115
Views
1
CrossRef citations to date
0
Altmetric

Modified α-Al2O3/oil-impregnated monomer casting nylon nanocomposite with both improved friction and mechanical properties

, , &
Pages 1016-1031 | Received 01 Sep 2020, Accepted 11 Jan 2021, Published online: 21 Jan 2021

References

  • Zhao, Y.; Meng, Q.; Zhang, Q.; Wang, F.; Wang, Q.; Wang, Y. Oil‐impregnated Monomer Casting Nylon Composites Reinforced by Graphene Oxide and Lanthanum (III) Chloride. Polym. Eng. Sci. 2019, 59, 982–988. DOI: 10.1002/pen.25051.
  • Li, C.; Xiang, M.; Ye, L. Intercalation Structure and Highly Enhancing Tribological Performance of Monomer Casting Nylon-6/Graphene Nano-composites. Compos. Part A Appl. Sci. Manuf. 2017, 95, 274–285. DOI: 10.1016/j.compositesa.2017.01.013.
  • Nagel, K.; Spange, S. Polyamide/Silica Hybrid Materials by Anionic Melt Polymerization of Lactam-substituted Silane Monomers with ε-Caprolactam. Eur. Polym. J. 2019, 113, 385–394. DOI: 10.1016/j.eurpolymj.2019.01.072.
  • Wang, Y.; Liu, S.; Zhang, Q.; Meng, Q. In Situ Polymerization to Prepare Graphene-toughened Monomer Cast Nylon Composites. J. Mater. Sci. 2015, 50(19), 6291–6301. DOI: 10.1007/s10853-015-9165-z.
  • Jian, L.; Ning, L.; Yang, S.; Wang, J.; Hua, M. Triboelectrification Electrostatic Potential of MC Nylon 6 under Point Contact Dry Sliding. Tribol. Lett. 2009, 36(3), 199. DOI: 10.1007/s11249-009-9473-z.
  • Imani, A.; Zhang, H.; Owais, M.; Zhao, J.; Chu, P.; Zhang, Z. Wear and Friction of Epoxy Based Nanocomposites with Silica Nanoparticles and Wax-containing Microcapsules. Compos. Part A Appl. Sci. Manuf. 2018, 107, 607–615. DOI: 10.1016/j.compositesa.2018.01.033.
  • Zhang, S.; Cui, C.; Chen, G.; Tribological Behavior of MC Nylon6 Composites Filled with Glass Fiber and Fly Ash. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2012, 27(2), 290–295. DOI:10.1007/s11595-012-0455-x.
  • Pan, B.; Zhang, S.; Li, W.; Zhao, J.; Liu, J.; Zhang, Y.; Zhang, Y. Tribological and Mechanical Investigation of MC Nylon Reinforced by Modified Graphene Oxide. Wear. 2012, 294, 395–401. DOI: 10.1016/j.wear.2012.07.032.
  • Pan, B.; Li, N.; Chu, G.; Wei, F.; Liu, J.; Zhang, J.; Zhang, Y. Tribological Investigation of MC PA6 Reinforced by Boron Nitride of Single Layer. Tribol. Lett. 2014, 54(2), 161–170. DOI: 10.1007/s11249-014-0324-1.
  • Ning, L.; Jian, L.; Yang, S.; Wang, J.; Ren, J.; Wang, J. Effect of Carbon Black on Triboelectrification Electrostatic Potential of MC Nylon Composites. Tribol. Int. 2010, 43(3), 568–576. DOI: 10.1016/j.triboint.2009.09.005.
  • Li, C.; Xiang, M.; Ye, L. Structure and Tribological Performance of Monomer Casting Nylon-6/Colloidal Graphite Composites Synthesized through in Situ Polymerization. Polym.-Plast. Technol. Eng. 2017, 56(12), 1345–1357. DOI: 10.1080/03602559.2016.1275685.
  • Agrawal, S.; Singh, K. K.; Sarkar, P. K. A Comparative Study of Wear and Friction Characteristics of Glass Fiber Reinforced Epoxy Resin, Sliding under Dry, Oil-Lubricated and Inert Gas Environments. Tribol. Int. 2016, 96, 217–224. DOI: 10.1016/j.triboint.2015.12.033.
  • Zhang, Z.; Liu, W.; Xue, Q. Effects of Various Kinds of Fillers on the Tribological Behavior of Polytetrafluoroethylene Composites under Dry and Oil-lubricated Conditions. J. Appl. Polym. Sci. 1891-1897, 2001(80). DOI: 10.1002/app.1286.
  • Kang, S.; Chung, D. The Synthesis and Frictional Properties of Lubricant-Impregnated Cast Nylon. Wear. 2000, 239(2), 244–250. DOI: 10.1016/S0043-1648(00)00328-8.
  • Samyn, P.; De Baets, P.; Schoukens, G.; Van Driessche, I. Friction, Wear and Transfer of Pure and Internally Lubricated Cast Polyamides at Various Testing Scales. Wear. 2007, 262(11–12), 1433–1449. DOI: 10.1016/j.wear.2007.01.013.
  • Kang, S.; Chung, D. Improvement of Frictional Properties and Abrasive Wear Resistance of Nylon/Graphite Composite by Oil Impregnation. Wear. 2003, 254(1–2), 103–110. DOI: 10.1016/S0043-1648(02)00302-2.
  • Guo, Q.; Lau, K. T.; Zheng, B.; Rong, M.; Zhang, M. Imparting Ultra‐Low Friction and Wear Rate to Epoxy by the Incorporation of Microencapsulated Lubricant. Macromol. Mater. Eng. 2009, 294(1), 20–24. DOI: 10.1002/mame.200800257.
  • Khun, N. W.; Zhang, H.; Yang, J.; Liu, E. Tribological Performance of Silicone Composite Coatings Filled with Wax-containing Microcapsules. Wear. 2012, 296(1–2), 575–582. DOI: 10.1016/j.wear.2012.07.029.
  • Chung, Y. C.; Cho, T. K.; Chun, B. C. Dependence of Montmorillonite Dispersion in Nanocomposites on Polymer Matrix and Compatibilizer Content, and the Impact on Mechanical Properties. Fiber. Polym. 2008, 9(1), 7–14. DOI: 10.1007/s12221-008-0002-8.
  • Qian, M.; Song, P.; Qin, Z.; Yan, S.; Zhang, L. Mechanically Robust and Abrasion-Resistant Polymer Nanocomposites for Potential Applications as Advanced Clearance Joints. Part A Appl. Sci. Manuf. 2019, 126, 105607. DOI: 10.1016/j.compositesa.2019.105607.
  • Kumar, K.; Ghosh, P. K.; Kumar, A. Improving Mechanical and Thermal Properties of TiO2-epoxy Nanocomposite. Compos. Part B Eng. 2016, 97, 353–360. DOI: 10.1016/j.compositesb.2016.04.080.
  • Shi, H.; Xia, L.; Guo, Z.; Sun, A.; Wang, H.; Kan, Z. Manufacture and Performance of Textile-ramie Fiber Reinforced Anionic Polyamide 6 Composites. Fiber. Polym. 2019, 20(8), 1705–1715. DOI: 10.1007/s12221-019-8968-y.
  • Zhuang, Y.; Cao, X.; Zhang, J.; Ma, Y.; Shang, X.; Lu, J.; Yang, S.; Zheng, K.; Ma, Y. Monomer Casting Nylon/Graphene Nanocomposite with Both Improved Thermal Conductivity and Mechanical Performance. Compos. Part A Appl. Sci. Manuf. 2019, 120, 49–55. DOI: 10.1016/j.compositesa.2019.02.019.
  • Dai, Y.; Mai, Y.; Ji, X. Predictions of Stiffness and Strength of Nylon 6/MMT Nanocomposites with an Improved Staggered Model. Compos. Part B Eng. 2008, 39(6), 1062–1068. DOI: 10.1016/j.compositesb.2007.09.005.
  • Ding, W.; Wang, Y.; Ying, J.; Li, Y.; Liu, H.; Yuan, X.; Yu, H.; Wang, J. Simultaneous Enhancements of Mechanical and Thermal Properties of Monomer Cast Nylon via Polydimethylsiloxane‐modified Kaolin. Polym. Compos. 2020, 41(2), 494–504. DOI: 10.1002/pc.25382.
  • Xu, S.; Zhao, X.; Ye, L. Mechanical and Crystalline Properties of Monomer Casting Nylon‐6/SiO2 Composites Prepared via in Situ Polymerization. Polym. Eng. Sci. 2013, 53, 1809–1822. DOI: 10.1002/pen.23449.
  • Chen, J.; Volinsky, A. A.; He, W. Synthesis and Characterization of MC Nylon/Modified Yttrium Hydroxide Nanocomposites. J. Appl. Polym. Sci. 2016, 133, 43356. DOI: 10.1002/app.43356.
  • Wang, Q.; Zhang, Q.; Wang, F.; Zhao, Y.; Wang, Y. Chemically Functionalized SiO2 to Improve Mechanical Properties of Oil‐impregnated Monomer Casting Nylon. J. Appl. Polym. Sci. 2019, 136, 46994. DOI: 10.1002/app.46994.
  • Feng, Q.; Wang, F.; Wang, Y.; Zhang, Q.; Wang, Y. Effect of Modified Mg2B2O5w on Mechanical and Friction Properties of Oil‐containing Monomer Casting Nylon. J. Appl. Polym. Sci. 2019, 137, 48856. DOI: 10.1002/app.48856.
  • Li, Z.; Zhao, J.; Sun, J.; Gong, F.; Ni, X. Reinforcement of Al2O3/TiC Ceramic Tool Material by Multi-Layer Graphene. Ceram. Int. 2017, 43, 11421–11427. DOI: 10.1016/j.ceramint.2017.05.353.
  • Guo, X.; Zhang, X.; Wang, Z.; Shi, J. Low Temperature Synthesis of Nano Alpha-Alumina Powder by Two-step Hydrolysis. Mater. Res. Bull. 2016, 73, 21–28. DOI: 10.1016/j.materresbull.2015.08.021.
  • Suchanek, W. L.;. Hydrothermal Synthesis of Alpha Alumina (α‐Al2O3) Powders: Study of the Processing Variables and Growth Mechanisms. J. Am. Ceram. Soc. 2010, 93, 399–412. DOI: 10.1111/j.1551-2916.2009.03399.x.
  • Blanchet, T. A.; Kandanur, S. S.; Schadler, L. S. Coupled Effect of Filler Content and Countersurface Roughness on PTFE Nanocomposite Wear Resistance. Tribol. Lett. 2010, 40(1), 11–21. DOI: 10.1007/s11249-009-9519-2.
  • Aryasomayajula, A.; Randall, N. X.; Gordon, M. H.; Bhat, D. Tribological and Mechanical Properties of Physical Vapor Deposited Alpha Alumina Thin Film Coating. Thin Solid Films. 2008, 517(2), 819–823. DOI: 10.1016/j.tsf.2008.06.019.
  • Mallakpour, S.; Sirous, F. Surface Coating of α-Al2O3 Nanoparticles with Poly (Vinyl Alcohol) as Biocompatible Coupling Agent for Improving Properties of Bio-active Poly (Amide-imide) Based Nanocomposites Having l-Phenylalanine Linkages. Prog. Org. Coat. 2015, 85, 138–145. DOI: 10.1016/j.porgcoat.2015.03.021.
  • Mallakpour, S.; Khadem, E. Recent Development in the Synthesis of Polymer Nanocomposites Based on Nano-alumina. Prog. Polym. Sci. 2015, 51, 74–93. DOI: 10.1016/j.progpolymsci.2015.07.004.
  • Zhang, X.; Fan, X.; Li, H.; Yan, C. Facile Preparation Route for Graphene Oxide Reinforced Polyamide 6 Composites via in Situ Anionic Ring-opening Polymerization. J. Mater. Chem. 2012, 22(45), 24081–24091. DOI: 10.1039/C2JM34243J.
  • Liu, T.; Phang, I. Y.; Shen, L.; Chow, S. Y.; Zhang, W. D. Morphology and Mechanical Properties of Multiwalled Carbon Nanotubes Reinforced Nylon-6 Composites. Macromolecules. 2004, 37(19), 7214–7222. DOI: 10.1021/ma049132t.
  • Ho, J. C.; Wei, K. H. Induced γ→ α Crystal Transformation in Blends of Polyamide 6 and Liquid Crystalline Copolyester. Macromolecules. 2000, 33(14), 5181–5186. DOI: 10.1021/ma991702f.
  • Xu, S.; Ye, L. Monomer Casting Nylon-6-b-polyether Amine Copolymers: Synthesis and Properties. Compos. Part B Eng. 2015, 79, 170–181. DOI: 10.1016/j.compositesb.2015.04.040.
  • Helfand, E.; Lauritzen, J. J. I. Theory of Copolymer Crystallization. Macromolecules. 1973, 6(4), 631–638. DOI: 10.1021/ma60034a031.
  • Song, L.; Hu, Y.; He, Q.; You, F. Study on Crystallization, Thermal and Flame Retardant Properties of Nylon 66/Organoclay Nanocomposites by in Situ Polymerization. J. Fire Sci. 2008, 26, 475–492. DOI: 10.1177/0734904108092115.
  • Guo, J.; Ren, L.; Wang, R.; Zhang, C.; Yang, Y.; Liu, T. Water Dispersible Graphene Noncovalently Functionalized with Tryptophan and Its Poly (Vinyl Alcohol) Nanocomposite. Compos. Part B Eng. 2011, 42, 2130–2135. DOI: 10.1016/j.compositesb.2011.05.008.
  • Wan, Y.; Yang, W.; Yu, S.; Sun, R.; Wong, C.; Liao, W. Covalent Polymer Functionalization of Graphene for Improved Dielectric Properties and Thermal Stability of Epoxy Composites. Compos. Sci. Technol. 2016, 122, 27–35. DOI: 10.1016/j.compscitech.2015.11.005.
  • Wang, X.; Wang, L.; Su, Q.; Zheng, J. Use of Unmodified SiO2 as Nanofiller to Improve Mechanical Properties of Polymer-based Nanocomposites. Compos. Sci. Technol. 2013, 89, 52–60. DOI: 10.1016/j.compscitech.2013.09.018.
  • Arai, S.; Miyagawa, K. Frictional and Wear Properties of Cobalt/Multiwalled Carbon Nanotube Composite Films Formed by Electrodeposition. Surf. Coat. Technol. 2013, 235, 204–211. DOI: 10.1016/j.surfcoat.2013.07.034.
  • Han, J.; Zhang, H.; Chu, P.; Imani, A.; Zhang, Z. Friction and Wear of High Electrical Conductive Carbon Nanotube Buckypaper/Epoxy Composites. Compos. Sci. Technol. 2015, 114, 1–10. DOI: 10.1016/j.compscitech.2015.03.012.
  • Friedrich, K.; Zhang, Z.; Schlarb, A. K. Effects of Various Fillers on the Sliding Wear of Polymer Composites. Compos. Sci. Technol. 2005, 65(15–16), 2329–2343. DOI: 10.1016/j.compscitech.2005.05.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.