280
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Fabrication and characterization of novel semi-IPN hydrogels based on xanthan gum and polyvinyl pyrrolidone-co-poly (2-acrylamido-2-methyl propane sulfonic acid) for the controlled delivery of venlafaxine

, , , &
Pages 577-592 | Received 08 Sep 2021, Accepted 15 Oct 2021, Published online: 14 Nov 2021

References

  • Banerjee, A.;, Qi, J.;, Gogoi, R.; Mitragotri, S. Role of Nanoparticle Size, Shape and Surface Chemistry in Oral Drug Delivery. J. Controlled Release. 2016, 238, 176–185. DOI: https://doi.org/10.1016/j.jconrel.2016.07.051.
  • Dwivedi, S. Hydrogel-A Conceptual Overview. Int. J. Pharm. Biol. Sci. Arch. 2011, 2.
  • Patel, J. P.; Xiang, Z. G.; Hsu, S. L.; Schoch, A. B.; Carleen, S. A.; Matsumoto, D. Characterization of the Crosslinking Reaction in High Performance Adhesives. Int. J. Adhes. Adhes. 2017, 78, 256–262. DOI: https://doi.org/10.1016/j.ijadhadh.2017.08.006.
  • Sastry, S. V.; Nyshadham, J. R.; Fix, J. A. Recent Technological Advances in Oral Drug Delivery–a Review. Pharm. Sci. Technol. Today. 2000, 3(4), 138–145. DOI: https://doi.org/10.1016/S1461-5347(00)00247-9.
  • Ahmed, E. M. Hydrogel: Preparation, Characterization, and Applications: A Review. J. Adv. Res. 2015, 6(2), 105–121. DOI: https://doi.org/10.1016/j.jare.2013.07.006.
  • Gupta, P.; Vermani, K.; Garg, S. Hydrogels: From Controlled Release to pH-responsive Drug Delivery. Drug Discov. Today. 2002, 7(10), 569–579. DOI: https://doi.org/10.1016/S1359-6446(02)02255-9.
  • Hennink, W. E.; Van Nostrum, C. F. Novel Crosslinking Methods to Design Hydrogels. Adv. Drug Deliv. Rev. 2012, 64, 223–236. DOI: https://doi.org/10.1016/j.addr.2012.09.009.
  • Patel, J. P.; Zhao, C. X.; Deshmukh, S.; Zou, G. X.; Wamuo, O.; Hsu, S. L.; Schoch, A. B.; Carleen, S. A.; Matsumoto, D. An Analysis of the Role of Reactive Plasticizers in the Crosslinking Reactions of a Rigid Resin. Polymer. 2016, 107, 12–18. DOI: https://doi.org/10.1016/j.polymer.2016.11.005.
  • Salsa, T.;, Veiga, F.;, and Pina, M. Oral Controlled-release Dosage Forms. I. Cellulose Ether Polymers in Hydrophilic Matrices. Drug. Dev. Ind. Pharm. 1997, 23(9), 929–938. DOI: https://doi.org/10.3109/03639049709148697.
  • Cortes, H.;, Caballero-Florán, I. H.;, Mendoza-Muñoz, N.; Escutia-Guadarrama, L.; Figueroa-González, G.; Reyes-Hernández, O. D.; González-Del Carmen, M.; Varela-Cardoso, M.; González-Torres, M.; Florán, B.; et al. Xanthan Gum in Drug Release. Cell. Mol. Biol. 2020, 66(4), 199–207.
  • Ganji, F.; Vasheghani-Farahani, E. Hydrogels in Controlled Drug Delivery Systems. Iran. Polym. J. 2009, 18, 63–88.
  • Gulrez, S. K.; Al-Assaf, S.; Phillips, G. O. Hydrogels: Methods of Preparation, Characterisation and Applications. In Progress in Molecular and Environmental Bioengineering-from Analysis and Modeling to Technology Applications; Angelo, Carpi, Ed.; Croatia: InTech , 2011; pp 117–150.
  • Hamidi, M.; Azadi, A.; Rafiei, P.; Cortes, H.; Caballero-Florán, I. H.; Mendoza-Muñoz, N.; Escutia-Guadarrama, L.; Figueroa-González, G.; Reyes-Hernández, O. D.; González-Del Carmen, M. Hydrogel Nanoparticles in Drug Delivery. Adv. Drug. Delivery Rev. 2008, 60(15), 1638–1649. DOI: https://doi.org/10.1016/j.addr.2008.08.002.
  • Hussain, T.; Ranjha, N. M.; Shahzad, Y. Swelling and Controlled Release of Tramadol Hydrochloride from a pH-sensitive Hydrogel. Des. Monomers Polym. 2011, 14(3), 233–249. DOI: https://doi.org/10.1163/138577211X557521.
  • Patel, J. P.; Deshmukh, S.; Zhao, C.; Wamuo, O.; Hsu, S .L.; Schoch, A .B.; Carleen, S. A.; Matsumoto, D. An Analysis of the Role of Nonreactive Plasticizers in the Crosslinking Reactions of a Rigid Resin. J. Polym. Sci. B Polym. Phys. 2017, 55(2), 206–213.
  • Wang, Q.;, Xie, X.;, Zhang, X.; Zhang, J.; Wang, A. Preparation and Swelling Properties of pH-sensitive Composite Hydrogel Beads Based on Chitosan-g-poly (Acrylic Acid)/vermiculite and Sodium Alginate for Diclofenac Controlled Release. Int. J. Biol. Macromol. 2010, 46(3), 356–362.
  • Liu, Y.;, Zhu, Y.;, Mu, B.; Wang, Y.; Quan, Z.; Wang, A. Synthesis, Characterization, and Swelling Behaviors of Sodium Carboxymethyl Cellulose-g-poly (Acrylic Acid)/semi-coke Superabsorbent. Polym. Bull. 2021, 1–19 doi:https://doi.org/10.1007/s00289-021-03545-9.
  • Patel, J. P.;, Xiang, Z. G.;, Hsu, S. L.; Schoch, A. B.; Carleen, S. A.; Matsumoto, D. Path to Achieving Molecular Dispersion in a Dense Reactive Mixture. J. Polym. Sci. B Polym. Phys. 2015, 53(21), 1519–1526.
  • Wichterle, O.; Lim, D. Hydrophilic Gels for Biological Use. Nature. 1960, 185(4706), 117. DOI: https://doi.org/10.1038/185117a0.
  • Jin, S.;, Liu, M.;, Zhang, F.; Chen, S.; Niu, A. Synthesis and Characterization of pH-sensitivity semi-IPN Hydrogel Based on Hydrogen Bond between Poly (N-vinylpyrrolidone) and Poly (Acrylic Acid). Polymer. 2006, 47(5), 1526–1532.
  • Rizwan, M.;, Yahya, R.;, Hassan, A.; Yar, M.; Azzahari, A. D.; Selvanathan, V.; Sonsudin, F.; Abouloula, C. N. pH Sensitive Hydrogels in Drug Delivery: Brief History, Properties, Swelling, and Release Mechanism, Material Selection and Applications. Polymers. 2017, 9, 1–37.
  • Roy, N.; Saha, N. PVP-based Hydrogels: Synthesis, Properties and Applications; Hydrogels: Synthesis, Characterization and Applications: 2012.
  • Shoukat, H.; Pervaiz, F.; Noreen, S.; Nawaz, M.; Qaiser, R.; Anwar, M. Fabrication and Evaluation Studies of Novel Polyvinylpyrrolidone and 2-acrylamido-2-methylpropane Sulphonic Acid-based Crosslinked Matrices for Controlled Release of Acyclovir. Polym. Bull. 2020, 77, 1869–1891.
  • Şen, M.; Yakar, A. Enhancement of Copolymerization of Itaconic Acid with N-vinyl 2-pyrrolidone by Radiation in the Presence of Cross-linking Agent. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2005, 234(3), 226–234. DOI: https://doi.org/10.1016/j.nimb.2005.01.002.
  • Malana, M. A.; Zafar, Z. I.; Zuhra, R. Effect of Cross Linker Concentration on Swelling Kinetics of a Synthesized Ternary Co-polymer System. J. Chem. Soc. Pak. 2012, 34, 793–801.
  • Olver, J. S; Norman, T.; Burrows, G. Third-generation Antidepressants: Do They Offer Advantages over the SSRIs?-editorial. Current Ther. 2002, 43, 7.
  • Barkat, K.; Ahmad, M.; Minhas, M. U.; Khalid, I. Oxaliplatin-loaded Crosslinked Polymeric Network of Chondroitin Sulfate-co-poly(methacrylic Acid) for Colorectal Cancer: Its Toxicological Evaluation. J. Appl. Polym. Sci. 2017, 134(38), 45312. DOI: https://doi.org/10.1002/app.45312.
  • Malik, N. S.; Ahmad, M.; Minhas, M. U. Cross-linked β-cyclodextrin and Carboxymethyl Cellulose Hydrogels for Controlled Drug Delivery of Acyclovir. PloS One. 2017, 12(2), e0172727. DOI: https://doi.org/10.1371/journal.pone.0172727.
  • Khalid, I.; Ahmad, M.; Usman Minhas, M.; Barkat, K.; Sohail, M. Cross‐Linked Sodium Alginate‐g‐poly (Acrylic Acid) Structure: A Potential Hydrogel Network for Controlled Delivery of Loxoprofen Sodium. Adv. Polym. Technol. 2018, 37(4), 985–995.
  • Anwar, M.; Pervaiz, F.; Shoukat, H.; Shabbir, K.; Majeed, A.; Ijaz, S. Formulation and Evaluation of Interpenetrating Network of Xanthan Gum and Polyvinylpyrrolidone as a Hydrophilic Matrix for Controlled Drug Delivery System. Polym. Bull. 2020, 78(1), 59–80.
  • Rastogi, P. K.; Krishnamoorthi, S.; Ganesan, V. Synthesis, Characterization, and Ion Exchange Voltammetry Study on 2‐acrylamido‐2‐methylpropane Sulphonic Acid and N‐(hydroxymethyl) Acrylamide‐based Copolymer. J. Appl. Polym. Sci. 2012, 123(2), 929–935. DOI: https://doi.org/10.1002/app.34538.
  • Azmeera, V.; Adhikary, P.;, and Krishnamoorthi, S. Synthesis and Characterization of Graft Copolymer of Dextran and 2-acrylamido-2-methylpropane Sulphonic Acid. Int. J. Carbohydr. Chem. 2012, 2012. doi:https://doi.org/10.1155/2012/209085.
  • Ali, L.; Ahmad, M.; Usman, M.; Yousuf, M. Controlled Release of Highly Water-soluble Antidepressant from Hybrid Copolymer Poly Vinyl Alcohol Hydrogels. Polym. Bull. 2014, 71(1), 31–46. DOI: https://doi.org/10.1007/s00289-013-1043-8.
  • PRH, G. C Handbook of Vibrational Spectroscopy; 1. 2002.
  • Anwar, M.; Pervaiz, F.; Shoukat, H.; Noreen, S.; Shabbir, K.; Majeed, A.; Ijaz, S. Formulation and Evaluation of Interpenetrating Network of Xanthan Gum and Polyvinylpyrrolidone as a Hydrophilic Matrix for Controlled Drug Delivery System. Polym. Bull. 2021, 78(1), 59–80.
  • Griffiths PdH, J. A. Fourier Transform Infrared Spectrometry; 2nd ed.; Wiley-Interscience: USA; 18 May 2007.
  • Patel, H. A.; Shah, S.; Shah, D. O.; Joshi, P. Sustained Release of Venlafaxine from Venlafaxine–montmorillonite–polyvinylpyrrolidone Composites. Appl. Clay Sci. 2011, 51(1–2), 126–130. DOI: https://doi.org/10.1016/j.clay.2010.11.013.
  • Ali, A. E.-H.; Shawky, H.; El Rehim, H. A.; Hegazy, E. Synthesis and Characterization of PVP/AAc Copolymer Hydrogel and Its Applications in the Removal of Heavy Metals from Aqueous Solution. Eur. Polym. J. 2003, 39(12), 2337–2344. DOI: https://doi.org/10.1016/S0014-3057(03)00150-2.
  • Kabiri, K.;, Azizi, A.;, ZOHURIAAN, M. M. J.; BAGHERI, M. G.; Bouhendi, H.; Jamshidi, A. Super-alcogels Based on 2-acrylamido-2-methylpropane Sulphonic Acid and Poly (Ethylene Glycol) Macromer. Iran. Polym. J. 2011, 20, 175–183.
  • Liu, Y.;, Sun, Y.; Sun, J.; Zhao, N.; Sun, M.; He, Z. Preparation and in Vitro/in Vivo Evaluation of Sustained-release Venlafaxine Hydrochloride Pellets. Int. J. Pharmaceutics. 2012, 426(1–2), 21–28.
  • Abdelrazek, E.; Ragab, H.; Abdelaziz, M. Physical Characterization of Poly (Vinyl Pyrrolidone) and Gelatin Blend Films Doped with Magnesium Chloride. POLYM. PLAST. TECHNOL. 2013, 2, 1–8.
  • Zhang, C.; Easteal, A. J. Study of Free‐radical Copolymerization of N‐isopropylacrylamide with 2‐acrylamido‐2‐methyl‐1‐propanesulphonic Acid. J. Appl. Polym. Sci. 2003, 88(11), 2563–2569. DOI: https://doi.org/10.1002/app.12095.
  • Siddiqua, A.; Ranjha, N. M.;, Rehman, S.; Shoukat, H.; Ramzan, N.; Sultana, H. Preparation and Characterization of Methylene Bisacrylamide Crosslinked Pectin/acrylamide Hydrogels. Polym. Bull. 2021, 1–23. doi:https://doi.org/10.1007/s00289-021-03870-z.
  • Bhuyan, M. M.; Adala, O. B.; Okabe, H.; Hidaka, Y.; Hara, K. Selective Adsorption of Trivalent Metal Ions from Multielement Solution by Using Gamma Radiation-induced pectin-acrylamide-(2-Acrylamido-2-methyl-1-propanesulfonic Acid) Hydrogel. J. Environ. Chem. Eng. 2019, 7(1), 102844.
  • Singh, B.; Sharma, V. Designing Galacturonic Acid/arabinogalactan Crosslinked Poly (Vinyl Pyrrolidone)-co-poly (2-acrylamido-2-methylpropane Sulfonic Acid) Polymers: Synthesis, Characterization and Drug Delivery Application. Polymer. 2016, 91, 50–61. DOI: https://doi.org/10.1016/j.polymer.2016.03.037.
  • Sohail, K.; Khan, I. U.; Shahzad, Y.; Hussain, T.; Ranjha, N. pH-sensitive Polyvinylpyrrolidone-acrylic Acid Hydrogels: Impact of Material Parameters on Swelling and Drug Release. Braz. J. Pharm. Sci. 2014, 50(1), 173–184.
  • Benamer, S.; Mahlous, M.; Boukrif, A.; Mansouri, B.; Youcef, S. L. Synthesis and Characterisation of Hydrogels Based on Poly (Vinyl Pyrrolidone). Nucl. Instr. Meth. Phys. 2006, 248(2), 284–290. DOI: https://doi.org/10.1016/j.nimb.2006.04.072
  • Bueno, V. B.; Bentini, R.; Catalani, L. H.; Petri, D. F. S. Synthesis and Swelling Behavior of Xanthan-based Hydrogels. Carbohydr. Polym. 2013, 92(2), 1091–1099. DOI: https://doi.org/10.1016/j.carbpol.2012.10.062.
  • Patel, J. P.; Hsu, S. L. Development of Low Field NMR Technique for Analyzing Segmental Mobility of Crosslinked Polymers. J. Polym. Sci. B Polym. Phys. 2018, 56(8), 639–643. DOI: https://doi.org/10.1002/polb.24583.
  • Şen, M.; Avcı, E. N. Radiation Synthesis of Poly (N‐vinyl‐2‐pyrrolidone)–κ‐carrageenan Hydrogels and Their Use in Wound Dressing Applications I. Preliminary Laboratory Tests. J. Biomed. Mater. Res. A. 2005, 6(2), 187–196. DOI: https://doi.org/10.1002/jbm.a.30308.
  • Talukdar, M.; Kinget, R. Swelling and Drug Release Behaviour of Xanthan Gum Matrix Tablets. Int. J. Pharm. 1995, 120(1), 63–72. DOI: https://doi.org/10.1016/0378-5173(94)00410-7.
  • Saikia, A.; Aggarwal, S.; Mandal, U. Preparation and Controlled Drug Release Characteristics of Thermoresponsive PEG/poly (Nipam-co-amps) Hydrogels. Int. J. Polym. Mater. 2013, 62(1), 39–44. DOI: https://doi.org/10.1080/00914037.2012.664208.
  • Babu, M.; Yadav, H. K.; Moin, A.; Shivakumar, H. G. In Vitro–in Vivo Evaluation of Poly (2-hydroxyethyl Methacrylate-co-methyl Methacrylate) Hydrogel Implants Containing Cisplatin. Acta Pharm. Sin. B. 2011, 1(4), 261–267. DOI: https://doi.org/10.1016/j.apsb.2011.09.001.
  • Zarzycki, R.; Modrzejewska, Z.; Nawrotek, K. Drug Release from Hydrogel Matrices. Ecol. Chem. Enginer S. 2010, 17, 117–136.
  • Peppas, N. Analysis of Fickian and non-Fickian Drug Release from Polymers. Pharm. Acta Helv. 1985, 60, 110–111.
  • Asghar, S.; Minhas, M. U.; Ahmad, M.; Khan, K. U.; Sohail, M.; Khalid, I. Hydrophobic–hydrophilic Cross‐linked Matrices for Controlled Release Formulation of Highly Water‐soluble Drug Venlafaxine: Synthesis and Evaluation Studies. Adv. Polym. Tech. 2018, 37(8), 3146–3158.
  • Abdullah, O.; Minhas, M. U.; Ahmad, M.; Ahmad, S.; Ahmad, A. Synthesis of Hydrogels for Combinatorial Delivery of 5-fluorouracil and Leucovorin Calcium in Colon Cancer: Optimization, in Vitro Characterization and Its Toxicological Evaluation. Polym Bull 2019, 76(6), 3017–3037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.