223
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of mechanical, thermal, and morphological properties of PEEK/PEI matrix reinforced with halloysite nanotubes

& ORCID Icon
Pages 1557-1567 | Received 21 Jan 2021, Accepted 13 Apr 2021, Published online: 24 May 2021

References

  • Song, H.; Li, N.; Li, Y.; Min, C.; Wang, Z. Preparation and Tribological Properties of Graphene/poly (Ether Ether Ketone) Nanocomposites. J. Mater. Sci. 2012, 47(17), 6436–6443. DOI: 10.1007/s10853-012-6574-0.
  • Pan, Y.; Liu, X.; Kaschta, J.; Hao, X.; Liu, C.; Schubert, D. W. Viscoelastic and Electrical Behavior of Poly (Methyl Methacrylate)/carbon Black Composites Prior to and after Annealing. Polymer. 2017, 113, 34–38. DOI: 10.1016/j.polymer.2017.02.050.
  • Arif, M.; Kumar, S.; Varadarajan, K.; Cantwell, W. Performance of Biocompatible PEEK Processed by Fused Deposition Additive Manufacturing. Mater. Des. 2018, 146, 249–259. DOI: 10.1016/j.matdes.2018.03.015.
  • Barba, D.; Arias, A.; Garcia-Gonzalez, D. Temperature and Strain Rate Dependences on Hardening and Softening Behaviours in Semi-crystalline Polymers: Application to PEEK. Int. J. Solids Struct. 2020, 182, 205–217. DOI: 10.1016/j.ijsolstr.2019.08.021.
  • Utracki, L. A.; Favis, B. Polymer Alloys and Blends. Handbook Polymer Sci Technol. 1989, 4, 121–185.
  • Utracki, L. A.;. Compatibilization of Polymer Blends. Can. J. Chem. Eng. 2002, 80(6), 1008–1016. DOI: 10.1002/cjce.5450800601.
  • Mishra, R. M.; Rai, J. S. P. Compatibilizing Effect of Halloysite Nanotubes on Polyetherimide/silicone Rubber Blend Based Nanocomposites. Polym. Plast. Technol. Eng. 2019, 58(3), 341–347. DOI: 10.1080/03602559.2018.1471716.
  • Park, S. J.; Cho, M. S.; Lim, S. T.; Choi, H. J.; Jhon, M. S. Synthesis and Dispersion Characteristics of Multi‐walled Carbon Nanotube Composites with Poly (Methyl Methacrylate) Prepared by In‐situ Bulk Polymerization. Macromol. Rapid Commun. 2003, 24(18), 1070–1073. DOI: 10.1002/marc.200300089.
  • Scaffaro, R.; Botta, L.; Mistretta, M.; La Mantia, F. Processing–morphology–property Relationships of Polyamide 6/polyethylene Blend–clay Nanocomposites. Express Polym. Lett. 2013, 7, 873–884. DOI: 10.3144/expresspolymlett.2013.84.
  • Mistretta, M.; Ceraulo, M.; La Mantia, F.; Morreale, M. Compatibilization of Polyethylene/polyamide 6 Blend Nanocomposite Films. Polym. Compos. 2015, 36(6), 992–998. DOI: 10.1002/pc.23415.
  • Mistretta, M.; Fontana, P.; Ceraulo, M.; Morreale, M.; La Mantia, F. Effect of Compatibilization on the Photo-oxidation Behaviour of Polyethylene/polyamide 6 Blends and Their Nanocomposites. Polym. Degrad. Stab. 2015, 112, 192–197. DOI: 10.1016/j.polymdegradstab.2015.01.002.
  • Chen, C.; Zhang, C.; Liu, C.; Miao, Y.; Wong, S.-C.; Li, Y. Rate-dependent Tensile Failure Behavior of Short Fiber Reinforced PEEK. Compos. B Eng. 2018, 136, 187–196. DOI: 10.1016/j.compositesb.2017.10.031.
  • Zhang, X.;. Carbon Nanotube/polyetheretherketone Nanocomposites: Mechanical, Thermal, and Electrical Properties. J. Compos. Mater. 2020, 1–18. 0021998320981134.
  • Kurtz, S. M.; Devine, J. N. PEEK Biomaterials in Trauma, Orthopedic, and Spinal Implants. Biomaterials. 2007, 28(32), 4845–4869. DOI: 10.1016/j.biomaterials.2007.07.013.
  • He, G.; Gong, F.; Liu, J.; Pan, L.; Zhang, J.; Liu, S. Improved Mechanical Properties of Highly Explosive‐filled Polymer Composites through Graphene Nanoplatelets. Polym. Compos. 2018, 39(11), 3924–3934. DOI: 10.1002/pc.24431.
  • Chang, B.; Gu, J.; Long, Z.; Li, Z.; Ruan, S.; Shen, C. Effects of Temperature and Fiber Orientation on the Tensile Behavior of Short Carbon Fiber Reinforced PEEK Composites. Polym. Compos. 2020, 42(2), 597–607. DOI:10.1002/pc.25850
  • Zhong, J.; Isayev, A. I. Properties of Polyetherimide/graphite Composites Prepared Using Ultrasonic Twin‐screw Extrusion. J. Appl. Polym. Sci. 2015, 132, 5. DOI: 10.1002/app.41397.
  • Crevecoeur, G.; Groeninckx, G. Binary Blends of Poly (Ether Ether Ketone) and Poly (Ether Imide): Miscibility, Crystallization Behavior and Semicrystalline Morphology. Macromolecules. 1991, 24(5), 1190–1195. DOI: 10.1021/ma00005a034.
  • Zainal, N. F. A.; Chan, C. H. Crystallization and Melting Behavior of Compatibilized Polymer Blends. In:  Ajitha A,R, Sabu Thomas (Eds.), Compatibilization of Polymer Blends; Elsevier, 2020; pp 391–433.
  • Alvaredo-Atienza, Á.; Chen, L.; San-Miguel, V.; Ridruejo, Á.; Fernández-Blázquez, J. P. Fabrication and Characterization of PEEK/PEI Multilayer Composites. Polymers. 2020, 12(12), 2765. DOI: 10.3390/polym12122765.
  • Ramani, R.; Alam, S. Composition Optimization of PEEK/PEI Blend Using Model-free Kinetics Analysis. Thermochim. Acta. 2010, 511(1–2), 179–188. DOI: 10.1016/j.tca.2010.08.012.
  • Ramani, R.; Alam, S. Influence of Poly (Ether Imide) on the Free Volume Hole Size and Distributions in Poly (Ether Ether Ketone). J. Appl. Polym. Sci. 2012, 125(4), 3200–3210. DOI: 10.1002/app.36501.
  • Ramani, R.; Alam, S. Influence of an Organophosphonite Antioxidant on the Thermal Behavior of PEEK/PEI Blend. Thermochim. Acta. 2012, 550, 33–41. DOI: 10.1016/j.tca.2012.09.023.
  • Hasan, S. K.; Zainuddin, S.; Tanthongsack, J.; Hosur, M.; Allen, L. A Study of Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) Biofilms’ Thermal and Biodegradable Properties Reinforced with Halloysite Nanotubes. J. Compos. Mater. 2018, 52(23), 3199–3207. DOI: 10.1177/0021998318763246.
  • Ahamad, A.; Kumar, P. Effect of Reinforcing Ability of Halloysite Nanotubes in Styrene-butadiene Rubber Nanocomposites. Compos. Commun. 2020, 22, 100440. DOI: 10.1016/j.coco.2020.100440.
  • Gaaz, T. S.; Sulong, A. B.; Akhtar, M. N.; Raza, M. R. Morphology and Tensile Properties of Thermoplastic Polyurethane-halloysite Nanotube Nanocomposites. Int. J. Automotive Mech. Eng.. 2015, 12, 2844–2856. DOI:10.15282/IJAME.12.2015.4.0239.
  • Gaaz, T. S.; Sulong, A. B.; Kadhum, A. A. H.; Nassir, M. H.; Al-Amiery, A. A. Optimizing Physio-mechanical Properties of Halloysite Reinforced Polyurethane Nanocomposites by Taguchi Approach. Sci. Adv. Mater. 2017, 9(6), 949–961. DOI: 10.1166/sam.2017.3073.
  • Mei, D.; Zhang, B.; Liu, R.; Zhang, Y.; Liu, J. Preparation of Capric Acid/halloysite Nanotube Composite as Form-stable Phase Change Material for Thermal Energy Storage. Solar Energy Mater. Solar Cells. 2011, 95(10), 2772–2777. DOI: 10.1016/j.solmat.2011.05.024.
  • Handge, U. A.; Hedicke-Höchstötter, K.; Altstädt, V. Composites of Polyamide 6 and Silicate Nanotubes of the Mineral Halloysite: Influence of Molecular Weight on Thermal, Mechanical and Rheological Properties. Polymer. 2010, 51(12), 2690–2699. DOI: 10.1016/j.polymer.2010.04.041.
  • Rybiński, P.; Janowska, G.; Jóźwiak, M.; Pająk, A. Thermal Properties and Flammability of Nanocomposites Based on Diene Rubbers and Naturally Occurring and Activated Halloysite Nanotubes. J. Therm. Anal. Calorim. 2012, 107(3), 1243–1249. DOI: 10.1007/s10973-011-1787-z.
  • Liu, M.; Guo, B.; Du, M.; Chen, F.; Jia, D. Halloysite Nanotubes as a Novel β-nucleating Agent for Isotactic Polypropylene. Polymer. 2009, 50(13), 3022–3030. DOI: 10.1016/j.polymer.2009.04.052.
  • Vedrtnam, A.; Sharma, S. P. Study on the Performance of Different Nano-species Used for Surface Modification of Carbon Fiber for Interface Strengthening. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105509. DOI: 10.1016/j.compositesa.2019.105509.
  • Kim, T.; Shin, J.; Lee, K.; Jung, Y.; Lee, S. B.; Yang, S. J. A Universal Surface Modification Method of Carbon Nanotube Fibers with Enhanced Tensile Strength. Compos. Part A Appl. Sci. Manuf. 2021, 140, 106182. DOI: 10.1016/j.compositesa.2020.106182.
  • Hussain, F.; Hojjati, M.; Okamoto, M.; Gorga, R. E. Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview. J. Compos. Mater. 2006, 40(17), 1511–1575. DOI: 10.1177/0021998306067321.
  • Fu, S.-Y.; Feng, X.-Q.; Lauke, B.; Mai, Y.-W. Effects of Particle Size, Particle/matrix Interface Adhesion and Particle Loading on Mechanical Properties of Particulate–polymer Composites. Compos. B Eng. 2008, 39(6), 933–961. DOI: 10.1016/j.compositesb.2008.01.002.
  • Mishra, R. M.; Ahamad, A.; Pandey, K. N.; Rai, J. S. P. Effect of Nanosilica on the Properties of PEI/silicone Rubber Blend Based Nanocomposites. Indian J. Pure Appl. Phys. 2019, 57(11), 846–850.
  • Rath, T.; Kumar, S.; Mahaling, R. N.; Mukherjee, M.; Das, C. K.; Pandey, K. N.; Saxena, A. K. Flexible Composite of PEEK and Liquid Crystalline Polymer in Presence of Polyphosphazene. J. Appl. Polym. Sci. 2007, 104(6), 3758–3765. DOI: 10.1002/app.25934.
  • Patel, J. P.; Hsu, S. L. Development of Low Field NMR Technique for Analyzing Segmental Mobility of Crosslinked Polymers. J. Polym. Sci., Part B: Polym. Phys. 2018, 56(8), 639–643. DOI: 10.1002/polb.24583.
  • Nayak, G. C.; Rajasekar, R.; Das, C. K. Dispersion of SiC Coated MWCNTs in PEI/silicone Rubber Blend and Its Effect on the Thermal and Mechanical Properties. J. Appl. Polym. Sci. 2011, 119(6), 3574–3581. DOI: 10.1002/app.33021.
  • Patel, J. P.; Zhao, C. X.; Deshmukh, S.; Zou, G. X.; Wamuo, O.; Hsu, S. L.; Schoch, A. B.; Carleen, S. A.; Matsumoto, D. An Analysis of the Role of Reactive Plasticizers in the Crosslinking Reactions of a Rigid Resin. Polymer. 2016, 107, 12–18. DOI: 10.1016/j.polymer.2016.11.005.
  • Patel, J. P.; Deshmukh, S.; Zhao, C.; Wamuo, O.; Hsu, S. L.; Schoch, A. B.; Carleen, S. A.; Matsumoto, D. An Analysis of the Role of Nonreactive Plasticizers in the Crosslinking Reactions of a Rigid Resin. J. Polym. Sci., Part B: Polym. Phys. 2017, 55(2), 206–213. DOI: 10.1002/polb.24261.
  • Díez-Pascual, A. M.; Xu, C.; Luque, R. Development and Characterization of Novel Poly (Ether Ether ketone)/ZnO Bionanocomposites. J. Mater Chem. B. 2014, 2(20), 3065–3078. DOI: 10.1039/c3tb21800g.
  • Jia, Z.; Luo, Y.; Guo, B.; Yang, B.; Du, M.; Jia, D. Reinforcing and Flame-retardant Effects of Halloysite Nanotubes on LLDPE. Polym.-Plast. Technol. Eng. 2009, 48(6), 607–613. DOI: 10.1080/03602550902824440.
  • Díez-Pascual, A. M.; Díez-Vicente, A. L. Effect of TiO 2 Nanoparticles on the Performance of Polyphenylsulfone Biomaterial for Orthopaedic Implants. J. Mater Chem. B. 2014, 2(43), 7502–7514. DOI: 10.1039/C4TB01101E.
  • Patel, J. P.; Xiang, Z. G.; Hsu, S. L.; Schoch, A. B.; Carleen, S. A.; Matsumoto, D. Path to Achieving Molecular Dispersion in a Dense Reactive Mixture. J. Polym. Sci., Part B: Polym. Phys. 2015, 53(21), 1519–1526. DOI: 10.1002/polb.23789.
  • Patel, J. P.; Xiang, Z. G.; Hsu, S. L.; Schoch, A. B.; Carleen, S. A.; Matsumoto, D. Characterization of the Crosslinking Reaction in High Performance Adhesives. Int. J. Adhes. Adhes. 2017, 78, 256–262. DOI: 10.1016/j.ijadhadh.2017.08.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.