430
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Novel trends in polymer aerogel nanocomposites

ORCID Icon
Pages 1519-1531 | Received 28 Dec 2020, Accepted 29 Mar 2021, Published online: 13 Apr 2021

References

  • Xu, X.; Zhang, Q.; Hao, M.; Hu, Y.; Lin, Z.; Peng, L.; Wang, T.; Ren, X.; Wang, C.; Zhao, A.; et al. Double-negative-index Ceramic Aerogels for Thermal Superinsulation. Science. 2019, 363, 723–727. DOI: 10.1126/science.aav7304.
  • Zhang, Q.; Hao, M.; Xu, X.; Xiong, G.; Li, H.; Fisher, T. S. Flyweight 3D Graphene Scaffolds with Microinterface Barrier-derived Tunable Thermal Insulation and Flame Retardancy. ACS App. Mater. Interfaces. 2017, 9, 14232–14241. DOI: 10.1021/acsami.7b01697.
  • Li, Y.; Zhu, K.; Peng, Y.; Li, W.; Yang, T.; Xu, H.; Chen, H.; Zhu, X.; Fan, S.; Qiu, C. Thermal Meta-device in Analogue of Zero-index Photonics. Nat. Mater. 2019, 18, 48–54. DOI: 10.1038/s41563-018-0239-6.
  • Yuan, B.; Sun, Y.; Chen, X.; Shi, Y.; Dai, H.; He, S. Poorly-/well-dispersed Graphene: Abnormal Influence on Flammability and Fire Behavior of Intumescent Flame Retardant. Compos. A. 2018, 109, 345–354. DOI: 10.1016/j.compositesa.2018.03.022.
  • Huang, H.; Yu, Y.; Qing, Y.; Zhang, X.; Cui, J.; Wang, H. Ultralight Industrial Bamboo Residue-derived Holocellulose Thermal Insulation Aerogels with Hydrophobic and Fire Resistant Properties. Materials. 2020, 13, 477. DOI: 10.3390/ma13020477.
  • De France, K. J.; Hoare, T.; Cranston, E. D. Review of Hydrogels and Aerogels Containing Nanocellulose. Chem. Mater. 2017, 29, 4609–4631. DOI: 10.1021/acs.chemmater.7b00531.
  • Jelle, B. P.; Baetens, R.; Gustavsen, A. The Sol–Gel Handbook: Synthesis, Characterization, and Applications 2015; pp. 1385–1412
  • Surya, I.; Olaiya, N.; Rizal, S.; Zein, I.; Sri Aprilia, N.; Hasan, M.; Yahya, E. B.; Sadasivuni, K.; Abdul Khalil, H. P. S. Plasticizer Enhancement on the Miscibility and Thermomechanical Properties of Polylactic Acid-chitin-starch Composites. Polymers. 2020, 12, 115. DOI: 10.3390/polym12010115.
  • Tamer, T. M.; Collins, M. N.; Valachová, K.; Hassan, M. A.; Omer, A. M.; Mohy-Eldin, M. S.; Švík, K.; Jurčík, R.; Ondruška, Ľ.; Biró, C., Jur. cík, R.; Ondruška, L’.; Biró, C.. MitoQ Loaded Chitosan-hyaluronan Composite Membranes for Wound Healing. Materials. 2018, 11, 569. DOI: 10.3390/ma11040569.
  • Abdul Khalil, H. P. S.; Jummaat, F.; Yahya, E. B.; Olaiya, N.; Adnan, A.; Abdat, M.; Nam, N.; Halim, A. S.; Kumar, U.; Bairwan, R. A Review on Micro-to Nanocellulose Biopolymer Sca Old Forming for Tissue Engineering Applications. Polymers. 2020, 12, 2043. DOI: 10.3390/polym12092043.
  • Subrahmanyam, R.; Gurikov, P.; Dieringer, P.; Sun, M.; Smirnova, I. On the Road to Biopolymer aerogels—Dealing with the Solvent. Gels. 2015, 1, 291–313. DOI: 10.3390/gels1020291.
  • Maleki, H.; Durães, L.; García-González, C. A.; Del Gaudio, P.; Portugal, A.; Mahmoudi, M. Synthesis and Biomedical Applications of Aerogels: Possibilities and Challenges. Adv. Colloid Interface Sci. 2016, 236, 1–27. DOI: 10.1016/j.cis.2016.05.011.
  • Subrahmanyam, R.; Gurikov, P.; Meer, I.; Smirnova, I. Preparation of Biopolymer Aerogels Using Green Solvents. JoVE. 2016, 113, e54116.
  • Zhao, S.; Malfait, W. J.; Guerrero-Alburquerque, N.; Koebel, M. M.; Nyström, G. Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications. Angew. Chem. Int. Ed. 2018, 57, 7580–7608.
  • García-González, C. A.; Budtova, T.; Durães, L.; Erkey, C.; Del Gaudio, P.; Gurikov, P.; Koebel, M.; Liebner, F.; Neagu, M.; Smirnova, I. An Opinion Paper on Aerogels for Biomedical and Environmental Applications. Molecules. 2019, 24, 1815. DOI: 10.3390/molecules24091815.
  • Rebelo, R.; Fernandes, M.; Fangueiro, R. Biopolymers in Medical Implants: A Brief Review. Procedia Eng. 2017, 200, 236–243. DOI: 10.1016/j.proeng.2017.07.034.
  • Berardi, U.; Zaidi, S. M. Characterization of Commercial Aerogel-enhanced Blankets Obtained with Supercritical Drying and of a New Ambient Pressure Drying Blanket. Energy Build. 2019, 198, 542–552. DOI: 10.1016/j.enbuild.2019.06.027.
  • Chen, Y.; Zhou, L.; Chen, L.; Duan, G.; Mei, C.; Huang, C.; Han, J.; Jiang, S. Anisotropic Nanocellulose Aerogels with Ordered Structures Fabricated by Directional Freeze-drying for Fast Liquid Transport. Cellulose. 2019, 26, 6653–6667. DOI: 10.1007/s10570-019-02557-z.
  • Mi, H.-Y.; Jing, X.; Liu, Y.; Li, L.; Li, H.; Peng, X.-F.; Zhou, H. Highly Durable Superhydrophobic Polymer Foams Fabricated by Extrusion and Supercritical CO2 Foaming for Selective Oil Absorption. ACS Appl. Mater. Interfaces. 2019, 11, 7479–7487. DOI: 10.1021/acsami.8b21858.
  • Pirzada, T.; Ashrafi, Z.; Xie, W.; Khan, S. A. Cellulose Silica Hybrid Nanofiber Aerogels: From Sol–Gel Electrospun Nanofibers to Multifunctional Aerogels. Adv. Funct. Mater. 2020, 30, 1907359. DOI: 10.1002/adfm.201907359.
  • Zhang, L.; He, P.; Song, K.; Zhang, J.; Zhang, B.; Huang, R.; Zhang, Q. Three-Dimensional Graphene Hybrid SiO2 Hierarchical Dual-Network Aerogel with Low Thermal Conductivity and High Elasticity. Coatings. 2020, 10, 455. DOI: 10.3390/coatings10050455.
  • Yadav, M.; Chiu, F. C. Cellulose Nanocrystals Reinforced -carrageenan Based UV Resistant Transparent Bionanocomposite Films for Sustainable Packaging Applications. Carbohydr. Polym. 2019, 211, 181–194. DOI: 10.1016/j.carbpol.2019.01.114.
  • Huang, C.; Ma, J.; Liang, C.; Li, X.; Yong, Q. Influence of Sulfur Dioxide-Ethanol-Water Pretreatment on the Physicochemical Properties and Enzymatic Digestibility of Bamboo Residues. Bioresour. Technol. 2018, 263, 17–24. DOI: 10.1016/j.biortech.2018.04.104.
  • Gustavsen, A.; Grynninga, S.; Arasteh, D.; Jelle, B. P.; Goudey, H. Key Elements of and Material Performance Targets for Highly Insulating Window Frames. Energy Build. 2011, 43, 2583–2594. DOI: 10.1016/j.enbuild.2011.05.010.
  • Xin, D.; Yang, Z.; Liu, F.; Xu, X.; Zhang, J. Comparison of Aqueous Ammonia and Dilute Acid Pretreatment of Bamboo Fractions: Structure Properties and Enzymatic Hydrolysis. Bioresour. Technol. 2015, 175, 529–536. DOI: 10.1016/j.biortech.2014.10.160.
  • Wang, H.; Zhang, X.; Jiang, Z.; Li, W.; Yu, Y.; Comparison, A. Study on the Preparation of Nanocellulose Fibrils from Fibers and Parenchymal Cells in Bamboo (Phyllostachys Pubescens). Ind. Crop Prod. 2015, 71, 80–88. DOI: 10.1016/j.indcrop.2015.03.086.
  • Lavoine, N.; Bergström, L. Nanocellulose-based Foams and Aerogels: Processing, Properties, and Applications. J. Mater. Chem. A. 2017, 5, 16105–16117. DOI: 10.1039/C7TA02807E.
  • Nguyen, D. D.; Vu, C. M.; Vu, H. T.; Choi, H. J. Micron-Size White Bamboo Fibril-Based Silane Cellulose Aerogel: Fabrication and Oil Absorbent Characteristics. Materials. 2019, 12, 1407. DOI: 10.3390/ma12091407.
  • Jiang, F.; Hsieh, Y. L. Cellulose Nanofibril Aerogels: Synergistic Improvement of Hydrophobicity, Strength, and Thermal Stability via Cross-Linking with Diisocyanate. ACS Appl. Mater. Interfaces. 2017, 9, 2825–2834. DOI: 10.1021/acsami.6b13577.
  • Wang, Y. T.; Liao, S. F.; Shang, K.; Chen, M. J.; Huang, J. Q.; Wang, Y. Z.; Schiraldi, D. A. Efficient Approach to Improving the Flame Retardancy of Poly(vinyl Alcohol)/clay Aerogels: Incorporating Piperazine-modified Ammonium Polyphosphate. ACS Appl. Mater. Interfaces. 2015, 7, 1780–1786. DOI: 10.1021/am507409d.
  • Xiao, Y.; Li, L.; Liu, F.; Zhang, S.; Feng, J.; Jiang, Y.; Feng, J. Compressible, Flame-resistant and Thermally Insulating Fiber-reinforced Polybenzoxazine Aerogel Composites. Materials. 2020, 13, 2809. DOI: 10.3390/ma13122809.
  • Ihara, T.; Jelle, B. P.; Gao, T.; Gustavsen, A. Aerogel Granule Aging Driven by Moisture and Solar Radiation. Energy Build. 2015, 103, 238–248. DOI: 10.1016/j.enbuild.2015.06.017.
  • Berardi, U.;. The Development of a Monolithic Aerogel Glazed Window for an Energy Retrofitting Project. Appl. Energy. 2015, 154, 603–615. DOI: 10.1016/j.apenergy.2015.05.059.
  • Berardi, U.;. Aerogel-enhanced Solutions for Building Energy Retrofits: Insights from Case Study. Energy Build. 2018, 159, 370–381. DOI: 10.1016/j.enbuild.2017.10.092.
  • Cuce, E.; Cuce, P. M.; Wood, C. J.; Riffat, S. B.; et al. Toward Aerogel Based Thermal Superinsulation in Buildings: A Comprehensive Review. Renewable Sustainable Energy Rev. 2014, 34, 273–299. DOI: 10.1016/j.rser.2014.03.017.
  • Riffat, S. B.; Qiu, G. A Review of State-ofthe-art Aerogel Applications in Buildings. Int. J. Low-Carbon Technol. 2012, 8, 1–6. DOI: 10.1093/ijlct/cts001.
  • Buratti, C.; Moretti, E. Glazing Systems with Silica Aerogel for Energy Savings in Buildings. Appl. Energy. 2012, 98, 396–403. DOI: 10.1016/j.apenergy.2012.03.062.
  • Liu, S.; Zhu, K.; Cui, S.; Shen, X.; Tan, G.; et al. A Novel Building Material with Low Thermal Conductivity: Rapid Synthesis of Foam Concrete Reinforced Silica Aerogel and Energy Performance Simulation. Energy and Buildings. 2018, 177, 385–393. DOI: 10.1016/j.enbuild.2018.08.014.
  • Li, L.; Yalcin, B.; Nguyen, B. N.; Meador, M. A. B.; Cakmak, M.; et al. Flexible Nanofiber-Reinforced Aerogel (Xerogel) Synthesis, Manufacture, and Characterization. ACS Appl. Mater. Interfaces. 2009, 1, 2491–2501. DOI: 10.1021/am900451x.
  • Sun, Y.; Wu, Y.; Wilson, R. A Review of Thermal and Optical Characterisation of Complex Window Systems and Their Building Performance Prediction. Appl. Energy. 2018, 222, 729–747. DOI: 10.1016/j.apenergy.2018.03.144.
  • Schultz, J. M.; Jensen, K. I.; Kristiansen, F. Super Insulating Aerogel Glazing. Solar Energy Mater. Solar Cells. 2005, 89, 275–285. DOI: 10.1016/j.solmat.2005.01.016.
  • Jensen, K. I.; Schultz, J. M.; Kristiansen, F. H. Development of Windows Based on Highly Insulating Aerogel Glazings. J. Non- Crystalline Solids. 2004, 350, 351–357. DOI: 10.1016/j.jnoncrysol.2004.06.047.
  • Reim, M.; Beck, A.; Körner, W.; Petricevic, R.; Glora, M.; Weth, M.; Schliermann, T.; Fricke, J.; Schmidt, C.; Pötter, F. J.; et al. Highly Insulating Aerogel Glazing for Solar Energy Usage. Solar Energy. 2002, 72, 21–29. DOI: 10.1016/S0038-092X(01)00086-X.
  • Reim, M.; Reichenauer, G.; Körner, W.; Manara, J.; Arduini-Schuster, M.; Korder, S.; Beck, A.; Fricke, J.; et al. Silica-aerogel granulate-Structural, Optical and Thermal Properties. J. Non-Cryst. Solids. 2004, 350, 358–363. DOI: 10.1016/j.jnoncrysol.2004.06.048.
  • Reim, M.; Körner, W.; Manara, J.; Korder, S.; Arduini-Schuster, M.; Ebert, H.-P.; Fricke, J.; et al. Silica Aerogel Granulate Material for Thermal Insulation and Daylighting. Solar Energy. 2005, 79(2), 131–139.
  • Gao, T.; Jelle, B. P.; Gustavsen, A. Building Integration of Aerogel Glazings. Procedia Engineering. 2016, 145, 723–728.
  • Wang, H.; Wu, H.; Ding, Y.; Feng, J.; Wang, S.; et al. Feasibility and Optimization of Aerogel Glazing System for Building Energy Efficiency in Different Climates. Int. J. Low-Carbon Technol. 2014, 10, 412–419. DOI: 10.1093/ijlct/ctu010.
  • Huang, Y.; Niu, J.-L. Energy and Visual Performance of the Silica Aerogel Glazing System in Commercial Buildings of Hong Kong. Constr. Build. Mater. 2015, 94, 57–72. DOI: 10.1016/j.conbuildmat.2015.06.053.
  • Yang, J.; Wu, H.; Xu, X.; Huang, G.; Xu, T.; Guo, S.; Liang, Y.; et al. Numerical and Experimental Study on the Thermal Performance of Aerogel Insulating Panels for Building Energy Efficiency. Renewable Energy. 2019, 138, 445–457. DOI: 10.1016/j.renene.2019.01.120.
  • Gibiat, V.; Lefeuvre, O.; Woignier, T.; Pelous, J.; Phalippou, J.; et al. Acoustic Properties and Potential Applications of Silica Aerogels. J. Non-Cryst. Solids. 1995, 186, 244–255. DOI: 10.1016/0022-3093(95)00049-6.
  • Maleki, H.;. Recent Advances in Aerogels for Environmental Remediation Applications: A Review. Chem. Eng. J. 2016, 300, 98–118. DOI: 10.1016/j.cej.2016.04.098.
  • Minju, N.; Abhilash, P.; Nair, B. N.; Mohamed, A. P.; Ananthakumar, S.; et al. Amine Impregnated Porous Silica Gel Sorbents Synthesized from Water–glass Precursors for CO2 Capturing. Chem. Eng. J. 2015, 269, 335–342. DOI: 10.1016/j.cej.2015.01.069.
  • Berardi, U.;. 17 - Aerogel-enhanced Insulation for Building Applications, in Nanotechnology in Eco-efficient Construction. Second Edition. Pacheco-Torgal, F., et al., Eds.; Woodhead Publishing, 2019, pp. 395–416.
  • Berardi, U.;. Aerogel-enhanced Insulation for Building Applications. In Fernando Pacheco-Torgal, Maria Vittoria Diamanti, Ali Nazari, Claes Goran Granqvist, Alina Pruna, Sergi Amirkhanian (Eds.,). Nanotechnol Ecoeffcient Constr; Cambridge: Woodhead Publishing, 2019; pp 396–416.
  • Berardi, U.; Nosrati, R. Long-term Behaviour of Aerogel-enhanced Insulating Materials under Different Aging Laboratory Conditions. Energy. 2018, 147, 1188–1202. DOI: 10.1016/j.energy.2018.01.053.
  • Neugebauer, A.; Chen, K.; Tang, A.; Allgeier, A.; Glicksman, L. R.; Gibson, L. J. Thermal Conductivity and Characterization of Compacted, Granular Silica Aerogel. Energy Build. 2014, 79, 47–57.
  • Zinzi, M.; Rossi, G.; Anderson, A. M.; Carroll, M. K.; Moretti, E.; Buratti, C. Optical and Visual Experimental Characterization of a Glazing System with Monolithic Silica Aerogel. Sol. Energy. 2019, 183, 30–39. DOI: 10.1016/j.solener.2019.03.013.
  • Lakatos, A.; Trník, A. Thermal Diffusion in Fibrous Aerogel Blankets. Energies. 2020, 13, 823.
  • Lakatos, Á.; Csík, A.; Trník, A.; Budai, I. Effects of the Heat Treatment in the Properties of Fibrous Aerogel Thermal Insulation. Energies. 2019, 12, 2001. DOI: 10.3390/en12102001.
  • Iswara, S.; Gri, A., . M.; Kaufmann, R.; Beltrand, M.; Hubera, L.; Brunner, S.; Lattuad, M.; Koebel, M. M.; Malfait, W. J. Effect of Aging on Thermal Conductivity of Fiber-reinforced Aerogel Composites: An X-ray Tomography Study. Micr. Mes. Mat. 2019, 278, 289–296. DOI: 10.1016/j.micromeso.2018.12.006.
  • Lakatos, Á.;. Stability Investigations of the Thermal Insulating Performance of Aerogel Blanket. Energy Build. 2019, 139, 506–516. DOI: 10.1016/j.enbuild.2017.01.054.
  • Aburas, M.; Soebarto, V.; Williamson, T.; Liang, R.; Wu, Y.; Wu, Y. Thermochromic Smart Window Technologies for Building Application: A Review. Appl. Energy. 2019, 255, 113522. DOI: 10.1016/j.apenergy.2019.113522.
  • Idumah, C. I.;. Progress in Polymer Nanocomposites for Bone Regeneration and Engineering. Polym. Polym. Composites. 2019, 0967391120913658.
  • Idumah, C.; Hassan, A.; Affam, A. A. Review of Recent Developments in Flammability of Polymer Nanocomposites. Rev. Chem. Eng. 2015, 31, 149–177. DOI: 10.1515/revce-2014-0038.
  • Idumah, C.; Hassan, A. Characterization and Preparation of Conductive Exfoliated Graphene Nanoplatelets Kenaf Fibre Hybrid Polypropylene Composites. Syn. Met. 2016, 212, 91–104. DOI: 10.1016/j.synthmet.2015.12.011.
  • Idumah, C. I.; Ogbu, J.; Ndem, J.; Obiana, V. Influence of Chemical Modification of Kenaf Fiber on xGNP-PP- Nano-biocomposites. SN Appl. Sci. 2019, 1, 1261. DOI: 10.1007/s42452-019-1319-1.
  • Idumah, C.; Hassan, A. Emerging Trends in Flame Retardancy of Biofibers, Biopolymers, Biocomposites, and Bionanocomposites. Rev. Chem Eng. 2015, 32, 115–148.
  • Idumah, C.; Hassan, A. Emerging Trends in Graphene Carbon Based Polymer Nanocomposites and Applications. Rev. Chem. Eng. 2016, 32, 223–226.
  • Idumah, C.; Hassan, A. Effect of Exfoliated Graphite Nanoplatelets on Thermal and Heat Deflection Properties of Kenaf Polypropylene Hybrid Nanocomposites. J. Polym. Eng. 2016, 36, 877–889. DOI: 10.1515/polyeng-2015-0445.
  • Idumah, C.; Hassan, A. Emerging Trends in Eco-compliant, Synergistic, and Hybrid Assembling of Multifunctional Polymeric Bionanocomposites. Rev. Chem. Eng. 2016, 32, 305–361.
  • Idumah, C.; Hassan, A.; Bourbigot, S. Influence of Exfoliated Graphene Nanoplatelets on Flame Retardancy of Kenaf Flour Polypropylene Hybrid Nanocomposites. J. Anal. Appl. Pyrolysis. 2017, 123, 65–72. DOI: 10.1016/j.jaap.2017.01.006.
  • Idumah, C.; Hassan, A. Hibiscus Cannabinus fiber/PP Based Nano-biocomposites Reinforced with Graphene Nanoplatelets. J. Nat. Fibers. 2017, 14, 691.
  • Idumah, C.; Hassan, A.; Ogbu, J.; Ndem, J.; Nwuzor, I. Recently Emerging Advancements in Halloysite Nanotubes Polymer Nanocomposites. Compos. Interface. 2018, 26, 1–74.
  • Idumah, C.; Hassan, A.; Ogbu, J.; Ndem, J.; Oti, W.; Obiana, V. Electrical, Thermal and Flammability Properties of Conductive Filler Kenaf Reinforced Polymer Nanocomposites. J. Thermoplast Compos Mater. 2020, 33, 516–540. DOI: 10.1177/0892705718807957.
  • Idumah, C.; Hassan, A.; Bourbigot, S. Synergistic Effect of Exfoliated Graphene Nanoplatelets and Non-halogen Flame Retardants on Flame Retardancy and Thermal Properties of Kenaf flour-PP Nanocomposites. J. Therm. Anal. Calorim. 2018, 134, 1681–1703. DOI: 10.1007/s10973-018-7833-3.
  • Idumah, C.; Hassan, A.; Ihuoma, D. Recently Emerging Trends in Polymer Nanocomposites Packaging Materials. Polym.-Plast. Technol. Eng. 2019, 58, 1054–1109.
  • Idumah, C.; Odera, S. R. Recent Advancement in Selfhealing Graphene Polymer Nanocomposites, Shape Memory, and Coating Materials. Polym.-Plast. Technol. Mater. 2020, 1–26. DOI: 10.1080/25740881.2020.1725816.
  • Idumah, C. I.; Iheoma, N. Novel Trends in Plastic Wastes Management. SN Appl. Sci. 2019, 1, 1402.
  • Idumah, C. I.; Zurina, M.; Ogbu, J.; Ndem, J.; Igba, E. Recently Emerging Trends in Polymer Nanocomposites Packaging Materials. Polym.-Plast. Technol. Mater. 2019, 58, 1054–1109.
  • Idumah, C. I.;. Novel Trends in Selfhealable Polymer Nanocomposites. J. Thermoplast. Compos. Mater. 2019, 0892705719847247.
  • Idumah, C. I.; Zurina, M.; Hassan, A.; Norhayani, O.; Shuhadah, I. Recently Emerging Trends in Bone Replacement Polymer Nanocomposites. Nanostruct. Polym. Compos. Biomed. Appl. 2019, 139–166.
  • Idumah, C. I.; Obele, M. C.; Ezeani, E. O. Understanding Interfacial Dispersions in Ecobenign Polymer Nano-biocomposites. Polym.-Plast. Technol. Mater. 2020. DOI: 10.1080/25740881.2020.1811312.
  • Idumah, C. I.; Obele, C. M.; Ezeani, E. O.; Hassan, A. Recently Emerging Nanotechnological Advancements in Polymer Nanocomposite Coatings for Anti-corrosion, Anti-fouling and Self-healing. Surf. Interfaces. 2020, 21, 100734. DOI: 10.1016/j.surfin.2020.100734.
  • Idumah, C. I.; Nwuzor, I.; Odera, S. Recent Advancements in Self-healing Polymeric Hydrogels, Shape Memory, and Stretchable Materials. Int. J. Polym. Mater. Polym. Biomater. 2020, 1–26. DOI: 10.1080/00914037.2020.1767615.
  • Idumah, C. I.;. Advancements in Conducting Polymer Bionanocomposites, and Hydrogels for Biomedical Applications. Int. J. Polym. Mater. Polym. Biomater. 2020. DOI: 10.1080/00914037.2020.1857384.
  • Idumah, C. I.; Obere, C. M. Understanding Interfacial Influence on Properties of Polymer Nanocomposites. Surf. Interfaces. 2021, 22, 100879.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.