138
Views
12
CrossRef citations to date
0
Altmetric
Research Article

High performance X-band electromagnetic shields based on methyl-orange assisted polyaniline-silver core-shell nanocomposites

ORCID Icon
Pages 1547-1556 | Received 02 Feb 2021, Accepted 26 Mar 2021, Published online: 28 Apr 2021

References

  • Kruželák, J.; Kvasničáková, A.; Hložeková, K.; Hudec, I. Progress in Polymers and Polymer Composites Used as Efficient Materials for EMI Shielding. Nanoscale Adv. 2021, 3, 123–172. DOI: 10.1039/D0NA00760A.
  • Jiang, D.; Murugadoss, V.; Wang, Y.; Lin, J.; Ding, T.; Wang, Z.; Shao, Q.; Wang, C.; Liu, H.; Lu, N.; et al. Electromagnetic Interference Shielding Polymers and Nanocomposites - A Review. Polym. Rev. 2019, 59-2, 280–337. DOI: 10.1080/15583724.2018.1546737.
  • Zhang, Y.; Yang, Z.; Pan, T.; Gao, H.; Guan, H.; Jianzhe, X.; Zhang, Z. Construction of Natural Fiber/polyaniline Core-shell Heterostructures with Tunable and Excellent Electromagnetic Shielding Capability via a Facile Secondary Doping Strategy. Compos. Part A Appl. Sci. Manuf. 2020, 137, 105994. DOI: 10.1016/j.compositesa.2020.105994.
  • Mohan, R. R.; Varma, S. J.; Sankaran, J. Impressive Electromagnetic Shielding Effects Exhibited by Highly Ordered, Micrometer Thick Polyaniline Films. Appl. Phys. Lett. 2016, 108, 154101. DOI: 10.1063/1.4945791.
  • Pankaj Tambe, N. V.; Vivek, L. R. Chapter 9 - Polymeric Blends as EMI Shielding Materials. In Materials for Potential EMI Shielding Applications; Joseph, K., Wilson, R., George, G., Eds.; Elsevier, 2020; pp 145–164.
  • Anupama, J.; Anil, B.; Rajvinder, S.; Alegaonkar, P. S.; Balasubramanian, K.; Suwarna, D. Corrigendum: Graphene nanoribbon–PVA Composite as EMI Shielding Material in the X Band (2013 Nanotechnology 24 455705). Nanotechnology. 2014, 25, 239501. DOI: 10.1088/0957-4484/25/23/239501.
  • Chen, Y. J.; Li, Y.; Yip, M.; Tai, N. Compos. Sci. Technol. 2013, 80, 80–86.
  • Verma, P.; Saini, P.; Malik, R. S.; Choudhary, V. Carbon. Vol. 89, 2015, 308–317.
  • Wen, B.; Cao, M. S.; Hou, Z. L.; Song, W. L.; Zhang, L.; Lu, M. M.; Jin, H. B.; Fang, X. Y.; Wang, W. Z.; Yuan, J. Carbon. Vol. 65, 2013, 124–139.
  • Cao, M. S.; Wang, X. X.; Cao, W. Q.; Yuan, J. Ultrathin Graphene: Electrical Properties and Highly Efficient Electromagnetic Interference Shielding. J. Mater. Chem. C. 2015, 3, 6589–6599. DOI: 10.1039/C5TC01354B.
  • Lu, M. M.; Wang, X. X.; Cao, W. Q.; Yuan, J.; Cao, M. S. Carbon nanotube-CdS Core–shell Nanowires with Tunable and High-efficiency Microwave Absorption at Elevated Temperature. Nanotechnology. 2016, 27(6), 065702. DOI: 10.1088/0957-4484/27/6/065702.
  • Singh, A. P.; Gupta, B. K.; Mishra Govind, M.; Dhawan, S. K.; Dhawan, S. K.; Dhawan, S. K. Multiwalled Carbon Nanotube/cement Composites with Exceptional Electromagnetic Interference Shielding Properties. Carbon. 2013, 56, 86. DOI: 10.1016/j.carbon.2012.12.081.
  • Kotsilkova, R.; Ivanov, E.; Bychanok, D.; Paddubskaya, A.; Demidenko, M.; Macutkevic, J.; Maksimenko, S.; Kuzhir, P. Compos. Sci. Technol. 2015, 106, 85.
  • Mishra, M.; Singh, A. P.; Dhawan, S. K. Expanded Graphite–nanoferrite–fly Ash Composites for Shielding of Electromagnetic Pollution. J. Alloys Compd. 2013, 557, 244. DOI: 10.1016/j.jallcom.2013.01.004.
  • Chaudhary, V.; Singh, A.; Kaur, A. Effect of Charge Carrier Transport on Sulfur Dioxide Monitoring Performance of Highly Porous Polyaniline Nanofibres. Polym. Int. 2017, 66(5), 699–704. DOI: 10.1002/pi.5311.
  • Chaudhary, V.; Kaur, A. Surfactant Directed Polyaniline Nanostructures for High Performance Sulphur Dioxide Chemiresistors: Effect of Morphologies, Chemical Structure and Porosity. RSC Adv. 2016, 6(98), 95349–95357. DOI: 10.1039/C6RA14113G.
  • Chaudhary, V.; Kaur, A. Enhanced Room Temperature Sulfur Dioxide Sensing Behaviour of in Situ Polymerized Polyaniline–tungsten Oxide Nanocomposite Possessing Honeycomb Morphology. RSC Adv. 2015, 5(90), 73535–73544. DOI: 10.1039/C5RA08275G.
  • Chaudhary, V.; Kaur, A. Solitary Surfactant Assisted Morphology Dependent Chemiresistive Polyaniline Sensors for Room Temperature Monitoring of Low Parts per Million Sulfur Dioxide. Polym. Int. 2015, 64(10), 1475–1481. DOI: 10.1002/pi.4944.
  • Chaudhary, V., Royal, A., Chavali, M. et al. Advancements in research and development to combat COVID-19 using nanotechnology. Nanotechnol. Environ. Eng.6, 8 (2021). https://doi.org/10.1007/s41204-021-00102-7.
  •  J. Joo and C. Y. Lee, „High frequency electromagnetic interference shielding response of mixtures and multilayer films based on conducting polymers„ ,Journal of Applied Physics 88 , 513-518 (2000) https://doi.org/10.1063/1.373688.
  • Zou, L.; Lan, C.; Yang, L.; Xu, Z.; Chu, C.; Liu, Y.; Qiu, Y. The Optimization of Nanocomposite Coating with Polyaniline Coated Carbon Nanotubes on Fabrics for Exceptional Electromagnetic Interference Shielding. Diamond Relat. Mater. 2020, 104, 107757. DOI: 10.1016/j.diamond.2020.107757.
  • Qiu, M., Zhang, Y. & Wen, B. Facile synthesis of polyaniline nanostructures with effective electromagnetic interference shielding performance. J Mater Sci: Mater Electron29, 10437–10444 (2018). https://doi.org/10.1007/s10854-018-9100-6.
  • Pal R, Goyal SL, Gupta V, Rawal I (2019) MnO2-magnetic core-shell structured polyaniline dependent enhanced EMI shielding effectiveness: a study of VRH conduction. Chem Sel 4:9194–9210.
  • Saini, M., Shukla, R. Silver nanoparticles-decorated NiFe2O4/polyaniline ternary nanocomposite for electromagnetic interference shielding. J Mater Sci: Mater Electron31, 5152–5164 (2020). https://doi.org/10.1007/s10854-020-03075-6.
  • Mohan, R. R.; Varma, S. J.; Faisal, M.; Jayalekshmi, S. Polyaniline/graphene Hybrid Film as an Effective Broadband Electromagnetic Shield. RSC Adv. 2015, 5(8), 5917–5923. DOI: 10.1039/C4RA13704C.
  • Cheng, K.; Li, H.; Zhu, M.; Qiu, H.; Yang, J. RSC Adv. 2020, 10, 2368–2377. DOI: 10.1039/C9RA08026K.
  • Yu, Y. H.; Ma, C. C. M.; Teng, C. C.; Huang, Y. L.; Lee, S. H.; Wang, I.; Wei, M. H. Mater. Chem. Phys. 2012, 136, 334–340.
  • Chung, D. D. L.; Mater, J. Eng. Perform. 2000, 9, 350–354.
  • Yun, J.; Kim, H. I. Polym. Bull. 2012, 68, 561–573.
  • Faisal, M., Khasim, S. Broadband electromagnetic shielding and dielectric properties of polyaniline-stannous oxide [;composites. J Mater Sci: Mater Electron24, 2202–2210 (2013). https://doi.org/10.1007/s10854-013-1080-y.
  • Chaudhary, V.; Kaur, A. Enhanced and Selective Ammonia Sensing Behaviour of Poly(aniline Co-pyrrole) Nanospheres Chemically Oxidative Polymerized at Low Temperature. J. Ind. Eng. Chem. 2015, 26, 143–148. DOI: 10.1016/j.jiec.2014.11.026.
  • Zhang, C. S.; Ni, Q. Q.; Fu, S. Y.; Kurashiki, K. Compos. Sci. Technol. 2007, 67, 2973–2980.
  • Behniafar, H., Malekshahinezhad, K. & Alinia-pouri, A. One-pot methods for preparing polyaniline/Ag nanocomposites via oxidative polymerization of aniline. J Mater Sci: Mater Electron27, 1070–1076 (2016). https://doi.org/10.1007/s10854-015-3853-y.
  • Barros, R. A.; Azevedo, W. M. Synth. Met. 2008, 158, 922.
  • Li, X.; Gao, Y.; Liu, F.; Gong, J.; Qu, L. Synthesis of polyaniline/Ag Composite Nanospheres through UV Rays Irradiation Method. Mater. Letters. 2009, 63(3–4), 467–469. DOI: 10.1016/j.matlet.2008.11.027.
  • Ren, L.; Li, K.; Chen, Z. Soft Template Method to Synthesize Polyaniline Microtubes Doped with Methyl Orange. Polym. Bull. 2009, 63(1), 15–21. DOI: 10.1007/s00289-009-0076-5.
  • Yin, H.; Yang, J.; Hearon, K.; Liu, C.; Shah, S.; Reeder, J.; Khodaparast, N.; Kilgard, M. P.; Maitland, D. J.; Rennaker, R. L. Three-Dimensional Flexible Electronics Enabled by Shape Memory Polymer Substrates for Responsive Neural Interfaces. Macromol. Mater. Eng. 2012, 297(203–208), 1193–1202. DOI: 10.1002/mame.201200241.
  • Fujii, S.; Nishimura, Y.; Aichi, A.; Matsuzawa, S.; Nakamura, Y.; Akamatsu, K.; Nawafune, H. Facile One-step Route to Polyaniline–silver Nanocomposite Particles and Their Application as a Colored Particulate Emulsifier. Synth. Met. 2010, 160(13–14), 1433–1437. DOI: 10.1016/j.synthmet.2010.04.024.
  • Panigrahi, R.; Srivastava, S. K. Tollen’s Reagent Assisted Synthesis of Hollow Polyaniline microsphere/Ag Nanocomposite and Its Applications in Sugar Sensing and Electromagnetic Shielding. Mater. Res. Bull. 2015, 64, 33–41. DOI: 10.1016/j.materresbull.2014.12.035.
  • CRC Handbook of Chemistry and Physics, 76th;eds Lide, D. R., Frederikse, H. P. R., CRC Press: Boca Raton, FL, 1995; 12/46–12/48.
  • Stejskal, J.; Prokeˇs, J.; Sapurina, I. The Reduction of Silver Ions with Polyaniline: The Effect of the Type of Polyaniline and the Mole Ratio of the Reagents. Mater. Lett. 2009, 63, 709. DOI: 10.1016/j.matlet.2008.12.026.
  • Stejskal, J.; Trchov´a, M.; Kov´aˇrov´a, J.; Broˇzov´a, L.; Prokeˇs, J. The Reduction of Silver Nitrate with Various Polyaniline Salts to Polyaniline–silver Composites. React. Funct. Polym. 2009, 69, 86. DOI: 10.1016/j.reactfunctpolym.2008.11.004.
  • Blinova, N. V.; Bober, P.; Hrom´adkov´ A, J.; Trchov´ A, M.; Stejskala, J.; Proke, J. Polyaniline-silver Composites Prepared by the Oxidation of Aniline with Silver Nitrate in Acetic Acid Solutions. Polym. Int. 2010, 59, 437–446. DOI: 10.1002/pi.2718.
  • Wen, B.; Cao, M. S.; Lu, M. M.; Cao, W. Q.; Shi, H. L.; Liu, J.; Wang, X. X.; Jin, H. B.; Fang, X. Y.; Wang, W. Z.; et al. Adv. Mater. 2014, 26, 3484–3489.
  • Yun, J.; Im, J. S.; Lee, Y. S.; Kim, H.-I. Effect of Oxyfluorination on Electromagnetic Interference Shielding Behavior of MWCNT/PVA/PAAc Composite Microcapsules. Eur. Polym. J. 2010, 46, 900. DOI: 10.1016/j.eurpolymj.2010.02.005.
  • Rajesh, S. S.; Kumar, P. D.; Takashima, W.; Kaneto, K. Electrochemomechanical Deformation Studies of [Fe(cn)6]3− Ion Doped Conducting Polypyrrole Film. Thin Solid Films. 2004, 467, 227. DOI: 10.1016/j.tsf.2004.04.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.