sadrolhosseini, A. R.; Noor, A. S. M.; Bahrami, A.; Lim, H. N.; Talib, Z. A.; Mahdi, M. A. Application of Polypyrrole Multi-walled Carbon Nanotube Composite Layer for Detection of Mercury, Lead and Iron Ions Using Surface Plasmon Resonance Technique. PLoS ONE. 2014, 9, e93962. DOI: 10.1371/journal.pone.0093962.
  • Teh, K.-S.; Lin, L. MEMS Sensor Material Based on Polypyrrole–carbon Nanotubes Nanocomposite: Film Deposition and Characterization. J. Micromech. Microeng. 2005, 15, 2019–2027. DOI: 10.1088/0960-1317/15/11/005.
  • Bachhav, S. G.; Patil, D. R. Study of Polypyrrole-coated MWCNT Nanocomposites for Ammonia Sensing at Room Temperature. J. Mater. Sci. Chem. Eng. 2015, 3, 30–44.
  • An, K. H.; Jeong, S. Y.; Hwang, H. R.; Lee, Y. H. Enhanced Sensitivity of Gas Sensor Incorporating Single-walled Carbon Nanotubes-polypyrrole Nanocomposites. Adv. Mater. 2004, 16, 1005–1009. DOI: 10.1002/adma.200306176.
  • Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. Chemistry of Graphene Oxide. Chem. Soc. Rev. 2010, 39, 228–240. DOI: 10.1039/B917103G.
  • Wang, W.; Xu, G.; Cui, X. T.; Sheng, G.; Luo, X. Enhanced Catalytic and Dopamine Sensing Properties of Electrochemically Reduced Conducting Polymer Nanocomposite Doped with Pure Graphene Oxide. Biosens. Bioelectron. 2014, 58, 153–156. DOI: 10.1016/j.bios.2014.02.055.
  • Seekaew, Y.; Lokavee, S.; Phokharatkul, D.; Wisitsoraat, A.; Kerdcharoen, T.; Wongchoosuk, C. Low-cost and Flexible Printed graphene–PEDOT:PSS Gas Sensor for Ammonia Detection. C. Org. Electron. 2014, 15, 2971–2981. DOI: 10.1016/j.orgel.2014.08.044.
  • Konwer, S.; Guha, A. K.; Dolui, S. K. Graphene Oxide-filled Conducting Polyaniline Composites as Methanol-sensing Materials. J. Mater. Sci. 2013, 48, 1729–1739. DOI: 10.1007/s10853-012-6931-z.
  • Yang, Y.; Kang, M.; Fang, S.; Wang, M.; He, L.; Zhao, J.; Zhang, H.; Zhang, Z. Electrochemical Biosensor Based on Three-dimensional Reduced Graphene Oxide and Polyaniline Nanocomposite for Selective Detection of Mercury Ions. Sens. Actuators B Chem. 2015, 214, 63–69. DOI: 10.1016/j.snb.2015.02.127.
  • Nguyen, V. H.; Lamiel, C.; Kharismadewi, D.; Tran, V. C.; Shim, -J.-J. Covalently Bonded Reduced Graphene Oxide/polyaniline Composite for Electrochemical Sensors and Capacitors. J. Electroanal. Chem. 2015, 758, 148–155. DOI: 10.1016/j.jelechem.2015.10.023.
  • Ruecha, N.; Rodthongkum, N.; Cate, D. M.; Volckens, J.; Chailapakul, O.; Henry, C. S. Sensitive Electrochemical Sensor Using a Graphene–polyaniline Nanocomposite for Simultaneous Detection of Zn(II), Cd(II), and Pb(II). Anal. Chim. Acta. 2015, 874, 40–48. DOI: 10.1016/j.aca.2015.02.064.
  • Wu, Z.; Chen, X.; Zhu, S.; Zhou, Z.; Yao, Y.; Quan, W.; Liu, B. Enhanced Sensitivity of Ammonia Sensor Using Graphene/polyaniline Nanocomposites. Sens. Actuators B Chem. 2013, 178, 485–493. DOI: 10.1016/j.snb.2013.01.014.
  • Abdulla, S.; Mathew, T. L.; Pullithadathil, B. Highly Sensitive, Room Temperature Gas Sensor Based on Polyaniline-multiwalled Carbon Nanotubes (Pani/mwcnts) Nanocomposite for Trace-level Ammonia Detection. Sens. Actuators B Chem. 2015, 221, 1523–1534. DOI: 10.1016/j.snb.2015.08.002.
  • Ameen, S.; Akhtar, M. S.; Shin, H. S. Hydrazine Chemical Sensing by Modified Electrode Based on in Situ Electrochemically Synthesized Polyaniline/graphene Composite Thin Film. Sens. Actuators B Chem. 2012, 173, 177–183. DOI: 10.1016/j.snb.2012.06.065.
  • Fan, Y.; Liu, J.-H.; Yang, C.-P.; Yu, M.; Liu, P. Graphene–polyaniline Composite Film Modified Electrode for Voltammetric Determination of 4-aminophenol. Sens. Actuators B Chem. 2011, 157, 669–674. DOI: 10.1016/j.snb.2011.05.053.
  • Liu, S.; Xing, X.; Yu, J.; Lian, W.; Li, J.; Cui, M.; Huang, J. A Novel Label-free Electrochemical Aptasensor Based on Graphene–polyaniline Composite Film for Dopamine Determination. Biosens. Bioelectron. 2012, 36, 186–191. DOI: 10.1016/j.bios.2012.04.011.
  • Tovide, O.; Jahed, N.; Sunday, C. E.; Pokpas, K.; Ajayi, R. F.; Makelane, H. R.; Molapo, K.; John, S. V.; Baker, P. G.; Iwuoha, E. I. Electro-oxidation of Anthracene on Polyanilino-graphene Composite Electrode. Sens. Actuators B Chem. 2014, 205, 184–192. DOI: 10.1016/j.snb.2014.07.116.
  • Yang, T.; Meng, L.; Zhao, J.; Wang, X.; Jiao, K. Graphene-based Polyaniline Arrays for Deoxyribonucleic Acid Electrochemical Sensor: Effect of Nanostructure on Sensitivity. Appl. Mater. Interfaces. 2014, 6, 19050–19056. DOI: 10.1021/am504998e.
  • Li, J.; Liu, S.; Yu, J.; Lian, W.; Cui, M.; Xu, W.; Huang, J. Electrochemical Immunosensor Based on Graphene–polyaniline Composites and Carboxylated Graphene Oxide for Estradiol Detection. Sens. Actuators B Chem. 2013, 188, 99–105. DOI: 10.1016/j.snb.2013.06.082.
  • Gao, Y.-S.; Xu, J.-K.; Lu, L.-M.; Wu, L.-P.; Zhang, K.-X.; Nie, T.; Zhu, X.-F.; Wu, Y. Overoxidized Polypyrrole/graphene Nanocomposite with Good Electrochemical Performance as Novel Electrode Material for the Detection of Adenine and Guanine. Biosens. Bioelectron. 2014, 62, 261–267. DOI: 10.1016/j.bios.2014.06.044.
  • Rong, R.; Zhao, H.; Gan, X.; Chen, S.; Quan, X. An Electrochemical Sensor Based on Graphene-polypyrrole Nanocomposites for the Specific Detection of Pb (II). Nano. 2017, 12, 1750008. DOI: 10.1142/S1793292017500084.
  • Araújo, G. M. D.; Simões, F. R. Self-assembled Films Based on Polypyrrole and Carbon Nanotubes Composites for the Determination of Diuron Pesticide. J. Solid State Electrochem. 2017, 22, 1439–1448. DOI: 10.1007/s10008-017-3807-9.
  • Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Atar, N.; Yola, M. L.; Gupta, V. K.; Ensafi, A. A. A Novel DNA Biosensor Based on A Pencil Graphite Electrode Modified with Polypyrrole/functionalized Multiwalled Carbon Nanotubes for Determination of 6-mercaptopurine Anticancer Drug. Ind. Eng. Chem. Res. 2015, 54, 3634–3639. DOI: 10.1021/ie504438z.
  • Wang, M.; Gao, Y.; Sun, Q.; Zhao, J. Ultrasensitive and Simultaneous Determination of the Isomers of Amaranth and Ponceau 4R in Foods Based on New Carbon Nanotube/polypyrrole Composites. Food Chem. 2015, 172, 873–879. DOI: 10.1016/j.foodchem.2014.09.157.
  • Xu, G.; Li, B.; Cui, X. T.; Ling, L.; Luo, X. Electrodeposited Conducting Polymer PEDOT Doped with Pure Carbon Nanotubes for the Detection of Dopamine in the Presence of Ascorbic Acid. Sens. Actuators B Chem. 2013, 188, 405–410. DOI: 10.1016/j.snb.2013.07.038.
  • Zuo, Y.; Xu, J.; Zhu, X.; Duan, X.; Lu, L.; Gao, Y.; Xing, H.; Yang, T.; Ye, G.; Yu, Y. Poly(3,4-ethylenedioxythiophene) Nanorods/graphene Oxide Nanocomposite as a New Electrode Material for the Selective Electrochemical Detection of Mercury (II). Synth. Met. 2016, 220, 14–19. DOI: 10.1016/j.synthmet.2016.05.022.
  • Si, W.; Lei, W.; Zhang, Y.; Xia, M.; Wang, F.; Hao, Q. Electrodeposition of Graphene Oxide Doped Poly(3,4 Ethylenedioxythiophene) Film and Its Electrochemical Sensing of Catechol and Hydroquinone. Electrochim. Acta. 2012, 85, 295–301. DOI: 10.1016/j.electacta.2012.08.099.
  • Si, W.; Lei, W.; Han, Z.; Zhang, Y.; Hao, Q.; Xia, M. Electrochemical Sensing of Acetaminophen Based on Poly(3,4-ethylenedioxythiophene)/graphene Oxide Composites. Sens. Actuators B Chem. 2014, 193, 829–923. DOI: 10.1016/j.snb.2013.12.052.
  • Taylor, I. M.; Robbins, E. M.; Catt, K. A.; Cody, P. A.; Happe, C.; Cui, X. T. Enhanced Dopamine Detection Sensitivity by PEDOT/graphene Oxide Coating on in Vivo Carbon Fiber Electrodes. Biosens. Bioelectron. 2016, 89, 400–410. DOI: 10.1016/j.bios.2016.05.084.
  • Wang, W.; Wang, W.; Davis, J. J.; Luo, X. Ultrasensitive and Selective Voltammetric Aptasensor for Dopamine Based on a Conducting Polymer Nanocomposite Doped with Graphene Oxide. Microchim. Acta. 2014, 182, 1123–1129. DOI: 10.1007/s00604-014-1418-z.
  • Xu, G.; Li, B.; Luo, X. Carbon Nanotube Doped Poly(3,4-ethylenedioxythiophene) for the Electrocatalytic Oxidation and Detection of Hydroquinone. Sens. Actuators B Chem. 2013, 176, 69–74. DOI: 10.1016/j.snb.2012.09.001.
  • Zhang, K.; Xu, J.; Duan, X.; Lu, L.; Hu, D.; Zhang, L.; Nie, T.; Brown, K. B. Controllable Synthesis of Multi-walled Carbon Nanotubes/poly(3,4-ethylenedioxythiophene) Core-shell Nanofibers with Enhanced Electrocatalytic Activity. Electrochim. Acta. 2014, 137, 518–525. DOI: 10.1016/j.electacta.2014.06.053.
  • Thakur, H.; Kaur, N.; Sareen, D.; Prabhakar, N. Electrochemical Determination of M. Tuberculosis Antigen Based on Poly(3,4-ethylenedioxythiophene) and Functionalized Carbon Nanotubes Hybrid Platform. Talanta. 2017, 171, 115–123. DOI: 10.1016/j.talanta.2017.04.063.
  • Kondratiev, V. V.; Malev, V. V.; Eliseeva, S. N. Composite Electrode Materials Based on Conducting Polymers Loaded with Metal Nanostructures. Russ. Chem. Rev. 2016, 85, 14–37. DOI: 10.1070/RCR4509.
  • Tourillon, G.; Gamier, F. Inclusion of Metallic Aggregates in Organic Conducting Polymers. A New Catalytic System, [Poly(3-methylthiophene)-ag-pt], for Proton Electrochemical Reduction. J. Phys. Chem. 1984, 88, 5281–5285. DOI: 10.1021/j150666a034.
  • Chandler, G. K.; Pletcher, D. The Electrodeposition of Metals onto Polypyrrole Films from Aqueous Solution. J. Appl. Electrochem. 1986, 16, 62–68. DOI: 10.1007/BF01015984.
  • Huang, X.; Li, Y.; Wang, P.; Wang, L. Sensitive Determination of Dopamine and Uric Acid by the Use of a Glassy Carbon Electrode Modified with Poly(3-methylthiophene)/gold Nanoparticle Composites. Anal. Sci. 2008, 24, 1563–1568. DOI: 10.2116/analsci.24.1563.
  • Kinyanjui, J. M.; Wijeratne, N. R.; Hanks, J.; Hatchett, D. W. Chemical and Electrochemical Synthesis of Polyaniline/platinum Composites. Electrochim. Acta. 2006, 51, 2825–2835. DOI: 10.1016/j.electacta.2005.08.013.
  • Hernández, N.; Ortega, J. M.; Choy, M.; Ortiz, R. Electrodeposition of Silver on a Poly(o-aminophenol) Modified Platinum Electrode. J. Electroanal. Chem. 2001, 515, 123–128. DOI: 10.1016/S0022-0728(01)00619-2.
  • Frydrychewicz, A.; Vassiliev, S. Y.; Tsirlina, G. A.; Jackowska, K. Reticulated Vitreous Carbon–polyaniline–palladium Composite Electrodes. Electrochim. Acta. 2005, 50, 1885–1893. DOI: 10.1016/j.electacta.2004.08.041.
  • Eliseeva, S. N.; Tolstopyatova, E. G.; Babkova, T. A.; Kondratiev, V. V. Nanocomposite Electrode Materials Based on Poly(3,4-ethylenedioxythiophene) with Incorporated Gold and Palladium: Preparation and Morphology Study. Rus. J. Gen. Chem. 2014, 84, 1793–1798. DOI: 10.1134/S1070363214090254.
  • Huang, K.; Zhang, Y.; Long, Y.; Yuan, J.; Han, D.; Wang, Z.; Niu, L.; Chen, Z. Preparation of Highly Conductive, Self-assembled Gold/polyaniline Nanocables and Polyaniline Nanotubes. Chem. Eur. J. 2006, 12, 5314–5319. DOI: 10.1002/chem.200501527.
  • Hasik, M.; Bernasik, A.; Adamczyk, A.; Malata, G.; Kowalski, K.; Camra, J. Polypyrrole–palladium Systems Prepared in PdCl2 Aqueous Solutions. Eur. Polym. J. 2003, 39, 1669–1678. DOI: 10.1016/S0014-3057(03)00053-3.
  • Kondratiev, V. V.; Babkova, T. A.; Tolstjatova, E. G. PEDOT-supported Pd Nanoparticles as a Catalyst for Hydrazine Oxidation. J. Solid State Electrochem. 2013, 17, 1621–1630. DOI: 10.1007/s10008-013-2019-1.
  • Pogulyaichenko, N. A.; Hui, S.; Malev, V. V.; Kondratiev, V. V. Gold Electroless Deposition into Poly-3,4-ethylenedioxythiophene Films. Russ. J. Electrochem. 2009, 45, 1176–1182. DOI: 10.1134/S1023193509100103.
  • Park, J.-E.; Park, S.-G.; Koukitu, A.; Hatozaki, O.; Oyama, N. Electrochemical and Chemical Interactions between Polyaniline and Palladium Nanoparticles. Synth. Met. 2004, 141, 265–269. DOI: 10.1016/S0379-6779(03)00410-7.
  • Kumar, S. S.; Kumar, C. S.; Mathiyarasu, J.; Phani, K. L. Stabilized Gold Nanoparticles by Reduction Using 3,4-ethylenedioxythiophene-polystyrenesulfonate in Aqueous Solutions: Nanocomposite Formation, Stability, and Application in Catalysis. Langmuir. 2007, 23, 3401–3408. DOI: 10.1021/la063150h.
  • Lu, G.; Li, C.; Shen, J.; Chen, Z.; Shi, G. Preparation of Highly Conductive Gold-poly(3,4-ethylenedioxythiophene) Nanocables and Their Conversion to Poly(3,4-ethylenedioxythiophene) Nanotubes. J. Phys. Chem. C. 2007, 111, 5926–5931. DOI: 10.1021/jp070387t.
  • Maksimov, Y. M.; Podlovchenko, B. I.; Gladysheva, T. D.; Kolyadko, E. A. Structural and Sorptive Properties of Platinum-polyaniline and Palladium-polyaniline Systems Obtained by Cycling the Electrode Potential. Russ. J. Electrochem. 1999, 35, 1225–1231.
  • Li, L.; Yan, G.; Wu, J.; Yu, X.; Guo, Q. Preparation of Polyaniline–metal Composite Nanospheres by in Situ Microemulsion Polymerization. J. Colloid Interf. Sci. 2008, 326, 72–75. DOI: 10.1016/j.jcis.2008.07.023.
  • El-Nour, K. M. M. A.; Eftaiha, A.; Al-Warthan, A.; Ammar, R. A. A. Synthesis and Applications of Silver Nanoparticles. Arab. J. Chem. 2010, 3, 135–140. DOI: 10.1016/j.arabjc.2010.04.008.
  • Haider, A.; Kang, I.-K. Preparation of Silver Nanoparticles and Their Industrial and Biomedical Applications: A Comprehensive Review. Adv. Mater. Sci. Eng. 2015, 2015, 1–16. DOI: 10.1155/2015/165257.
  • Abbasi, N. M.; Yu, H.; Wang, L.; Zain-ul-Abdin,; Amer, W. A.; Akram, M.; Khalid, H.; Chen, Y.; Saleem, M.; Sun, R.; et al. Preparation of Silver Nanowires and Their Application in Conducting Polymer Nanocomposites. Mater. Chem. Phys. 2015, 166, 1–15. DOI: 10.1016/j.matchemphys.2015.08.056.
  • Nia, P. M.; Meng, W. P.; Alias, Y. Hydrogen Peroxide Sensor: Uniformly Decorated Silver Nanoparticles on Polypyrrole for Wide Detection Range. Appl. Surf. Sci. 2015, 357, 1565–1572. DOI: 10.1016/j.apsusc.2015.10.026.
  • Yang, X.; Li, L.; Yan, F. Polypyrrole/silver Composite Nanotubes for Gas Sensors. Sens. Actuators B Chem. 2010, 145, 495–500. DOI: 10.1016/j.snb.2009.12.065.
  • Nerkar, D. M. Selective and Sensitive Room Temperature Detection of Ammonia by PPy-Ag Nanocomposites. IJRASET. 2018, 6, 1241–1249. DOI: 10.22214/ijraset.2018.3194.
  • Zahed, F. M.; Hatamluyi, B.; Lorestani, F.; Es’haghi, Z. Silver Nanoparticles Decorated Polyaniline Nanocomposite Based Electrochemical Sensor for the Determination of Anticancer Drug 5-fluorouracil. J. Pharm. Biomed. Anal. 2018, 161, 12–19. DOI: 10.1016/j.jpba.2018.08.004.
  • Park, E.; Kwon, O. S.; Park, S.; Lee, J. S.; You, S.; Jang, J. One-pot Synthesis of Silver Nanoparticles Decorated Poly(3,4-ethylenedioxythiophene) Nanotubes for Chemical Sensor Application. J. Mater. Chem. 2012, 22, 1521–1526. DOI: 10.1039/C1JM13237G.
  • Hazarika, M.; Borah, D.; Bora, P.; Silva, A. R.; Das, P. Biogenic Synthesis of Palladium Nanoparticles and Their Applications as Catalyst and Antimicrobial Agent. PLoS ONE. 2017, 12, 0184936. DOI: 10.1371/journal.pone.0184936.
  • Saldan, I.; Semenyuk, Y.; Marchuk, I.; Reshetnyak, O. Chemical Synthesis and Application of Palladium Nanoparticles. J. Mater. Sci. 2015, 50, 2337–2354.
  • Sandaruwan, C.; Herath, H. M. P. C. K.; Karunarathne, T. S. E. F.; Ratnayake, S. P.; Amaratunga, G. A. J.; Dissanayake, D. P. Polyaniline/palladium Nanohybrids for Moisture and Hydrogen Detection. Chem. Cent. J. 2018, 12, 1–13.
  • Athawale, A. A.; Bhagwat, S. V.; Katre, P. P. Nanocomposite of Pd–polyaniline as a Selective Methanol Sensor. Sens. Actuators B Chem. 2006, 114, 263–267. DOI: 10.1016/j.snb.2005.05.009.
  • Hosseini, H.; Rezaei, S. J. T.; Rahmani, P.; Sharifi, R.; Nabid, M. R.; Bagheri, A. Nonenzymatic Glucose and Hydrogen Peroxide Sensors Based Oncatalytic Properties of Palladium Nanoparticles/poly(3,4-ethylenedioxythiophene) Nanofibers. Sens. Actuators B Chem. 2014, 195, 85–91. DOI: 10.1016/j.snb.2014.01.015.
  • Jeyaraj, M.; Gurunathan, S.; Qasim, M.; Kang, M.-H.; Kim, J.-H. A Comprehensive Review on the Synthesis, Characterization, and Biomedical Application of Platinum Nanoparticles. Nanomater. 2019, 9, 1719.
  • Mishra, S. K.; Srivastava, A. K.; Kumar, D.; Mulchandani, A. Protein Functionalized Pt Nanoparticles-conducting Polymer Nanocomposite Film: Characterization and Immunosensor Application. Polymer. 2014, 55, 4003–4011. DOI: 10.1016/j.polymer.2014.05.061.
  • Adeloju, S. B.; Hussain, S. Potentiometric Sulfite Biosensor Based on Entrapment of Sulfite Oxidase in a Polypyrrole Film on a Platinum Electrode Modified with Platinum Nanoparticles. Microchim. Acta. 2016, 183, 1341–1350. DOI: 10.1007/s00604-016-1748-0.
  • Zhai, D.; Liu, B.; Shi, Y.; Pan, L.; Wang, Y.; Li, W.; Zhang, R.; Yu, G. Highly Sensitive Glucose Sensor Based on Pt Nanoparticle/polyaniline Hydrogel Heterostructures. ACS Nano. 2013, 7, 3540–3546. DOI: 10.1021/nn400482d.
  • Saini, D.; Basu, T. Synthesis and Characterization of Nanocomposites Based on Polyaniline-gold/graphene Nanosheets. Appl. Nanosci. 2012, 2, 467–479.
  • Hung, -C.-C.; Wen, T.-C.; Wei, Y. Site-selective Deposition of Ultra-fine Au Nanoparticles on Polyaniline Nanofibers for H2O2 Sensing. Mater. Chem. Phys. 2010, 122, 392–396. DOI: 10.1016/j.matchemphys.2010.03.012.
  • Miao, Z.; Wang, P.; Zhong, A.; Yang, M.; Xu, Q.; Hao, S.; Hu, X. Development of a Glucose Biosensor Based on Electrodeposited Gold Nanoparticles-polyvinylpyrrolidone-polyaniline Nanocomposites. J. Electroanal. Chem. 2015, 756, 153–160. DOI: 10.1016/j.jelechem.2015.08.025.
  • Sadanandhan, N. K.; Devaki, S. J. Gold Nanoparticle Patterned on PANI Nanowire Modified Transducer for the Simultaneous Determination of Neurotransmitters in Presence of Ascorbic Acid and Uric Acid. J. Appl. Polym. Sci. 2016, 134, 44351.
  • Chowdhury, A. D.; Gangopadhyay, R.; De, A. Highly Sensitive Electrochemical Biosensor for Glucose, DNA and Protein Using Gold-polyaniline Nanocomposites as a Common Matrix. Sens. Actuators B Chem. 2014, 190, 348–356. DOI: 10.1016/j.snb.2013.08.071.
  • Lin, P.; Chai, F.; Zhang, R.; Xu, G.; Fan, X.; Luo, X. Electrochemical Synthesis of Poly(3,4-ethylenedioxythiophene) Doped with Gold Nanoparticles, and Its Application to Nitrite Sensing. Microchim. Acta. 2016, 183, 1235–1341. DOI: 10.1007/s00604-016-1751-5.
  • Huang, K.-J.; Zhang, J.-Z.; Liu, Y.-J.; Wang, -L.-L. Novel Electrochemical Sensing Platform Based on Molybdenum Disulfide Nanosheets-polyaniline Composites and Au Nanoparticles. Sens. Actuators B Chem. 2014, 194, 303–310. DOI: 10.1016/j.snb.2013.12.106.
  • Shrisat, M. D.; Bangar, M. A.; Deshusses, M. A.; Myung, N. V.; Mulchandani, A. Polyaniline Nanowires-gold Nanoparticles Hybrid Network Based Chemiresistive Hydrogen Sulfide Sensor. Appl. Phys. Lett. 2009, 94, 083502. DOI: 10.1063/1.3070237.
  • Ivanov, S.; Lange, U.; Tsakova, V.; Mirsky, V. M. Electrocatalytically Active Nanocomposite from Palladium Nanoparticles and Polyaniline: Oxidation of Hydrazine. Sens. Actuators B Chem. 2010, 150, 271–278. DOI: 10.1016/j.snb.2010.07.004.
  • Rao, H.; Chen, M.; Ge, H.; Lu, Z.; Liu, X.; Zou, P.; Wang, X.; He, H.; Zeng, X.; Wang, Y. A Novel Electrochemical Sensor Based on Au@PANI Composites Film Modified Glassy Carbon Electrode Binding Molecular Imprinting Technique for the Determination of Melamine. Biosens Bioelectron. 2017, 87, 1029–1035. DOI: 10.1016/j.bios.2016.09.074.
  • Li, L.; Wang, Y.; Pan, L.; Shi, Y.; Cheng, W.; Shi, Y.; Yu, G. A Nanostructured Conductive Hydrogels-based Biosensor Platform for Human Metabolite Detection. Nano Lett. 2015, 15, 1146–1151. DOI: 10.1021/nl504217p.
  • Zhang, C.; Govindaraju, S.; Giribabu, K.; Huh, Y. S.; Yun, K. AgNWs-PANI Nanocomposite Based Electrochemical Sensor for Detection of 4-nitrophenol. Sens. Actuators B Chem. 2017, 252, 616–623. DOI: 10.1016/j.snb.2017.06.039.
  • Rong, Q.; Han, H.; Feng, F.; Ma, Z. Network Nanostructured Polypyrrole hydrogel/Au Composites as Enhanced Electrochemical Biosensing Platform. Nat. Sci. Rep. 2015, 5, 11440. DOI: 10.1038/srep11440.
  • Li, J.; Lin, X. Simultaneous Determination of Dopamine and Serotonin on Gold Nanocluster/overoxidized-polypyrrole Composite Modified Glassy Carbon Electrode. Sens. Actuators B Chem. 2007, 124, 486–493. DOI: 10.1016/j.snb.2007.01.021.
  • Hong, L.; Li, Y.; Yang, M. Fabrication and Ammonia Gas Sensing of Palladium/polypyrrole Nanocomposites. Sens. Actuators B Chem. 2010, 145, 25–31. DOI: 10.1016/j.snb.2009.11.057.
  • Ghanbari, K. Fabrication of Silver Nanoparticles–polypyrrole Composite Modifiedelectrode for Electrocatalytic Oxidation of Hydrazine. Synth. Met. 2014, 195, 234–240. DOI: 10.1016/j.synthmet.2014.06.014.
  • Mahmoudian, M. R.; Alias, Y.; Basirun, W. J.; MengWoi, P.; Jamali-Sheini, F.; Sookhakian, M.; Silakhori, M. A Sensitive Electrochemical Nitrate Sensor Based on Polypyrrole Coated Palladium Nanoclusters. J. Electroanal. Chem. 2015, 751, 30–36. DOI: 10.1016/j.jelechem.2015.05.026.
  • Nowicka, A. M.; Fau, M.; Rapecki, T.; Donten, M. Polypyrrole-Au Nanoparticles Composite as Suitable Platform for DNABiosensor with Electrochemical Impedance Spectroscopy Detection. Electrochim. Acta. 2014, 140, 65–71. DOI: 10.1016/j.electacta.2014.03.187.
  • Fan, X.; Lin, P.; Liang, S.; Hui, N.; Zhang, R.; Feng, J.; Xu, G. Gold Nanoclusters Doped Poly(3,4-ethylenedioxythiophene) for Highly Sensitive Electrochemical Sensing of Nitrite. Ionics. 2017, 23, 997–1003. DOI: 10.1007/s11581-016-1865-0.
  • Jiang, F.; Yue, R.; Du, Y.; Xu, J.; Yang, P. A One-pot ‘Green’ Synthesis of Pd-decorated PEDOT Nanospheres for Nonenzymatic Hydrogen Peroxide Sensing. Biosens. Bioelectron. 2013, 44, 127–131. DOI: 10.1016/j.bios.2013.01.003.
  • Phongphut, A.; Sriprachuabwong, C.; Wisitsoraat, A.; Tuantranont, A.; Prichanont, S.; Sritongkham, P. A Disposable Amperometric Biosensor Based on Inkjet-printed Au/PEDOT-PSS Nanocomposite for Triglyceride Determination. Sens. Actuators B Chem. 2013, 178, 501–507. DOI: 10.1016/j.snb.2013.01.012.
  • Suri, K.; Annapoorni, S.; Sarkar, A. K.; Tandon, R. P. Gas and Humidity Sensors Based on Iron Oxide-polypyrrole Nanocomposites. Sens. Actuators B Chem. 2002, 81, 277–282. DOI: 10.1016/S0925-4005(01)00966-2.
  • Devi, R.; Thakur, M.; Pundir, C. S. Construction and Application of an Amperometric Xanthine Biosensor Based on Zinc Oxide Nanoparticles–polypyrrole Composite Film. Biosens. Bioelectron. 2011, 26, 3420–3426. DOI: 10.1016/j.bios.2011.01.014.
  • Jain, R.; Tiwari, D. C.; Shrivastava, S. Polyaniline–bismuth Oxide Nanocomposite Sensor for Quantification of Anti-parkinson Drug Pramipexole in Solubilized System. Mater. Sci. Eng. 2014, 185, 53–59. DOI: 10.1016/j.mseb.2014.02.007.
  • Zhu, J.; Liu, X.; Wang, X.; Huo, X.; Yan, R. Preparation of polyaniline–TiO2nanotube Composite for the Development of Electrochemical Biosensors. Sens. Actuators B Chem. 2015, 221, 450–457. DOI: 10.1016/j.snb.2015.06.131.
  • Gao, L.; Yin, C.; Luo, Y.; Duan, G. Facile Synthesis of the Composites of Polyaniline and TiO2 Nanoparticles Using Self-assembly Method and Their Application in Gas Sensing. Nanomaterials. 2019, 9, 493–508. DOI: 10.3390/nano9040493.
  • Pang, Z.; Yu, J.; Li, D.; Nie, Q.; Zhang, J.; Wei, Q. Free-standing TiO2–SiO2/PANI Composite Nanofibers for Ammonia Sensors. J. Mater. Sci.: Mater. Electron. 2017, 29, 3576–3583.
  • Ghanbari, K.; Babaei, Z. Fabrication and Characterization of Non-enzymatic Glucose Sensor Based on Ternary NiO/CuO/polyaniline Nanocomposites. Anal. Biochem. 2016, 498, 37–46. DOI: 10.1016/j.ab.2016.01.006.
  • Mane, A. T.; Navale, S. T.; Sen, S.; Aswal, D. K.; Gupta, S. K.; Patil, V. B. Nitrogen Dioxide (NO2) Sensing Performance of P-polypyrrole/n-tungsten Oxide Hybrid Nanocomposites at Room Temperature. Org. Electron. 2015, 16, 195–204. DOI: 10.1016/j.orgel.2014.10.045.
  • Nalage, S. R.; Mane, A. T.; Pawar, R. C.; Lee, C. S.; Patil, V. B. Polypyrrole–NiO Hybrid Nanocomposite Films: Highly Selective, Sensitive, and Reproducible NO2 Sensors. Ionics. 2014, 20, 1607–1616. DOI: 10.1007/s11581-014-1122-3.
  • Su, P.-G.; Peng, Y.-T. Fabrication of a Room-temperature H2S Gas Sensor Based on PPy/WO3 Nanocomposite Films by In-situ Photopolymerization. Sens. Actuators B Chem. 2014, 193, 637–643. DOI: 10.1016/j.snb.2013.12.027.
  • Li, Y.; Ban, H.; Yang, M. Highly Sensitive NH3 Gas Sensors Based on Novel Polypyrrole-coated SnO2 Nanosheet Nanocomposites. Sens. Actuators B Chem. 2016, 224, 449–457. DOI: 10.1016/j.snb.2015.10.078.
  • Marimuthu, T.; Mohamad, S.; Alias, Y. Needle-like polypyrrole–NiO Composite for Non-enzymatic Detection of Glucose. Synth. Met. 2015, 207, 35–41. DOI: 10.1016/j.synthmet.2015.06.007.
  • Yu, Z.; Li, H.; Zhang, X.; Liu, N.; Tan, W.; Zhang, X.; Zhang, L. Facile Synthesis of NiCo2O4@Polyaniline Core-shell Nanocomposite for Sensitive Determination of Glucose. Biosens. Bioelectron. 2016, 75, 161–165. DOI: 10.1016/j.bios.2015.08.024.
  • Wang, L.; Huang, H.; Xiao, S.; Cai, D.; Liu, Y.; Liu, B.; Wang, D.; Wang, C.; Li, H.; Wang, Y.; et al. Enhanced Sensitivity and Stability of Room-temperature NH3 Sensors Using Core−shell CeO2 Nanoparticles@cross-linked PANI with P-n Heterojunctions. ACS Appl. Mater. Interfaces. 2014, 6, 14131–14140. DOI: 10.1021/am503286h.
  • Thiagarajan, S.; Rajkumar, M.; Chen, S.-M. Nano TiO2 -PEDOT Film for the Simultaneous Detection of Ascorbic Acid and Diclofenac. Int. J. Electrochem. Sci. 2012, 7, 2109–2122.
  • Nie, T.; Zhang, K.; Xu, J.; Lu, L.; Bai, L. A Facile One-pot Strategy for the Electrochemical Synthesis of poly(3,4-ethylenedioxythiophene)/Zirconia Nanocomposites as an Effective Sensing Platform for Vitamins B2, B6 and C. J. Electroanal. Chem. 2014, 717-718, 1–9. DOI: 10.1016/j.jelechem.2014.01.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.