214
Views
1
CrossRef citations to date
0
Altmetric
Review

Advances in nanocomposite material for Fused Filament Fabrication

&
Pages 1617-1661 | Received 14 Feb 2022, Accepted 27 Apr 2022, Published online: 29 May 2022

References

  • Taufik, M.; Jain, P. K. Role of Build Orientation in Layered Manufacturing : A Review. Int. J. Manuf. Technol. Manag. 2013, 27(1/2/3), 47–73.
  • Sanghera, B.; Naique, S.; Papaharilaou, Y.; Amis, A. Preliminary Study of Rapid Prototype Medical Models. Rapid Prototyp. J. 2001, 7(5), 275–284. DOI: 10.1108/13552540110410486.
  • Li, P. C.; Huang, S. C. Application of Rapid Prototyping Technology in Automobile Manufacturing Industry. Appl. Mech. Mater. 2014, 533, 106–110.
  • Kroll, E.; Artzi, D. Enhancing Aerospace Engineering Students’ Learning with 3D Printing wind-tunnel Models. Rapid Prototyp. J. 2011, 17(5), 393–402. DOI: 10.1108/13552541111156522.
  • Gibson, I.; Cheung, L.K.; Chow, S.P.; Cheung, W.L.; Beh, S.L.; Savalani, M.; Lee, S.H. The Use of Rapid Prototyping to Assist Medical Applications. Rapid Prototyp. J.2006, 12(1), 53–58. DOI: 10.1108/13552540610637273.
  • Khas, K. S.; Pandey, P. M.; Ray, A. R. Rapid Manufacturing of a Clubfoot Model Imitating Soft Tissue and Bones: This Paper Reports an Exploration of Fabricating a Composite Clubfoot Model Consisting of Both Soft and Hard Tissues for Biomechanical Assessment of Infant Clubfoot. Virtual Phys. Prototyp. 2013, 8(3), 187–192. DOI: 10.1080/17452759.2013.836455.
  • Kumaravelan, R.; Gandhi, V.; Ramesh, S.; Venkatesan, M. Rapid Prototyping Applications in Various Field of Engineering and Technology. Int. J. Mech. Aerospace, Ind. Mechatronics Eng. 2014, 8(3), 620–624.
  • Šimunić, N.; Vidović, D.; Bursać, D.; Matković, I. Application of 3D Printed Drill Guides in Implant Dentistry. IFMBE Proc. 2015, 45, 383–386. DOI: 10.1007/978-3-319-11128-5_96.
  • Tut, V.; Tulcan, A.; Cosma, C.; Serban, I. Application of CAD/CAM/FEA, Reverse Engineering and Rapid Prototyping in Manufacturing Industry. Int. J. Mech. 2010, 4(4), 79–86.
  • Levy, G. N.; Schindel, R.; Kruth, J. P. Rapid Manufacturing and Rapid Tooling with Layer Manufacturing (LM) Technologies, State of the Art and Future Perspectives. CIRP Ann. - Manuf. Technol. 2003, 52(2), 589–609. DOI: 10.1016/S0007-8506(07)60206-6.
  • Torabi, K.; Farjood, E.; Hamedani, S. Rapid Prototyping Technologies and Their Applications in Prosthodontics, a Review of Literature. J. Dent. (Shiraz, Iran). 2015, 16(1), 1–9.
  • Singh, J. P.; Pandey, P. M. Fitment Study of Porous Polyamide Scaffolds Fabricated from Selective Laser Sintering. Procedia Eng. 2013, 59, 59–71. DOI: 10.1016/j.proeng.2013.05.094.
  • Liu, F. H.; Lee, R. T.; Lin, W. H.; Liao, Y. S. Selective Laser Sintering of bio-metal Scaffold. Procedia CIRP. 2013, 5, 83–87. DOI: 10.1016/j.procir.2013.01.017.
  • Van Noort, R. The Future of Dental Devices Is Digital. Dent. Mater. 2012, 28(1), 3–12. DOI: 10.1016/j.dental.2011.10.014.
  • Guo, N.; Leu, M. C. Additive Manufacturing: Technology, Applications and Research Needs. Front. Mech. Eng. 2013, 8(3), 215–243. DOI: 10.1007/s11465-013-0248-8.
  • Kruth, J. P.; Mercelis, P.; Van Vaerenbergh, J.; Froyen, L.; Rombouts, M. Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting. Rapid Prototyp. J. 2005, 11(1), 26–36. DOI: 10.1108/13552540510573365.
  • Diegel, O.; Xu, W. L.; Potgieter, J. A Case Study of Rapid Prototype as Design in Educational Engineering Projects. Int. J. Eng. Educ. 2006, 22(2), 350–358.
  • Turner, B. N.; Strong, R.; Gold, S. A. A Review of Melt Extrusion Additive Manufacturing Processes: I. Process Design and Modeling. Rapid Prototyp. J. 2014, 20(3), 192–204. DOI: 10.1108/RPJ-01-2013-0012.
  • Goh, G. D.; Yap, Y. L.; Tan, H. K. J.; Sing, S. L.; Goh, G. L.; Yeong, W. Y. Process–Structure–Properties in Polymer Additive Manufacturing via Material Extrusion: A Review. Crit. Rev. Solid State Mater. Sci. 2020, 45(2), 113–133. DOI: 10.1080/10408436.2018.1549977.
  • Jiang, J.; Xu, X.; Stringer, J. Support Structures for Additive Manufacturing: A Review. J. Manuf. Mater. Process. 2018, 2(4), 64. DOI: 10.3390/jmmp2040064.
  • Jiang, J.; Lou, J.; Hu, G. Effect of Support on Printed Properties in Fused Deposition Modelling Processes. Virtual Phys. Prototyp. 2019, 14(4), 308–315. DOI: 10.1080/17452759.2019.1568835.
  • Yan, X.; Gu, P. A Review of Rapid Prototyping Technologies and Systems. CAD Comput. Aided Des. 1996, 28(4), 307–318. DOI: 10.1016/0010-4485(95)00035-6.
  • Mahmoudi, M.; Burlison, S. R.; Moreno, S.; Minary-Jolandan, M. Additive-Free and Support-Free 3D Printing of Thermosetting Polymers with Isotropic Mechanical Properties. ACS Appl. Mater. Interfaces. 2021, 13(4), 5529–5538. DOI: 10.1021/acsami.0c19608.
  • Yang, K.;Grant, J. C.; Lamey, P.; JoshiImre, A.; Lund, B. R.; Smaldone, R. A.; Voit, W. Diels–Alder Reversible Thermoset 3D Printing: Isotropic Thermoset Polymers via Fused Filament Fabrication. Adv. Funct. Mater. 2017, 27(24), 1–11. DOI: 10.1002/adfm.201700318.
  • Khoo, Z. X.; Ee Mei Teoh, J.; Liu, Y.; Chua, C. K.; Yang, S.; An, J.; Leong, K. F.; Yeong, W. Y. 3D Printing of Smart Materials: A Review on Recent Progresses in 4D Printing. Virtual Phys. Prototyp.2015, 10(3), 103–122. DOI: 10.1080/17452759.2015.1097054.
  • Miao, S.; Castro, N.; Nowicki, M.; Xia, L.; Cui, H.; Zhou, X.; Zhu, W.; Lee, S.-J.; Sarkar, K.; Vozzi, G., et al. 4D Printing of Polymeric Materials for Tissue and Organ Regeneration. Mater. Today.2017, 20(10), 577–591. DOI: 10.1016/j.mattod.2017.06.005.
  • Ding, H.; Zhang, X.; Liu, Y.; Ramakrishna, S. Review of Mechanisms and Deformation Behaviors in 4D Printing. Int. J. Adv. Manuf. Technol. 2019, 105(11), 4633–4649. DOI: 10.1007/s00170-019-03871-3.
  • Mitchell, A.; Lafont, U.; Hołyńska, M.; Sem- primoschnig, C. Additive Manufacturing — A Review of 4D Printing and Future Applications. Addit. Manuf. 2018, 24(October), 606–626. DOI: 10.1016/j.addma.2018.10.038.
  • Kuang, X.; Roach, D. J.; Wu, J.; Hamel, C. M.; Ding, Z.; Wang, T.; Dunn, M. L.; Qi, H. J. Advances in 4D Printing: Materials and Applications. Adv. Funct. Mater. 2019, 29(2), 1–23. DOI: 10.1002/adfm.201805290.
  • Leist, S. K.; Zhou, J. Current Status of 4D Printing Technology and the Potential of light-reactive Smart Materials as 4D Printable Materials. Virtual Phys. Prototyp. 2016, 11(4), 249–262. DOI: 10.1080/17452759.2016.1198630.
  • Wu, J.; Yuan, C.; Ding, Z.; Isakov, M.; Mao, Y.; Wang, T.; Dunn, M. L.; Qi, H. J. Multi-shape Active Composites by 3D Printing of Digital Shape Memory Polymers. Sci. Rep. 2016, 6(November 2015), 1–11. DOI: 10.1038/srep24224.
  • Miao, S.; Zhu, W.; Castro, N. J.; Leng, J.; Zhang, L. G. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications. Tissue Eng. - Part C Methods. 2016, 22(10), 952–963. DOI: 10.1089/ten.tec.2015.0542.
  • Ge, Q.; Sakhaei, A. H.; Lee, H.; Dunn, C. K.; Fang, N. X.; Dunn, M. L. Multimaterial 4D Printing with Tailorable Shape Memory Polymers. Sci. Rep. 2016, 6(August), 1–11. DOI: 10.1038/srep31110.
  • Angelopoulos, P. M.; Samouhos, M.; Taxiarchou, M. Functional Fillers in Composite Filaments for Fused Filament Fabrication: A Review. Mater. Today Proc. 2019, 37, 4031–4043. DOI: 10.1016/j.matpr.2020.07.069.
  • Patel, A.; Taufik, M. Nanocomposite Materials for Fused Filament Fabrication. Mater. Today Proc. 2021, 47(xxxx), 5142–5150. DOI: 10.1016/j.matpr.2021.05.438.
  • Francis, V.; Jain, P. K. Advances in Nanocomposite Materials for Additive Manufacturing. Int. J. Rapid Manuf. 2015, 5(3/4), 215. DOI: 10.1504/ijrapidm.2015.074804.
  • Shofner, M. L.; Lozano, K.; Rodrı, F. J. Nanofiber-Reinforced Polymers Prepared by Fused Deposition Modeling. J. Appl. Polym. Sci. 2002, 89(11), 3081–3090. DOI: 10.1002/app.12496.
  • Weng, Z.; Wang, J.; Senthil, T.; Wu, L. Mechanical and Thermal Properties of ABS/montmorillonite Nanocomposites for Fused Deposition Modeling 3D Printing. Mater. Des. 2016, 102, 276–283. DOI: 10.1016/j.matdes.2016.04.045.
  • Dul, S.; Fambri, L.; Pegoretti, A. Fused Deposition Modelling with ABS-graphene Nanocomposites. Compos. Part A Appl. Sci. Manuf. 2016, 85(March), 181–191. DOI: 10.1016/j.compositesa.2016.03.013.
  • Coppola, B.; Cappetti, N.; Di Maio, L.; Scarfato, P.; Incarnato, L., 2017. Layered Silicate Reinforced Polylactic Acid Filaments for 3D Printing of Polymer Nanocomposites. RTSI 2017 - IEEE 3rd Int. Forum Res. Technol. Soc. Ind. Conf. Proc., 3–6. doi: 10.1109/RTSI.2017.8065892.
  • Francis, V.; Jain, P. K. Achieving Improved Dielectric, Mechanical, and Thermal Properties of Additive Manufactured Parts via Filament Modification Using OMMT-based Nanocomposite. Prog. Addit. Manuf. 2017, 2(3), 109–115. DOI: 10.1007/s40964-017-0031-1.
  • Christ, J. F.; Aliheidari, N.; Ameli, A.; Pötschke, P. 3D Printed Highly Elastic Strain Sensors of Multiwalled Carbon nanotube/thermoplastic Polyurethane Nanocomposites. Mater. Des. 2017, 131, 394–401. DOI: 10.1016/j.matdes.2017.06.011.
  • Dorigato, A.; Moretti, V.; Dul, S.; Unterberger, S. H.; Pegoretti, A. Electrically Conductive Nanocomposites for Fused Deposition Modelling. Synth. Met. 2017, 226, 7–14. DOI: 10.1016/j.synthmet.2017.01.009.
  • Coppola, B.; Cappetti, N.; Di Maio, L.; Scarfato, P.; Incarnato, L. 3D Printing of PLA/clay Nanocomposites: Influence of Printing Temperature on Printed Samples Properties. Materials (Basel). 2018, 11(10), 1–17. DOI: 10.3390/ma11101947.
  • Herrero, M.; Peng, F.; Núñez Carrero, K. C.; Merino, J. C.; Vogt, B. D. Renewable Nanocomposites for Additive Manufacturing Using Fused Filament Fabrication. ACS Sustain. Chem. Eng. 2018, 6(9), 12393–12402. DOI: 10.1021/acssuschemeng.8b02919.
  • Street, D. P.; Mah, A. H.; Patterson, S.; Pickel, D. L.; Bergman, J. A.; Stein, G. E.; Messman, J. M.; Kilbey, S. M. Interfacial Interactions in PMMA/silica Nanocomposites Enhance the Performance of Parts Created by Fused Filament Fabrication. Polymer (Guildf.).2018, 157(July), 87–94. DOI: 10.1016/j.polymer.2018.10.004.
  • Wu, H.; Sulkis, M.; Driver, J.; Saade-Castillo, A.; Thompson, A.; Koo, J. H. Multi-functional ULTEMTM1010 Composite Filaments for Additive Manufacturing Using Fused Filament Fabrication (FFF). Addit. Manuf. 2018, 24, 298–306. DOI: 10.1016/j.addma.2018.10.014.
  • Mansour, M.; Tsongas, K.; Tzetzis, D.; Antoniadis, A. Mechanical and Dynamic Behavior of Fused Filament Fabrication 3D Printed Polyethylene Terephthalate Glycol Reinforced with Carbon Fibers. Polym. - Plast. Technol. Eng. 2018, 57(16), 1715–1725. DOI: 10.1080/03602559.2017.1419490.
  • Nötzel, D.; Eickhoff, R.; Hanemann, T. Fused Filament Fabrication of Small Ceramic Components. Materials (Basel). 2018, 11(8), 1–10. DOI: 10.3390/ma11081463.
  • Healy, A.; Waldron, C.; Geever, L.; Devine, D.; Lyons, J. Degradable Nanocomposites for Fused Filament Fabrication Applications. J. Manuf. Mater. Process. 2018, 2(2), 29. DOI: 10.3390/jmmp2020029.
  • Aumnate, C.; Pongwisuthiruchte, A.; Pattananuwat, P.; Potiyaraj, P. Fabrication of ABS/Graphene Oxide Composite Filament for Fused Filament Fabrication (FFF) 3D Printing. Adv. Mater. Sci. Eng. 2018, 2018, 1–9. DOI: 10.1155/2018/2830437.
  • Khatri, B.; Lappe, K.; Noetzel, D.; Pursche, K.; Hanemann, T. A 3D-printable polymer-metal soft-magnetic Functional composite-development and Characterization. Materials (Basel). 2018, 11(2), 189. DOI: 10.3390/ma11020189.
  • Khatri, B.; Lappe, K.; Habedank, M.; Mueller, T.; Megnin, C.; Hanemann, T. Fused Deposition Modeling of ABS-barium Titanate Composites: A Simple Route Towards Tailored Dielectric Devices. Polymers (Basel). 2018, 10(6), 666. DOI: 10.3390/polym10060666.
  • Yang, L.; Li, S.; Zhou, X.; Liu, J.; Li, Y.; Yang, M.; Yuan, Q.; Zhang, W. Effects of Carbon Nanotube on the Thermal, Mechanical, and Electrical Properties of PLA/CNT Printed Parts in the FDM Process. Synth. Met. 2019, 253(December 2018), 122–130. DOI: 10.1016/j.synthmet.2019.05.008.
  • Salavati, M.; Yousefi, A. A. Polypropylene–clay micro/nanocomposites as Fused Deposition Modeling Filament: Effect of polypropylene-g-maleic Anhydride and organo-nanoclay as Chemical and Physical Compatibilizers. Iran. Polym. J. (English Ed.). 2019, 28(7), 611–620. DOI: 10.1007/s13726-019-00728-0.
  • Caminero, M. Á.; Chacón, J. M.; García-Plaza, E.; Núñez, P. J.; Reverte, J. M.; Becar, J. P. Additive Manufacturing of PLA-based Composites Using Fused Filament Fabrication: Effect of Graphene Nanoplatelet Reinforcement on Mechanical Properties, Dimensional Accuracy and Texture. Polymers (Basel). 2019, 11(5), 799. DOI: 10.3390/polym11050799.
  • Lee, J.; Leeb, H.; Cheonb, K-H.; Parkb, C.; Janga, T-S.; Kimb, H-E.; Jung, H-D. Fabrication of Poly(lactic acid)/Ti Composite Scaffolds with Enhanced Mechanical Properties and Biocompatibility via Fused Filament Fabrication (Fff)–based 3D Printing. Addit. Manuf. 2019, 30(September), 100883. DOI: 10.1016/j.addma.2019.100883.
  • Thomas, D. J. Developing 3D Printable Hybrid Graphene and Carbon Fibre Polymer Nanocomposites for Fused filament Fabrication. J. Mater. Res. Technol. 2020, x x, 4–11. DOI: 10.1016/j.jmrt.2020.06.094.
  • Dul, S.; Ecco, L. G.; Pegoretti, A.; Fambri, L. Graphene/carbon Nanotube Hybrid Nanocomposites: Effect of Compression Molding and Fused Filament Fabrication on Properties. Polymers (Basel). 2020, 12(1), 101. DOI: 10.3390/POLYM12010101.
  • Reverte, J. M.; Ángel Caminero, M.; Chacón, J. M.; García-Plaza, E.; Núñez, P. J.; Becar, J. P. Mechanical and Geometric Performance of PLA-based Polymer Composites Processed by the Fused Filament Fabrication Additive Manufacturing Technique. Materials (Basel). 2020, 13(8), 1924. DOI: 10.3390/MA13081924.
  • Beesetty, P.; Kale, A.; Patil, B.; Doddamani, M. Mechanical Behavior of Additively Manufactured nanoclay/HDPE Nanocomposites. Compos. Struct. 2020, 247(May), 112442. DOI: 10.1016/j.compstruct.2020.112442.
  • Grammatikos, S.; Vidakis, N.; Tzounis, L.; Petousis, M. 3D Printed Thermoelectric Polyurethane/Multiwalled Carbon Nanotube Nanocomposites: A Novel Approach Towards the Fabrication of Flexible and Stretchable Organic Thermoelectrics. Materials (Basel). 2020, 13(12). DOI: 10.3390/ma13122879.
  • Kaynan, O.; Yıldız, A.; Bozkurt, Y. E.; Ozden Yenigun, E.; Cebeci, H. Electrically Conductive high-performance Thermoplastic Filaments for Fused Filament Fabrication. Composite Structures. 2020, 237(January), 111930. DOI: 10.1016/j.compstruct.2020.111930.
  • Hanemann, T.; Syperek, D.; Nötzel, D. 3D Printing of ABS Barium Ferrite Composites. Materials (Basel). 2020, 13(6), 1–13. DOI: 10.3390/ma13061481.
  • Harris, M.; Potgieter, J.; Ray, S.; Archer, R.; Arif, K. M. Polylactic Acid and high-density Polyethylene Blend: Characterization and Application in Additive Manufacturing. J. Appl. Polym. Sci. 2020, 137(48), 1–18. DOI: 10.1002/app.49602.
  • Jin, M.; Neuber, C.; Schmidt, H. W. Tailoring Polypropylene for extrusion-based Additive Manufacturing. Addit. Manuf. 2020, 33(January), 101101. DOI: 10.1016/j.addma.2020.101101.
  • Sudan, K.; Singh, P.; Gökçe, A.; Balla, V. K.; Kate, K. H. Processing of Hydroxyapatite and Its Composites Using Ceramic Fused Filament Fabrication (CF3). Ceram. Int. 2020, 46(15), 23922–23931. DOI: 10.1016/j.ceramint.2020.06.168.
  • Aumnate, C.; Potiyaraj, P.; Saengow, C.; Giacomin, A. J. Reinforcing Polypropylene with graphene-polylactic Acid Microcapsules for fused-filament Fabrication. Mater. Des. 2021, 198, 109329. DOI: 10.1016/j.matdes.2020.109329.
  • Vidakis, N.; Petousis, M.; Velidakis, E.; Mountakis, N.; Grammatikos, S.; Peder Erik Fischer-Griffiths, L. T. Fused Filament Fabrication Three-Dimensional Printing Multi-Functional of Polylactic Acid/Carbon Black Nanocomposites. J. Carbon Black. 2021, 7(3), 52. DOI: 10.3390/c7030052.
  • Vidakis, N.; Petousis, M.; Tzounis, L.; Velidakis, E.; Mountakis, N.; Grammatikos, S. A. Polyamide 12/Multiwalled Carbon Nanotube and Carbon Black Nanocomposites Manufactured by 3D Printing Fused Filament Fabrication: A Comparison of the Electrical, Thermoelectric, and Mechanical Properties. J. Carbon Black 2021, 7(7), [Online]. Available. DOI: 10.3390/c7020038.
  • Rinaldi, M.; Ghidini, T.; Nanni, F. Fused Filament Fabrication of polyetheretherketone/multiwalled Carbon Nanotube Nanocomposites: The Effect of Thermally Conductive Nanometric Filler on the Printability and Related Properties. Polym. Int. 2021, 70(8), 1080–1089. DOI: 10.1002/pi.6206.
  • Galos, J.; Hu, Y.; Ravindran, A. R.; Ladani, R. B.; Mouritz, A. P. Electrical Properties of 3D Printed Continuous Carbon Fibre Composites Made Using the Fdm Process. Compos. Part A Appl. Sci. Manuf. 2021, 151(August), 106661. DOI: 10.1016/j.compositesa.2021.106661.
  • Pei, H.; Yang, L.; Xiong, Y.; Chen, Y.; Shi, S.; Jing, J. Fabrication, Characterisation and Properties of Polyvinyl alcohol/graphene Nanocomposite for Fused Filament Fabrication Processing. Plast. Rubber Compos. 2021, 50(6), 263–275. DOI: 10.1080/14658011.2020.1868668.
  • Brounstein, Z.; Yeager, C. M.; Labouriau, A. Development of Antimicrobial PLA Composites for Fused Filament Fabrication. Polymers (Basel). 2021, 13(4), 1–18. DOI: 10.3390/polym13040580.
  • Sorokin, A. E.; Pykhtin, A. A.; Larionov, S. A.; Kondrashov, S. V. Formation Features of Electric Conductive Networks in the ABS/MCNT Composite When Manufacturing Filament for FDM-Printing. Nanobiotechnol. Rep. 2021, 16(4), 473–479. DOI: 10.1134/S2635167621040133.
  • Schirmeister, C. G.; Schächtele, S.; Keßler, Y.; Hees, T.; Köhler, R.; Schmitz, K.; Licht, E. H.; Muelhaupt, R. Low Warpage Nanophase-Separated Polypropylene/Olefinic Elastomer Reactor Blend Composites with Digitally Tuned Glass Fiber Orientation by Extrusion-Based Additive Manufacturing. ACS Appl. Polym. Mater.2021, 3(4), 2070–2081. DOI: 10.1021/acsapm.1c00119.
  • Vidakis, N.; Petousis, M.; Velidakis, E.; Tzounis, L.; Mountakis, N.; Kechagias, J.; Grammatikos, S. Optimization of the Filler Concentration on Fused Filament Fabrication 3d Printed Polypropylene with Titanium Dioxide Nanocomposites. Materials (Basel).2021, 14(11), 3076. DOI: 10.3390/ma14113076.
  • Bandzierz, K. S.; Reuvekamp, L. A. E. M.; Dryzek, J.; Dierkes, W. K.; Blume, A.; Bielinski, D. M. Effect of Polymer Chain Modifications on Elastomer Properties. Rubber Chem. Technol. 2019, 92(1), 69–89. DOI: 10.5254/RCT.18.82685.
  • Bailey, E. J.; Winey, K. I. Dynamics of Polymer Segments, Polymer Chains, and Nanoparticles in Polymer Nanocomposite Melts: A Review. Prog. Polym. Sci. 2020, 105, 101242. DOI: 10.1016/j.progpolymsci.2020.101242.
  • Pacułt, J.; Rams-Baron, M.; Chrząszcz, B.; Jachowicz, R.; Paluch, M. Effect of Polymer Chain Length on the Physical Stability of Amorphous Drug-Polymer Blends at Ambient Pressure. Mol. Pharm. 2018, 15(7), 2807–2815. DOI: 10.1021/acs.molpharmaceut.8b00312.
  • Huang, Y. L.; Tien, H.-W.; Ma, C.-C. M.; Yang, S.-Y.; Wu, S.-Y.; Liu, H.-Y.; Mai, Y.-W. Effect of Extended Polymer Chains on Properties of Transparent Graphene Nanosheets Conductive Film. J. Mater. Chem. 2011, 21(45), 18236–18241. DOI: 10.1039/c1jm13790e.
  • Song, N.; Yang, J.; Ding, P.; Tang, S.; Shi, L. Effect of Polymer Modifier Chain Length on Thermal Conductive Property of Polyamide 6/graphene Nanocomposites. Compos. Part A Appl. Sci. Manuf. 2015, 73, 232–241. DOI: 10.1016/j.compositesa.2015.03.018.
  • Liao, W. H.; Yang, S.-Y.; Wang, J.-Y.; Tien, H.-W.; Hsiao, S.-T.; Wang, Y.-S.; Li, S.-M.; Ma, C.-C. M.; Wu, Y.-F. Effect of Molecular Chain Length on the Mechanical and Thermal Properties of amine-functionalized Graphene oxide/polyimide Composite Films Prepared by in Situ Polymerization. ACS Appl. Mater. Interfaces.2013, 5(3), 869–877. DOI: 10.1021/am302494c.
  • Gibson, M. A.; Mykulowycz, N. M.; Shim, J.; Fontana, R.; Schmitt, P.; Roberts, A.; Ketkaew, J.; Shao, L.; Chen, W.; Bordeenithikasem, P., et al. 3D Printing Metals like Thermoplastics: Fused Filament Fabrication of Metallic Glasses. Mater. Today.2018, 21(7), 697–702. DOI: 10.1016/j.mattod.2018.07.001.
  • Wu, H.; Fahy, W. P.; Kim, S.; Kim, H.; Zhao, N.; Pilato, L.; Kafi, A.; Bateman, S.; Koo, J. H. Recent Developments in polymers/polymer Nano composites for Additive Manufacturing. Prog. Mater. Sci. 2020, 111(January), 100638. DOI: 10.1016/j.pmatsci.2020.100638.
  • Passador, F. R.; Ruvolo-Filho, A.; Pessan, L. A. Nanocomposites of Polymer Matrices and Lamellar Clays; Elsevier Inc, 2017. DOi: 10.1016/B978-0-323-49782-4.00007-3.
  • Naz, A.; Kausar, A.; Siddiq, M.; Choudhary, M. A. Comparative Review on Structure, Properties, Fabrication Techniques, and Relevance of Polymer Nanocomposites Reinforced with Carbon Nanotube and Graphite Fillers. Polym. - Plast. Technol. Eng. 2016, 55(2), 171–198. DOI: 10.1080/03602559.2015.1055504.
  • Shin, S. Y. A.; Simon, L. C.; Soares, J. B. P.; Scholz, G. Polyethylene-clay Hybrid Nanocomposites: In Situ Polymerization Using Bifunctional Organic Modifiers. Polymer (Guildf.). 2003, 44(18), 5317–5321. DOI: 10.1016/S0032-3861(03)00564-0.
  • Adeosun, S. O.; Lawal, G. I.; Balogun, S. A.; Akpan, E. I. Review of Green Polymer Nanocomposites. J. Miner. Mater. Charact. Eng. 2012, 11(4), 385–416. DOI: 10.4236/jmmce.2012.114028.
  • Mallakpour, S.; Khadem, E. Recent Development in the Synthesis of Polymer Nanocomposites Based on nano-alumina; Elsevier Ltd. 2014; Vol. 51. DOI: 10.1016/j.progpolymsci.2015.07.004.
  • Modi, V. K.; Shrives, Y.; Sharma, C.; Sen, P. K. Review on Green Polymer Nanocomposite and Their Applications. Int. J. Innov. Res. Sci. Eng. Technol. 2015, 2014(11), 17651–17656. DOI: 10.15680/IJIRSET.2014.0311079.
  • Yao, J.; Cao, Z.; Chen, Q.; Zhao, S.; Zhang, Y.; Qi, D. Efficient Preparation and Formation Mechanism of polymer/SiO2 Nanocomposite Particles in Miniemulsions. Colloid Polym. Sci. 2017, 295(7), 1223–1232. DOI: 10.1007/s00396-017-4115-8.
  • Qi, D.; Liu, C.; Chen, Z.; Dong, G.; Cao, Z. In Situ Emulsion Copolymerization of Methyl Methacrylate and Butyl Acrylate in the Presence of SiO2 with Various Surface Coupling Densities. Colloid Polym. Sci. 2015, 293(2), 463–471. DOI: 10.1007/s00396-014-3433-3.
  • Wang, X.; Wang, L.; Su, Q.; Zheng, J. Use of Unmodified SiO2 as Nanofiller to Improve Mechanical Properties of polymer-based Nanocomposites. Compos. Sci. Technol. 2013, 89, 52–60. DOI: 10.1016/j.compscitech.2013.09.018.
  • Yang, F.; Yang, W.; Zhu, L.; Chen, Y.; Ye, Z. Preparation and Investigation of Waterborne Fluorinated polyacrylate/silica Nanocomposite Coatings. Prog. Org. Coatings. 2016, 95, 1–7. DOI: 10.1016/j.porgcoat.2016.02.015.
  • Il Jo, C.; Ko, J.; Yin, Z.; Kim, Y. J.; Kim, Y. S. Solvent-Free and Highly Transparent SiO2 Nanoparticle-Polymer Composite with an Enhanced Moisture Barrier Property. Ind. Eng. Chem. Res. 2016, 55(35), 9433–9439. DOI: 10.1021/acs.iecr.6b01470.
  • Mallakpour, S.; Naghdi, M. Polymer/SiO2 Nanocomposites. Prod. Appl. 2018, 97(April). DOI: 10.1016/j.pmatsci.2018.04.002.
  • Isobe, H.; Kaneko, K. Porous Silica Particles Prepared from Silicon Tetrachloride Using Ultrasonic Spray Method. J. Colloid Interface Sci. 1999, 212(2), 234–241. DOI: 10.1006/jcis.1999.6087.
  • Barkoula, N. M.; Alcock, B.; Cabrera, N. O.; Peijs, T. Flame-Retardancy Properties of Intumescent Ammonium Poly(Phosphate) and Mineral Filler Magnesium Hydroxide in Combination with Graphene. Polym. Polym. Compos. 2008, 16(2), 101–113. DOI: 10.1002/pc.
  • Grala, M.; Bartczak, Z.; Różański, A. Morphology, Thermal and Mechanical Properties of polypropylene/SiO2 Nanocomposites Obtained by Reactive Blending. J. Polym. Res. 2016, 23(2), 1–19. DOI: 10.1007/s10965-015-0914-0.
  • Zyl, W. E. V.; Boukamp, B. Polypropylene/SiO2 Nanocomposites with IMPROVED MECHANICAL PROPERTIES IMPROVED MECHANICAL PROPER- TIES, no. 2005, 2019.
  • Sun, S.; Li, C.; Zhang, L.; Du, H. L.; Burnell-Gray, J. S. Effects of Surface Modification of Fumed Silica on Interfacial Structures and Mechanical Properties of Poly(vinyl Chloride) Composites. Eur. Polym. J. 2006, 42(7), 1643–1652. DOI: 10.1016/j.eurpolymj.2006.01.012.
  • Etienne, S.; Becker, C.; Ruch, D.; Grignard, B.; Cartigny, G.; Detrembleur, C.; Calberg, C.; Jerome, R. Effects of Incorporation of Modified Silica Nanoparticles on the Mechanical and Thermal Properties of PMMA. J. Therm. Anal. Calorim. 2007, 87(1), 101–104. DOI: 10.1007/s10973-006-7827-4.
  • Diani, J.; Gall, K. Finite Strain 3D Thermoviscoelastic Constitutive Model. Society. 2006, 1–10. DOI: 10.1002/pen.
  • Castro, L. D. C.; Oliveira, A. D.; Kersch, M.; Altstädt, V.; Pessan, L. A. Effects of Mixing Protocol on Morphology and Properties of PA6/ABS Blends Compatibilized with MMA-MA. J. Appl. Polym. Sci. 2016, 133(27), 1–8. DOI: 10.1002/app.43612.
  • Grande, R.; Pessan, L. A. Effects of Nanoclay Addition on Phase Morphology and Stability of polycarbonate/styrene-acrylonitrile Blends. Appl. Clay Sci. 2017, 140, 112–118. DOI: 10.1016/j.clay.2017.02.001.
  • Chau, J. L. H.; Hsu, S. L. C.; Chen, Y. M.; Yang, C. C.; Hsu, P. C. F. A Simple Route Towards polycarbonate-silica Nanocomposite. Adv. Powder Technol. 2010, 21(3), 341–343. DOI: 10.1016/j.apt.2010.02.005.
  • Mallakpour, S.; Marefatpour, F. Novel Chiral poly(amide-imide)/surface Modified SiO2 Nanocomposites Based on N-trimellitylimido-l-methionine: Synthesis and a Morphological Study. Prog. Org. Coatings. 2014, 77(8), 1271–1276. DOI: 10.1016/j.porgcoat.2014.03.024.
  • Dong, Q.; Ding, Y.; Wen, B.; Wang, F.; Dong, H.; Zhang, S.; Wang, T.; Yang, M. Improvement of Thermal Stability of Polypropylene Using DOPO-immobilized Silica Nanoparticles. Colloid Polym. Sci. 2012, 290(14), 1371–1380. DOI: 10.1007/s00396-012-2631-0.
  • Tanahashi, M. Development of Fabrication Methods of filler/polymer Nanocomposites: With Focus on Simple melt-compounding-based Approach without Surface Modification of Nanofillers. Materials (Basel). 2010, 3(3), 1593–1619. DOI: 10.3390/ma3031593.
  • Torabi, Z.; Mohammadi Nafchi, A. The Effects of SiO2 Nanoparticles on Mechanical and Physicochemical Properties of Potato Starch Films. J. Chem. Heal. Risks. 2013, 3(1), 33–42. http://www.jchr.org/article_544018.html.
  • Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface Modification of Inorganic Nanoparticles for Development of organic-inorganic Nanocomposites - A Review. Prog. Polym. Sci. 2013, 38(8), 1232–1261. DOI: 10.1016/j.progpolymsci.2013.02.003.
  • Cong, H.; Radosz, M.; Towler, B. F.; Shen, Y. Polymer-inorganic Nanocomposite Membranes for Gas Separation. Sep. Purif. Technol. 2007, 55(3), 281–291. DOI: 10.1016/j.seppur.2006.12.017.
  • Kotal, M.; Bhowmick, A. K. Polymer Nanocomposites from Modified Clays: Recent Advances and Challenges. Prog. Polym. Sci. 2015, 51, 127–187. DOI: 10.1016/j.progpolymsci.2015.10.001.
  • Bitinis, N.; Hernandez, M.; Verdejo, R.; Kenny, J. M.; Lopez-Manchado, M. A. Recent Advances in clay/polymer Nanocomposites. Adv. Mater. 2011, 23(44), 5229–5236. DOI: 10.1002/adma.201101948.
  • Ino, K.; Udagawa, I.; Iwabata, K.; Takakusagi, Y.; Kubota, M.; Kurosaka, K.; Arai, K.; Seki, Y.; Nogawa, M.; Tsunoda, T., et al. Heterogeneous Nucleation of Protein Crystals on Fluorinated Layered Silicate. PLoS One.2011, 6(7), 1–9. DOI: 10.1371/journal.pone.0022582.
  • Maron, G. K.; Noremberg, B. S.; Alano, J. H.; Pereira, F. R.; Deon, V. G.; Santos, R. C. R.; Freire, V. N.; Valentini, A.; Carreno, N. L. V. Carbon fiber/epoxy Composites: Effect of Zinc Sulphide Coated Carbon Nanotube on Thermal and Mechanical Properties. Polym. Bull. 2018, 75(4), 1619–1633. DOI: 10.1007/s00289-017-2115-y.
  • Zaïri, F.; Gloaguen, J. M.; Naït-Abdelaziz, M.; Mesbah, A.; Lefebvre, J. M. Study of the Effect of Size and Clay Structural Parameters on the Yield and post-yield Response of polymer/clay Nanocomposites via a Multiscale Micromechanical Modelling. Acta Mater. 2011, 59(10), 3851–3863. DOI: 10.1016/j.actamat.2011.03.009.
  • Müller, K.; Bugnicourt, E.; Latorre, M.; Jorda, M.; Echegoyen Sanz, Y.; Lagaron, J.; Miesbauer, O.; Bianchin, A.; Hankin, S.; Bölz, U., et al. Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields. Nanomaterials.2017, 7(4), 74. DOI: 10.3390/nano7040074.
  • Alexandre, M.; Dubois, P. Polymer-layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials. Mater. Sci. Eng. R Rep. 2000, 28(1), 1–63. DOI: 10.1016/S0927-796X(00)00012-7.
  • Marini, J.; Pollet, E.; Averous, L.; Bretas, R. E. S. Elaboration and Properties of Novel Biobased Nanocomposites with Halloysite Nanotubes and Thermoplastic Polyurethane from Dimerized Fatty Acids. Polymer (Guildf.). 2014, 55(20), 5226–5234. DOI: 10.1016/j.polymer.2014.08.049.
  • Sonia, A.; Priya Dasan, K. Celluloses Microfibers (CMF)/poly (ethylene-co-vinyl Acetate) (EVA) Composites for Food Packaging Applications: A Study Based on Barrier and Biodegradation Behavior. J. Food Eng. 2013, 118(1), 78–89. DOI: 10.1016/j.jfoodeng.2013.03.020.
  • Gómez, H.; Ram, M. K.; Alvi, F.; Villalba, P.; Stefanakos, E.; Kumar, A. Graphene-conducting Polymer Nanocomposite as Novel Electrode for Supercapacitors. J. Power Sources. 2011, 196(8), 4102–4108. DOI: 10.1016/j.jpowsour.2010.11.002.
  • de Melo, C. C. N.; Beatrice, C. A. G.; Pessan, L. A.; de Oliveira, A. D.; Machado, F. M. Analysis of Nonisothermal Crystallization Kinetics of Graphene Oxide - Reinforced Polyamide 6 Nanocomposites. Thermochim. Acta. 2018, 667, 111–121. DOI: 10.1016/j.tca.2018.07.014.
  • Howe, J. Y.; Tibbetts, G. G.; Kwag, C.; Lake, M. L. Heat Treating Carbon Nanofibers for Optimal Composite Performance. J. Mater. Res. 2006, 21(10), 2646–2652. DOI: 10.1557/jmr.2006.0325.
  • Finegan, I. C.; Tibbetts, G. G.; Glasgow, D. G.; Ting, J. M.; Lake, M. L. Surface Treatments for Improving the Mechanical Properties of Carbon nanofiber/thermoplastic Composites. J. Mater. Sci. 2003, 38(16), 3485–3490. DOI: 10.1023/A:1025109103511.
  • Book Review. J. East Eur. Manag. Stud. 2000, 5 (4), 403. DOI: 10.5771/0949-6181-2000-4-403.
  • Machado, I. R. L.; Mendes, H. M. F.; Alves, G. E. S.; Faleiros, R. R. Nanotubos de carbono: Potencial de uso em medicina veterinária. Cienc. Rural. 2014, 44(10), 1823–1829. DOI: 10.1590/0103-8478cr20140003.
  • Sui, Y. C.; Cui, B. Z.; Guardián, R.; Acosta, D. R.; Martínez, L.; Perez, R. Growth of Carbon Nanotubes and Nanofibres in Porous Anodic Alumina Film. Carbon. 2002, 40(7), 1011–1016. DOI: 10.1016/S0008-6223(01)00230-5.
  • Choudhary, V.; Gupt, A. Polymer/Carbon Nanotube Nanocomposites. Carbon Nanotub. - Polym. Nanocomposit. 2011, (May). DOI: 10.5772/18423.
  • Lee, S.; Lim, S.; Lim, E.; Lee, K. K. Synthesis of Aqueous Dispersion of Graphenes via Reduction of Graphite Oxide in the Solution of Conductive Polymer. J. Phys. Chem. Solids. 2010, 71(4), 483–486. DOI: 10.1016/j.jpcs.2009.12.017.
  • Avouris, P.; Dimitrakopoulos, C. Graphene: Synthesis and Applications. Mater. Today. 2012, 15(3), 86–97. DOI: 10.1016/S1369-7021(12)70044-5.
  • Dhand, V.; Rhee, K. Y.; Ju Kim, H.; Ho Jung, D. A Comprehensive Review of Graphene Nanocomposites: Research Status and Trends. J. Nanomater. 2013, 2013, 1–14. DOI: 10.1155/2013/763953.
  • Potts, J. R.; Dreyer, D. R.; Bielawski, C. W.; Ruoff, R. S. Graphene-based Polymer Nanocomposites. Polymer (Guildf.). 2011, 52(1), 5–25. DOI: 10.1016/j.polymer.2010.11.042.
  • Camargo, P. H. C.; Satyanarayana, K. G.; Wypych, F. Nanocomposites: Synthesis, Structure, Properties and New Application Opportunities. Mater. Res. 2009, 12(1), 1–39. DOI: 10.1590/S1516-14392009000100002.
  • Abraham, R.; Thomas, S. P.; Kuryan, S.; Isac, J.; Varughese, K. T.; Thomas, S. Mechanical Properties of ceramic-polymer Nanocomposites. Express Polym. Lett. 2009, 3(3), 177–189. DOI: 10.3144/expresspolymlett.2009.23.
  • Wang, J.; Kaskel, S. KOH Activation of carbon-based Materials for Energy Storage. J. Mater. Chem. 2012, 22(45), 23710–23725. DOI: 10.1039/c2jm34066f.
  • He, F.; Khan, M. Effects of Printing Parameters on the Fatigue Behaviour of 3D-Printed ABS under Dynamic Thermo-Mechanical Loads. Polymers (Basel). 2021, 13(14), 1–23. DOI: 10.3390/polym13142362.
  • Jap, N. S. F.; Pearce, G. M.; Hellier, A. K.; Russell, N.; Parr, W. C.; Walsh, W. R. The Effect of Raster Orientation on the Static and Fatigue Properties of Filament Deposited ABS Polymer. Int. J. Fatigue. 2019, 124(February 2018), 328–337. DOI: 10.1016/j.ijfatigue.2019.02.042.
  • Garnett, J. C. M. Colours in Metal Glasses, in Metallic Films and in Metallic Solutions. II. Philos. Trans. R. Soc. A. 1904, 205, 237–288.
  • Smith, F. C. Effective Permittivity of Dielectric Honeycombs. IEE Proc. Microwaves, Antennas Propag. 1999, 146(1), 55–59. DOI: 10.1049/ip-map:19990392.
  • Cho, S. D.; Lee, S. Y.; Hyun, J. G.; Paik, K. W. Comparison of Theoretical Predictions and Experimental Values of the Dielectric Constant of epoxy/BaTiO3 Composite Embedded Capacitor Films. J. Mater. Sci. Mater. Electron. 2005, 16(2), 77–84. DOI: 10.1007/s10854-005-6454-3.
  • Jonathan Torres, A. P. G.; Cole, M.; Owji, A.; DeMastry, Z. An Approach for Mechanical Property Optimization of Fused Deposition Modeling with Polylactic Acid via Design of Experiments. Rapid Prototyp. J. 2016, 22(2). DOI: 10.1108/RPJ-07-2014-0083.
  • Carneiro, O. S.; Silva, A. F.; Gomes, R. Fused Deposition Modeling with Polypropylene. Mater. Des. 2015, 83, 768–776. DOI: 10.1016/j.matdes.2015.06.053.
  • Savandaiah, C.; Maurer, J.; Gall, M.; Haider, A.; Steinbichler, G.; Sapkota, J. Impact of Processing Conditions and Sizing on the Thermomechanical and Morphological Properties of polypropylene/carbon Fiber Composites Fabricated by Material Extrusion Additive Manufacturing. J. Appl. Polym. Sci. 2021, 138(16), 1–13. DOI: 10.1002/app.50243.
  • Rinaldi, M.; Ghidini, T.; Cecchini, F.; Brandao, A.; Nanni, F. Additive Layer Manufacturing of Poly (Ether Ether Ketone) via FDM. Compos. Part B Eng. 2018, 145(December 2017), 162–172. DOI: 10.1016/j.compositesb.2018.03.029.
  • Deng, X.; Zeng, Z.; Peng, B.; Yan, S.; Ke, W. Mechanical Properties Optimization of poly-ether-ether-ketone via Fused Deposition Modeling. Materials (Basel). 2018, 11(2), 216. DOI: 10.3390/ma11020216.
  • Xu, Q.; Shang, Y.; Jiang, Z.; Wang, Z.; Zhou, C.; Liu, X.; Yan, Q.; Li, X.; Zhang, H. Effect of Molecular Weight on Mechanical Properties and Microstructure of 3D Printed Poly(ether Ether Ketone). Polym. Int.2021, 70(8), 1065–1072. DOI: 10.1002/pi.6166.
  • Pei, H.; Yang, L.; Xiong, Y.; Chen, Y.; Shi, S.; Jing, J. Fabrication, Characterisation and Properties of Polyvinyl alcohol/graphene Nanocomposite for Fused Filament Fabrication Processing. Plast. Rubber Compos. 2021, 1–13. DOI: 10.1080/14658011.2020.1868668.
  • Liu, C.; Qin, H.; Mather, P. T. Review of Progress in shape-memory Polymers. J. Mater. Chem. 2007, 17(16), 1543–1558. DOI: 10.1039/b615954k.
  • Kumar Patel, K.; Purohit, R. Future Prospects of Shape Memory Polymer nano-composite and Epoxy Based Shape Memory Polymer- A Review. Mater. Today Proc. 2018, 5(9), 20193–20200. DOI: 10.1016/j.matpr.2018.06.389.
  • Mehrpouya, M.; Vahabi, H.; Janbaz, S.; Darafsheh, A.; Mazur, T. R.; Ramakrishna, S. 4D Printing of Shape Memory Polylactic Acid (PLA). Polymer (Guildf.). 2021, 230(August), 124080. DOI: 10.1016/j.polymer.2021.124080.
  • Luo, X.; Mather, P. T. Preparation and Characterization of Shape Memory Elastomeric Composites. Macromolecules. 2009, 42(19), 7251–7253. DOI: 10.1021/ma9015888.
  • Saeb, M. R.; Mohammadi, Y.; Kermaniyan, T. S.; Zinck, P.; Stadler, F. J. Unspoken Aspects of Chain Shuttling Reactions: Patterning the Molecular Landscape of Olefin multi-block Copolymers. Polymer (Guildf.). 2017, 116, 55–75. DOI: 10.1016/j.polymer.2017.03.033.
  • Takahashi, T.; Hayashi, N.; Hayashi, S. Structure and Properties of shape-memory Polyurethane Block Copolymers. J. Appl. Polym. Sci. 1996, 60(7), 1061–1069. DOI: 10.1002/(sici)1097-4628(19960516)60:7<1061::aid-app18>3.3.co;2-q.
  • Sun, L.; Huang, W. M.; Lu, H.; Lim, K. J.; Zhou, Y.; Wang, T. X.; Gao, X. Y. Heating-responsive shape-memory Effect in Thermoplastic Polyurethanes with Low melt-flow Index. Macromol. Chem. Phys. 2014, 215(24), 2430–2436. DOI: 10.1002/macp.201400429.
  • Ehrmann, G.; Ehrmann, A. Investigation of the shape-memory Properties of 3D Printed Pla Structures with Different Infills. Polymers (Basel). 2021, 13(1), 1–11. DOI: 10.3390/polym13010164.
  • Singh, M.; Singh, R.; Kumar, R.; Kumar, P.; Preet, P. On 3D-printed ZnO-reinforced PLA Matrix Composite: Tensile, Thermal, Morphological and Shape Memory Characteristics. J. Thermoplast. Compos. Mater. 2020, 089270572093596. DOI: 10.1177/0892705720935961.
  • Kumar, R.; Singh, R.; Singh, M.; Kumar, P. ZnO nanoparticle-grafted PLA Thermoplastic Composites for 3D Printing Applications: Tuning of Thermal, Mechanical, Morphological and Shape Memory Effect. J. Thermoplast. Compos. Mater. 2020, 089270572092511. DOI: 10.1177/0892705720925119.
  • Zhang, F.; Wang, L.; Zheng, Z.; Liu, Y.; Leng, J. Magnetic Programming of 4D Printed Shape Memory Composite Structures. Compos. Part A Appl. Sci. Manuf. 2019, 125(August), 105571. DOI: 10.1016/j.compositesa.2019.105571.
  • Cheng, C. Y.; Xie, H.; Xu, Z.-Y.; Li, L.; Jiang, M.-N.; Tang, L.; Yang, -K.-K.; Wang, Y.-Z. 4D Printing of Shape Memory Aliphatic Copolyester via UV-assisted FDM Strategy for Medical Protective Devices. Chem. Eng. J. 2020, 396(April), 125242. DOI: 10.1016/j.cej.2020.125242.
  • Klein, J.; Stern, M.; Franchin, G.; Kayser, M.; Inamura, C.; Dave, S.; Weaver, J. C.; Houk, P.; Colombo, P.; Yang, M., et al. Additive Manufacturing of Optically Transparent Glass. 3D Print. Addit. Manuf.2015, 2(3), 92–105. DOI: 10.1089/3dp.2015.0021.
  • Mader, M.; Hambitzer, L.; Schlautmann, P.; Jenne, S.; Greiner, C.; Hirth, F.; Helmer, D.; Helmer, F. K.; Rapp, B. E. Melt-Extrusion-Based Additive Manufacturing of Transparent Fused Silica Glass. Adv. Sci.2021, 8(23), 1–11. DOI: 10.1002/advs.202103180.
  • Spoerk, M.; Sapkota, J.; Weingrill, G.; Fischinger, T.; Arbeiter, F.; Holzer, C. Shrinkage and Warpage Optimization of Expanded-Perlite-Filled Polypropylene Composites in Extrusion-Based Additive Manufacturing. Macromol. Mater. Eng. 2017, 302(10), 1–13. DOI: 10.1002/mame.201700143.
  • Sodeifian, G.; Ghaseminejad, S.; Yousefi, A. A. Preparation of polypropylene/short Glass Fiber Composite as Fused Deposition Modeling (FDM) Filament. Results. Phys. 2019, 12(November 2018), 205–222. DOI: 10.1016/j.rinp.2018.11.065.
  • Zhong, W.; Li, F.; Zhang, Z.; Song, L.; Li, Z. Short Fiber Reinforced Composites for Fused Deposition Modeling. Mater. Sci. Eng. A. 2001, 301(2), 125–130. DOI: 10.1016/S0921-5093(00)01810-4.
  • Spoerk, M.; Arbeiter, F.; Raguž, I.; Weingrill, G.; Fischinger, T.; Traxler, G.; Schuschnigg, S.; Cardon, L.; Holzer, C. Polypropylene Filled with Glass Spheres in Extrusion-Based Additive Manufacturing: Effect of Filler Size and Printing Chamber Temperature. Macromol. Mater. Eng. 2018, 303(7), 1800179. DOI: 10.1002/mame.201800179.
  • Popescu, D.; Zapciu, A.; Amza, C.; Baciu, F.; Marinescu, R. FDM Process Parameters Influence over the Mechanical Properties of Polymer Specimens: A Review. Polym. Test. 2018, 69, 157–166. DOI: 10.1016/j.polymertesting.2018.05.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.