249
Views
1
CrossRef citations to date
0
Altmetric
Review

Recent progress in experimental and molecular dynamics study of carbon nanotube reinforced rubber composites: a review

, ORCID Icon &
Pages 1792-1825 | Received 14 Feb 2022, Accepted 27 May 2022, Published online: 26 Jun 2022

References

  • Ijima, S. Helical Microtubules of Graphitic Carbon. Nature. 1991, 354(6348), 56–58. DOI: 10.1038/354056a0.
  • Kim, H.; Abdala, A. A.; MacOsko, C. W. Graphene/polymer Nanocomposites. Macromolecules. 2010, 43(16), 6515–6530. DOI: 10.1021/ma100572e.
  • Zhu, H. W.; Xu, C. L.; Wu, D. H.; Wei, B. Q.; Vajtai, R.; Ajayan, P. M. Direct Synthesis of Long single-walled Carbon Nanotube Strands. Science. 2002, 296(5569), 884–886. DOI: 10.1126/science.1066996.
  • Moniruzzaman, M.; Winey, K. I. Polymer Nanocomposites Containing Carbon Nanotubes. Macromolecules. 2006, 39(16), 5194–5205. DOI: 10.1021/ma060733p.
  • Peng, B.; Locascio, M.; Zapol, P.; Li, S.; Mielke, S. L.; Schatz, G. C.; Espinosa, H. D. Measurements of near-ultimate Strength for Multiwalled Carbon Nanotubes and irradiation-induced Crosslinking Improvements. Nat. Nanotechnol. 2008, 3(10), 626–631. DOI: 10.1038/nnano.2008.211.
  • Adohi, B. J. P.; Mdarhri, A.; Prunier, C.; Haidar, B.; Brosseau, C. A Comparison between Physical Properties of Carbon black-polymer and Carbon nanotubes-polymer Composites. J. Appl. Phys. 2010, 108(7), 074108. DOI: 10.1063/1.3486491.
  • Tans, S. J.; Devoret, M. H.; Dai, H.; Thess, A.; Smalley, R. E.; Geerligs, L. J.; Dekker, C . Individual single–wall Carbon Nanotubes as Quantum Wires. Nature. 1997, 386(APRIL), 474–477.
  • Gets, A. V.; Krainov, V. P. Conductivity of single-walled Carbon Nanotubes. J. Exp. Theor. Phys. 2016, 123(6), 1084–1089. DOI: 10.1134/S1063776116130033.
  • Chen, L. Zhang, M. Wei, W. Journal of Nanomaterials – Graphene-Based Composites as Cathode Materials for Lithium Ion Batteries.pdf. J. Nanomater 2013, 2013, 8. DOI: 10.1155/2013/940389 Review.
  • Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes. Nature. 1996, 381(6584), 678–680. DOI: 10.1038/381678a0.
  • Tarfaoui, M.; Lafdi, K.; El Moumen, A. Mechanical Properties of Carbon Nanotubes Based Polymer Composites. Compos. Part B Eng. 2016, 103, 113–121. DOI: 10.1016/j.compositesb.2016.08.016.
  • Lau, K. T.; Chipara, M.; Ling, H. Y.; Hui, D. On the Effective Elastic Moduli of Carbon Nanotubes for Nanocomposite Structures. Compos. Part B Eng. 2004, 35(2), 95–101. DOI: 10.1016/j.compositesb.2003.08.008.
  • Krishnan, A.; Dujardin, E.; Ebbesen, T. Young’s Modulus of single-walled Nanotubes. Phys. Rev. B - Condens. Matter Mater. Phys. 1998, 58(20), 14013–14019. DOI: 10.1103/PhysRevB.58.14013.
  • Bakshi, S. R.; Lahiri, D.; Agarwal, A. Carbon Nanotube Reinforced Metal Matrix Composites - A Review. Int. Mater. Rev. 2010, 55(1), 41–64. DOI: 10.1179/095066009X12572530170543.
  • Song, S. H.; Kwon, O. S.; Jeong, H. K.; Kang, Y. G. Properties of styrene-butadiene Rubber Nanocomposites Reinforced with Carbon Black, Carbon Nanotube, Graphene, Graphite. Korean J. Mater. Res. 2010, 20(2), 104–110. DOI: 10.3740/MRSK.2010.20.2.104.
  • Peddavarapu, S.; Jayendra Bharathi, R. Dry Sliding Wear Behaviour of AA6082-5%SiC and AA6082-5%TiB2 Metal Matrix Composites. Mater. Today Proc. 2018, 5(6), 14507–14511. DOI: 10.1016/j.matpr.2018.03.038.
  • Balasubramanian, K.; Burghard, M. Chemically Functionalized Carbon Nanotubes. Small. 2005, 1(2), 180–192. DOI: 10.1002/smll.200400118.
  • Hu, H.; Bhowmik, P.; Zhao, B.; Hamon, M. A.; Itkis, M. E.; Haddon, R. C. Determination of the Acidic Sites of Purified single-walled Carbon Nanotubes by acid-base Titration. Chem. Phys. Lett. 2001, 345(1–2), 25–28. DOI: 10.1016/S0009-2614(01)00851-X.
  • Zhao, J.; Park, H.; Han, J.; Lu, J. P. Electronic Properties of Carbon Nanotubes with Covalent Sidewall Functionalization. J. Phys. Chem. B. 2004, 108(14), 4227–4230. DOI: 10.1021/jp036814u.
  • Ma, P. C.; Siddiqui, N. A.; Marom, G.; Kim, J. K. Dispersion and Functionalization of Carbon Nanotubes for polymer-based Nanocomposites: A Review. Compos. Part A Appl. Sci. Manuf. 2010, 41(10), 1345–1367. DOI: 10.1016/j.compositesa.2010.07.003.
  • Kuzmany, H.; Kukovecz, A.; Simon, F.; Holzweber, M.; Kramberger, C.; Pichler, T. Functionalization of Carbon Nanotubes. Synth. Met. 2004, 141(1–2), 113–122. DOI: 10.1016/j.synthmet.2003.08.018.
  • Cui, J.; Zhao, J.; Wang, S.; Wang, Y.; Li, Y. Effects of Carbon Nanotubes Functionalization on Mechanical and Tribological Properties of Nitrile Rubber Nanocomposites: Molecular Dynamics Simulations. Comput. Mater. Sci. 2021, 196(February), 110556. DOI: 10.1016/j.commatsci.2021.110556.
  • Stojkovic, D.; Zhang, P.; Crespi, V. H. Smallest Nanotube: Breaking the Symmetry of sp3 Bonds in Tubular Geometries. Phys. Rev. Lett. 2001, 87(12), 3–6. DOI: 10.1103/PhysRevLett.87.125502.
  • Melchionna, M.; Prato, M. Functionalization of Carbon Nanotubes. Nanocarbon Inorganic Hybrids Next Gener. Compos. Sustain. Energy Appl. 2014, 124(5), 43–70. DOI: 10.1515/9783110269864.43.
  • Georgakilas, V.; Voulgaris, D.; Vázquez, E.; Prato, M.; Guldi, D. M.; Kukovecz, A.; Kuzmany, H . Purification of HiPCO Carbon Nanotubes via Organic Functionalization. J. Am. Chem. Soc. 2002, 124(48), 14318–14319. DOI: 10.1021/ja0260869.
  • Pekker, S.; Salvetat, J. P.; Jakab, E.; Bonard, J. M.; Forró, L. Hydrogenation of Carbon Nanotubes and Graphite in Liquid Ammonia. J. Phys. Chem. B. 2001, 105(33), 7938–7943. DOI: 10.1021/jp010642o.
  • Hu, H.; Zhao, B.; Hamon, M. A.; Kamaras, K.; Itkis, M. E.; Haddon, R. C . Sidewall Functionalization of Carbon Nanotubes. Angew. Chemie - Int. Ed 2001, 40(21), 4002–4005. DOI: 10.1002/1521-3773(20011105)40:21<4002::AID-ANIE4002>3.0.CO;2-8.
  • Sianipar, M.; Khoiruddin, S. H. K.; Iskandar, F.; Wenten, I. G. Functionalized Carbon Nanotube (CNT) Membrane: Progress and Challenges. RSC Adv. 2017, 7(81), 51175–51198. DOI: 10.1039/c7ra08570b.
  • Mubarak, N. M.; Abdullah, E. C.; Jayakumar, N. S.; Sahu, J. N. An Overview on Methods for the Production of Carbon Nanotubes. J. Ind. Eng. Chem. 2014, 20(4), 1186–1197. DOI: 10.1016/j.jiec.2013.09.001.
  • Arora, N.; Sharma, N. N. Diamond & Related Materials Arc Discharge Synthesis of Carbon Nanotubes : Comprehensive Review. Diam. Relat. Mater. 2014, 50, 135–150. DOI: 10.1016/j.diamond.2014.10.001.
  • Ebbesen, T.; Ajayan, P. Large-scale synthesis of carbon nanotubes. Nature. 358, 1992, 220–222. doi:10.1038/358220a0.
  • Das, R.; Shahnavaz, Z.; Ali, E.; Islam, M. M.; Bee, S.; Hamid, A. Can We Optimize Arc Discharge and Laser Ablation for Well-Controlled Carbon Nanotube Synthesis ? Nanoscale Res. Lett. 2016, 11(1). DOI: 10.1186/s11671-016-1730-0.
  • Dai, H. Carbon Nanotubes: Opportunities and Challenges. Surf. Sci. 2002, 500(1–3), 218–241. DOI: 10.1016/S0039-6028(01)01558-8.
  • Shah, K. A.; Tali, B. A. Materials Science in Semiconductor Processing Synthesis of Carbon Nanotubes by Catalytic Chemical Vapour Deposition : A Review on Carbon Sources, Catalysts and Substrates. Mater. Sci. Semicond. Process. 2016, 41, 67–82. DOI: 10.1016/j.mssp.2015.08.013.
  • Jian, M. Q.; Xie, H. H.; Xia, K. L., and Zhang, Y. Y. Chapter 15 - Challenge and Opportunities of Carbon Nanotubes.In Micro and Nano Technologies, Industrial Applications of Carbon Nanotubes. Peng, H., Li, Q., Chen, T. Eds; Amsterdam, Netherlands: Elsevier Inc. 433–476, 2017 .
  • Papageorgiou, D. G.; Kinloch, I. A.; Young, R. J. Graphene/elastomer Nanocomposites. Carbon. 2015, 95, 460–484. DOI: 10.1016/j.carbon.2015.08.055.
  • Manshaie, R.; Nouri Khorasani, S.; Jahanbani Veshare, S.; Rezaei Abadchi, M. Effect of Electron Beam Irradiation on the Properties of Natural Rubber (NR)/styrene-butadiene Rubber (SBR) Blend. Radiat. Phys. Chem. 2011, 80(1), 100–106. DOI: 10.1016/j.radphyschem.2010.08.015.
  • Ngudsuntear, C.; Limtrakul, S.; Vatanatham, T., and Wichien, A. N. Effect of Blend Ratio on Cure Characteristics, Mechanical Properties, and Aging Resistance of Silica- Filled ENR/SBR Blends. Int. Trans. J. Eng. Manag. Appl. Sciences Technol. 2014, 5(1), 11–24. doi:10.14456/rjas.2015.7
  • Miranda, M. E.S.; Marcolla, C.; Rodrígues, C. A.; Wilhelm, H. M.; Bresolin, T. M. B.; de Freitas, R. A . I . The Role of N-carboxymethylation of Chitosan in the Thermal Stability and Dynamic. Polym. Int. 2006, 55(January), 961–969. DOI: 10.1002/pi.
  • Verge, P.; Peeterbroeck, S.; Bonnaud, L.; Dubois, P. Investigation on the Dispersion of Carbon Nanotubes in Nitrile Butadiene Rubber: Role of polymer-to-filler Grafting Reaction. Compos. Sci. Technol. 2010, 70(10), 1453–1459. DOI: 10.1016/j.compscitech.2010.04.022.
  • Mazlan, N.; Jaafar, M.; Aziz, A.; Ismail, H.; Busfield, J. J. C. Effects of Different Processing Techniques on multi-walled Carbon nanotubes/silicone Rubber Nanocomposite on Tensile Strength Properties. IOP Conf. Ser. Mater. Sci. Eng. 2016, 152(1), 012060. DOI: 10.1088/1757-899X/152/1/012060.
  • Song, S. H. Synergistic Effect of Clay Platelets and Carbon Nanotubes in Styrene–Butadiene Rubber Nanocomposites. Macromol. Chem. Phys. 2016, 217(23), 2617–2625. DOI: 10.1002/macp.201600344.
  • Psarras, G. C.; Sofos, G. A.; Vradis, A; Anastassopoulos, D. L.; Georga, S. N.; Krontiras, C. A.; Karger-Kocsis, J . HNBR and Its MWCNT Reinforced Nanocomposites: Crystalline Morphology and Electrical Response. Eur. Polym. J. 2014, 54(1), 190–199. DOI: 10.1016/j.eurpolymj.2014.03.002.
  • Alipour, A. Fabrication and Characterization of Nanostructured Polymer Composites Prepared by Melt Compounding. Int. J. Biosci. Biochem. Bioinforma. 2012, 2(2), 79–84. DOI: 10.7763/ijbbb.2012.v2.76.
  • Kumar, V.; Lee, D. J. Studies of Nanocomposites Based on Carbon Nanomaterials and RTV Silicone Rubber. J. Appl. Polym. Sci. 2017, 134(4), 1–9. DOI: 10.1002/app.44407.
  • Choi, S. S.; Kim, J. C. Chlorine Effect on Thermal Aging Behaviors of BR and CR Composites. Bull. Korean Chem. Soc. 2010, 31(9), 2613–2617. DOI: 10.5012/bkcs.2010.31.9.2613.
  • Ahmed, N. M.; El-sabbagh, S. H. The Influence of Doped-Kaolin on the Properties of Styrene-Butadiene Rubber Composites. Int. J. Adv. Res. 2015, 3(5), 1–19.
  • Abraham, J.; Mohammed Arif, P.; Kailas, L.; Kalarikkal, N.; George, S. C.; Thomas, S. Developing Highly Conducting and Mechanically Durable Styrene Butadiene Rubber Composites with Tailored Microstructural Properties by a Green Approach Using Ionic Liquid Modified MWCNTs. RSC Adv. 2016, 6(39), 32493–32504. DOI: 10.1039/c6ra01886f.
  • Tanahashi, M.; Watanabe, Y.; Lee, J. C.; Kunihiko, T.; Fujisawa, T. Melt Flow and Mechanical Properties of Silicalperfluoropolymer Nanocomposites Fabricated by Direct melt-compounding without Surface Modification on nano-silica. J. Nanosci. Nanotechnol. 2009, 9(1), 539–549. DOI: 10.1166/jnn.2009.J027.
  • Mittal, G.; Dhand, V.; Rhee, K. Y.; Park, S. J.; Lee, W. R. A Review on Carbon Nanotubes and Graphene as Fillers in Reinforced Polymer Nanocomposites. J. Ind. Eng. Chem. 2015, 21, 11–25. DOI: 10.1016/j.jiec.2014.03.022.
  • Bokobza, L. Enhanced Electrical and Mechanical Properties of Multiwall Carbon Nanotube Rubber Composites. Polym. Adv. Technol. 2012, 23(12), 1543–1549. DOI: 10.1002/pat.3027.
  • Xu, J.; Li, S.; Li, Y.; Ta, X. Preparation, Morphology and Properties of Natural rubber/carbon black/multi-walled Carbon Nanotubes Conductive Composites. J. Mater. Sci. Mater. Electron. 2016, 27(9), 9531–9540. DOI: 10.1007/s10854-016-5005-4.
  • Sharma, S. Molecular Dynamics Simulation of Nanocomposites Using BIOVIA Materials Studio, Lammps and Gromacs; Mattthew Deans: Elsevier, Amsterdam, Netherlands, 2019.
  • Pal, B. C., and Ray, S. Molecular Dynamics Simulation of Nanostructured Materials: An Understanding of Mechanical Behavior, 2020th; New York: Taylor and Francis Group, 2016; Vol. 1107.
  • Alder, B. J.; Wainwright, T. E. Phase Transition for a Hard Sphere System. J. Chem. Phys. 1957, 27(5), 1208–1209. DOI: 10.1063/1.1743957.
  • Luo, K.; Zheng, W.; Zhao, X.; Wang, X.; Wu, S. Effects of Antioxidant Functionalized Silica on Reinforcement and Anti- Aging for solution-polymerized Styrene Butadiene Rubber : Experimental and Molecular Simulation Study. Mater. Des. 2018, 154, 312–325. DOI: 10.1016/j.matdes.2018.05.048.
  • He, E.; Wang, S.; Li, Y.; Wang, Q. Enhanced Tribological Properties of Polymer Composites by Incorporation of nano-SiO2 Particles: A Molecular Dynamics Simulation Study. Comput. Mater. Sci. 2017, 134, 93–99. DOI: 10.1016/j.commatsci.2017.03.043.
  • Al-Ostaz, A.; Pal, G.; Mantena, P. R.; Cheng, A. Molecular Dynamics Simulation of SWCNT-polymer Nanocomposite and Its Constituents. J. Mater. Sci. 2008, 43(1), 164–173. DOI: 10.1007/s10853-007-2132-6.
  • Frankland, S. J. V.; Harik, V. M.; Odegard, G. M.; Brenner, D. W.; Gates, T. S. The stress-strain Behavior of polymer-nanotube Composites from Molecular Dynamics Simulation. Compos. Sci. Technol. 2003, 63(11), 1655–1661. DOI: 10.1016/S0266-3538(03)00059-9.
  • Diani, J.; Gall, K. Finite Strain 3D Thermoviscoelastic Constitutive Model. Society. 2006, 1–10. DOI: 10.1002/pen.
  • Thomas, S.; Thomas, S.; Abraham, J.; George, S. C.; Thomas, S. Investigation of the Mechanical, Thermal and Transport Properties of NR/NBR Blends: Impact of Organoclay Content. J. Polym. Res. 2018, 25(8). DOI: 10.1007/s10965-018-1562-y.
  • Li, Y.; Wang, S.; Wang, Q.; Xing, M. Enhancement of Fracture Properties of Polymer Composites Reinforced by Carbon Nanotubes: A Molecular Dynamics Study. Carbon. 2018, 129, 504–509. DOI: 10.1016/j.carbon.2017.12.029.
  • Arash, B.; Wang, Q.; Varadan, V. K. Mechanical Properties of Carbon nanotube/polymer Composites. Sci. Rep. 2014, 4, 1–8. DOI: 10.1038/srep06479.
  • Kutsch, O. Marktstudie Synthetische Elastomere. In Market Study Synthetic Rubber. Ceresana.
  • Ponnamma, D.; Ramachandran, R.; Hussain, S.; Rajaraman, R.; Amarendra, G.; Varughese, K. T.; Thomas, S . Free-volume Correlation with Mechanical and Dielectric Properties of Natural rubber/multi Walled Carbon Nanotubes Composites. Compos. Part A Appl. Sci. Manuf. 2015, 77, 164–171. DOI: 10.1016/j.compositesa.2015.06.023.
  • De Falco, A.; Goyanes, S.; Rubiolo, G. H.; Mondragon, I.; Marzocca, A. Carbon Nanotubes as Reinforcement of styrene-butadiene Rubber. Appl. Surf. Sci. 2007, 254( 1 SPEC. ISS.), 262–265. DOI: 10.1016/j.apsusc.2007.07.049.
  • Bhattacharya, M.; Bhowmick, A. K. Synergy in Carbon black-filled Natural Rubber Nanocomposites. Part I: Mechanical, Dynamic Mechanical Properties, and Morphology. J. Mater. Sci. 2010, 45(22), 6126–6138. DOI: 10.1007/s10853-010-4699-6.
  • Girun, N.; Ahmadun, F. R.; Rashid, S. A.; Atieh, M. A. Multi-wall Carbon nanotubes/Styrene Butadiene Rubber (SBR) Nanocomposite. Fuller. Nanotube. Carbon Nanostruct. 2007, 15(3), 207–214. DOI: 10.1080/15363830701236449.
  • Peddini, S. K.; Bosnyak, C. P.; Henderson, N. M.; Ellison, C. J.; Paul, D. R. Nanocomposites from styrene-butadiene Rubber (SBR) and Multiwall Carbon Nanotubes (MWCNT) Part 1: Morphology and Rheology. Polymer (Guildf.). 2014, 55(1), 258–270. DOI: 10.1016/j.polymer.2013.11.003.
  • Peddini, S. K.; Bosnyak, C. P.; Henderson, N. M.; Ellison, C. J.; Paul, D. R. Nanocomposites from styrene-butadiene Rubber (SBR) and Multiwall Carbon Nanotubes (MWCNT) Part 2: Mechanical Properties. Polymer (Guildf.). 2015, 56, 443–451. DOI: 10.1016/j.polymer.2014.11.006.
  • Atieh, M. A. Effect of Functionalized Carbon Nanotubes with Carboxylic Functional Group on the Mechanical and Thermal Properties of Styrene Butadiene Rubber. Fuller. Nanotub. Carbon Nanostruct. 2011, 19(7), 617–627. DOI: 10.1080/1536383X.2010.504953.
  • Das, A.; Kasaliwal, G. R.; Jurk, R.; Boldt, R.; Fischer, D; Stöckelhuber, K. W.; Heinrich, G . Rubber Composites Based on Graphene Nanoplatelets, Expanded Graphite, Carbon Nanotubes and Their Combination: A Comparative Study. Compos. Sci. Technol. 2012, 72(16), 1961–1967. DOI: 10.1016/j.compscitech.2012.09.005.
  • Laoui, T. Mechanical and Thermal Properties of Styrene Butadiene Rubber - Functionalized Carbon Nanotubes Nanocomposites. Fuller. Nanotub. Carbon Nanostruct. 2013, 21(2), 89–101. DOI: 10.1080/1536383X.2011.574324.
  • Zhou, X.; Zhu, Y.; Liang, J.; Yu, S. New Fabrication and Mechanical Properties of Styrene-Butadiene Rubber/Carbon Nanotubes Nanocomposite. J. Mater. Sci. Technol. 2010, 26(12), 1127–1132. DOI: 10.1016/S1005-0302(11)60012-1.
  • Das, A.; Stöckelhuber, K. W.; Jurk, R.; Saphiannikova, M.; Fritzsche, J.; Lorenz, H.; Klüppel, M.; Heinrich, G . Modified and Unmodified Multiwalled Carbon Nanotubes in High Performance solution-styrene–butadiene and Butadiene Rubber Blends. Polymer (Guildf.) 2008, 49(24), 5276–5283. DOI: 10.1016/j.polymer.2008.09.031.
  • Abraham, J.; Soney, M. M. G.; George, C.; Kalarikkal, N.; Thomas, S . Carbon nanotube-thermally reduced graphene hybrid/styrene butadiene rubber nano composites: Mechanical, morphological and dielectricstudies. Res. Rev. J. Eng. Technol. 2015, 4(3), 1–5.
  • Zhou, X.; Zhu, Y.; Gong, Q.; Liang, J. Preparation and Properties of the Powder SBR Composites Filled with CNTs by Spray Drying Process. Mater. Lett. 2006, 60(29–30), 3769–3775. DOI: 10.1016/j.matlet.2006.03.147.
  • Dong, B.; Liu, C.; Lu, Y.; Wu, Y. Synergistic Effects of Carbon Nanotubes and Carbon Black on the Fracture and Fatigue Resistance of Natural Rubber Composites. J. Appl. Polym. Sci. 2015, 132(25), 1–8. DOI: 10.1002/app.42075.
  • Naderi, G.; Ghoreishy, M. H. R.; Moradi, M. Effect of Modified single-wall Carbon Nanotubes on Mechanical and Morphological Properties of Thermoplastic Elastomer Nanocomposites Based on (Polyamide 6)/(acrylonitrile Butadiene Rubber). J. Vinyl Addit. Technol. 2016, 22(3), 336–341. DOI: 10.1002/vnl.21451.
  • Hajibaba, A.; Naderi, G.; Ghoreishy, M.; Bakhshandeh, G.; Nouri, M. R. Effect of single-walled Carbon Nanotubes on Morphology and Mechanical Properties of NBR/PVC Blends. Iran. Polym. J. (English Ed.). 2012, 21(8), 505–511. DOI: 10.1007/s13726-012-0055-9.
  • Anwendungen, R. U. N. D. Application of Carbon Nano Tubes in Specialty Rubbers – Discover More Interesting Articles and News on the Subject ! Entdecken Sie Weitere Interessante Artikel Und News Zum Thema ! KGK Rubber Point. 2016, 45–52.
  • Yue, D.; Liu, Y.; Shen, Z.; Zhang, L. Study on Preparation and Properties of Carbon nanotubes/rubber Composites. J. Mater. Sci. 2006, 41(8), 2541–2544. DOI: 10.1007/s10853-006-5331-7.
  • Boonbumrung, A.; Sae-Oui, P.; Sirisinha, C. Reinforcement of Multiwalled Carbon Nanotube in Nitrile Rubber: In Comparison with Carbon Black, Conductive Carbon Black, and Precipitated Silica. J. Nanomater. 2016, 2016, 1–8. DOI: 10.1155/2016/6391572.
  • Ryu, S. R.; Sung, J. W.; Lee, D. J. Strain-induced Crystallization and Mechanical Properties of Nbr Composites with Carbon Nanotube and Carbon Black. Rubber Chem. Technol. 2012, 85(2), 207–218. DOI: 10.5254/rct.12.88955.
  • Likozar, B.; Major, Z. Morphology, Mechanical, cross-linking, Thermal, and Tribological Properties of Nitrile and Hydrogenated Nitrile rubber/multi-walled Carbon Nanotubes Composites Prepared by Melt Compounding: The Effect of Acrylonitrile Content and Hydrogenation. Appl. Surf. Sci. 2010, 257(2), 565–573. DOI: 10.1016/j.apsusc.2010.07.034.
  • Salehi, M. M.; Khalkhali, T.; Davoodi, A. A. The Physical and Mechanical Properties and Cure Characteristics of NBR/silica/MWCNT Hybrid Composites. Polym. Sci. - Ser. A. 2016, 58(4), 567–577. DOI: 10.1134/S0965545X16040131.
  • Mahmood, N.; Khan, A. U.; Stöckelhuber, K. W.; Das, A.; Jehnichen, D.; Heinrich, G. Carbon nanotubes-filled Thermoplastic polyurethane-urea and Carboxylated Acrylonitrile Butadiene Rubber Blend Nanocomposites. J. Appl. Polym. Sci. 2014, 131(11), 1–8. DOI: 10.1002/app.40341.
  • Wang, X.; Chen, D.; Zhong, W.; Zhang, L.; Fan, X.; Cai, Z.; Zhu, M . Experimental and Theoretical Evaluations of the Interfacial Interaction between Carbon Nanotubes and Carboxylated Butadiene Nitrile Rubber: Mechanical and Damping Properties. Mater. Des. 2020, 186, 108318. DOI: 10.1016/j.matdes.2019.108318.
  • Zheng, M.; Chen, X.; Cheng, H.; Cao, C.; Qian, Q., Dingshan Yu, D.; Chen, X . Simultaneous Enhancement of Dielectric and Mechanical Properties of high-density polyethylene/nitrile rubber/multiwalled Carbon Nanotube Composites Prepared by Dynamic Vulcanization. Polym. Int 2021, 70(1), 116–122. DOI: 10.1002/pi.6100.
  • Roy, S.; Srivastava, S. K.; Mittal, V. Facile Noncovalent Assembly of MWCNT-LDH and CNF-LDH as Reinforcing Hybrid Fillers in Thermoplastic polyurethane/nitrile Butadiene Rubber Blends. J. Polym. Res. 2016, 23(2), 1–11. DOI: 10.1007/s10965-016-0926-4.
  • Roy, S.; Srivastava, K.; Mittal, V. “Assembly of Layered Double Hydroxide on multi-walled Carbon Nanotubes as Reinforcing Hybrid Nanofiller in Thermoplastic polyurethane/nitrile Butadiene Rubber Blends,” No. October. 2015. DOI: 10.1002/pi.5032.
  • Teng, F.; Wu, J.; Su, B.; Wang, Y. Enhanced Tribological Properties of Vulcanized Natural Rubber Composites by Applications of Carbon Nanotube: A Molecular Dynamics Study. Nanomaterials. 2021, 11(9), 2464. DOI: 10.3390/nano11092464.
  • Liu, Y.; Chi, W.; Duan, H.; Zou, H.; Yue, D.; Zhang, L. Property Improvement of Room Temperature Vulcanized Silicone Elastomer by surface-modified multi-walled Carbon Nanotube Inclusion. J. Alloys Compd. 2016, 657, 472–477. DOI: 10.1016/j.jallcom.2015.10.129.
  • Shang, S.; Gan, L.; Yuen, M. C. W.; Jiang, S. X.; Mei Luo, N. Carbon Nanotubes Based High Temperature Vulcanized Silicone Rubber Nanocomposite with Excellent Elasticity and Electrical Properties. Compos. Part A Appl. Sci. Manuf. 2014, 66, 135–141. DOI: 10.1016/j.compositesa.2014.07.014.
  • Cha, J. E.; Kim, S. Y.; Lee, S. H. Effect of Continuous multi-walled Carbon Nanotubes on Thermal and Mechanical Properties of Flexible Composite Film. Nanomaterials. 2016, 6(10), 182. DOI: 10.3390/nano6100182.
  • Sankar, N.; Reddy, M. N.; Krishna Prasad, R. Carbon Nanotubes Dispersed Polymer Nanocomposites: Mechanical, Electrical, Thermal Properties and Surface Morphology. Bull. Mater. Sci. 2016, 39(1), 47–55. DOI: 10.1007/s12034-015-1117-3.
  • Wu, C. L.; Lin, H. C.; Hsu, J. S.; Yip, M. C.; Fang, W. Static and Dynamic Mechanical Properties of polydimethylsiloxane/carbon Nanotube Nanocomposites. Thin Solid Films. 2009, 517(17), 4895–4901. DOI: 10.1016/j.tsf.2009.03.146.
  • Saji, J.; Khare, A.; Choudhary, R. N. P.; Mahapatra, S. P. Visco-elastic and Dielectric Relaxation Behavior of Multiwalled carbon-nanotube Reinforced Silicon Elastomer Nanocomposites. J. Polym. Res. 2014, 21(2). DOI: 10.1007/s10965-013-0341-z.
  • Pradhan, B.; Srivastava, S. K. Synergistic Effect of three-dimensional multi-walled Carbon nanotube-graphene Nanofiller in Enhancing the Mechanical and Thermal Properties of high-performance Silicone Rubber. Polym. Int. 2014, 63(7), 1219–1228. DOI: 10.1002/pi.4627.
  • Pradhan, B.; Roy, S.; Srivastava, S. K.; Saxena, A. Synergistic Effect of Carbon Nanotubes and Clay Platelets in Reinforcing Properties of Silicone Rubber Nanocomposites. J. Appl. Polym. Sci. 2015, 132(15), 1–11. DOI: 10.1002/app.41818.
  • Sui, G.; Zhong, W. H.; Yang, X. P.; Yu, Y. H. Curing Kinetics and Mechanical Behavior of Natural Rubber Reinforced with Pretreated Carbon Nanotubes. Mater. Sci. Eng. A. 2008, 485(1–2), 524–531. DOI: 10.1016/j.msea.2007.09.007.
  • Ponnamma, D.; Sung, S. H.; Hong, J. S.; Ahn, K. H.; Varughese, K. T.; Thomas, S. Influence of non-covalent Functionalization of Carbon Nanotubes on the Rheological Behavior of Natural Rubber Latex Nanocomposites. Eur. Polym. J. 2014, 53(1), 147–159. DOI: 10.1016/j.eurpolymj.2014.01.025.
  • Tarawneh, M. A.; Ahmad, S. H.; Yahya, S. Y.; Rasid, R.; Yong Eh Noum, S. Mechanical Properties of Thermoplastic Natural Rubber Reinforced with multi-walled Carbon Nanotubes. J. Reinf. Plast. Compos. 2011, 30(4), 363–368. DOI: 10.1177/0731684410397407.
  • Barkoula, N. M.; Alcock, B.; Cabrera, N. O.; Peijs, T. Flame-Retardancy Properties of Intumescent Ammonium Poly(Phosphate) and Mineral Filler Magnesium Hydroxide in Combination with Graphene. Polym. Polym. Compos. 2008, 16(2), 101–113. DOI: 10.1002/pc.
  • Le, H. H.; Abhijeet, S.; Ilisch, S.; Klehm, J.; Henning, S.; Beiner, M.; Sarkawi, S. S.; Dierkes, W.; Das, A.; Fischer, D, et al. The Role of Linked Phospholipids in the rubber-filler Interaction in Carbon Nanotube (CNT) Filled Natural Rubber (NR) Composites. Polymer (Guildf.) 2014, 55(18), 4738–4747. DOI: 10.1016/j.polymer.2014.07.043.
  • Ismail, H.; Ramly, A. F.; Othman, N. Effects of silica/multiwall Carbon Nanotube Hybrid Fillers on the Properties of Natural Rubber Nanocomposites. J. Appl. Polym. Sci. 2013, 128(4), 2433–2438. DOI: 10.1002/app.38298.
  • Deng, F.; Ito, M.; Noguchi, T.; Wang, L.; Ueki, H.; Niihara, K.; Kim, Y. A.; Endo, M.; Zheng, Q. S . Elucidation of the Reinforcing Mechanism in Carbon nanotube/rubber Nanocomposites. ACS Nano 2011, 5(5), 3858–3866. DOI: 10.1021/nn200201u.
  • Azira, A. A.; Hassim, D. H. A. I.; Verasamy, D.; Suriani, A. B.; Rusop, M. Properties of Natural Rubber Nanocomposites Reinforced with Carbon Nanotubes. Adv. Mater. Res. 2015, 1109, 195–199. www.scientific.net/amr.1109.195.
  • Singh, K.; Ohlan, A.; Saini, P.; Dhawan, S. K. Composite – Super Paramagnetic Behavior and Variable Range Hopping 1D Conduction Mechanism – Synthesis and Characterization. Polym. Adv. Technol. no. November 2007. 2008, 19(3), 229–236. DOI: 10.1002/pat.
  • Saravari, O.; Boonmahitthisud, A.; Satitnaithum, W.; Chuayjuljit, S. Mechanical and Electrical Properties of Natural rubber/carbon Nanotube Nanocomposites Prepared by Latex Compounding. Adv. Mater. Res. 2013, 664, 543–546. www.scientific.net/AMR.664.543.
  • Jiang, H. X.; Ni, Q. Q.; Natsuki, T. Mechanical Properties of Carbon Nanotubes Reinforced Natural Rubber Composites. Adv. Mater. Res. 2009, 79–82, 417–420. www.scientific.net/AMR.79-82.417.
  • Shanmugharaj, A. M.; Hun Ryu, S. Influence of aminosilane-functionalized Carbon Nanotubes on the Rheometric, Mechanical, Electrical and Thermal Degradation Properties of Epoxidized Natural Rubber Nanocomposites. Polym. Int. 2013, 62(10), 1433–1441. DOI: 10.1002/pi.4437.
  • Al-Hartomy, O.; Al-Ghamdi, A.; Al Said, S. F.; Dishovsky, N.; Mihaylov, M.; Ivanov, M.; Zaimova, D. . Comparison of the Dielectric Thermal Properties and Dynamic Mechanical Thermal Properties of Natural Rubber-Based Composites Comprising Multiwall Carbon Nanotubes and Graphene Nanoplatelets. Fuller. Nanotub. Carbon Nanostruct. 2015, 23(12), 1001–1007. DOI: 10.1080/1536383X.2015.1004572.
  • Bokobza, L. Multiwall Carbon nanotube-filled Natural Rubber: Electrical and Mechanical Properties. Express Polym. Lett. 2012, 6(3), 213–223. DOI: 10.3144/expresspolymlett.2012.24.
  • Ismail, H.; Ramly, A. F.; Othman, N. The Effect of Carbon black/multiwall Carbon Nanotube Hybrid Fillers on the Properties of Natural Rubber Nanocomposites. Polym. - Plast. Technol. Eng. 2011, 50(7), 660–666. DOI: 10.1080/03602559.2010.551380.
  • Yang, Z.; Peng, H.; Wang, W.; Liu, T. Crystallization Behavior of poly(ε-caprolactone)/layered Double Hydroxide Nanocomposites. J. Appl. Polym. Sci. 2010, 116(5), 2658–2667. DOI: 10.1002/app.
  • George, N.; Julie, J. C.; Mathiazhagan, A.; Joseph, R. High Performance Natural Rubber Composites with Conductive Segregated Network of Multiwalled Carbon Nanotubes. Compos. Sci. Technol. 2015, 116, 33–40. DOI: 10.1016/j.compscitech.2015.05.008.
  • Sae-Oui, P.; Thepsuwan, U.; Thaptong, P.; Sirisinha, C. Comparison of Reinforcing Efficiency of Carbon Black, Conductive Carbon Black, and Carbon Nanotube in Natural Rubber. Adv. Polym. Technol. 2014, 33(4), 1–7. DOI: 10.1002/adv.21422.
  • Georgantzinos, S. K.; Giannopoulos, G. I.; Anifantis, N. K. Investigation of stress-strain Behavior of Single Walled Carbon nanotube/rubber Composites by a multi-scale Finite Element Method. Theor. Appl. Fract. Mech. 2009, 52(3), 158–164. DOI: 10.1016/j.tafmec.2009.09.005.
  • Dhawan, M.; Chawla, R. A Computational Study on thermo-mechanical Characterization of Carbon Nanotube Reinforced Natural Rubber. MRS Adv. 2019, 4(20), 1161–1166. DOI: 10.1557/adv.2018.680.
  • Chawla, R.; Sharma, S. A Molecular Dynamics Study on Young’s Modulus and Tribology of Carbon Nanotube Reinforced styrene-butadiene Rubber. J. Mol. Model. 2018, 24(4). DOI: 10.1007/s00894-018-3636-5.
  • Zhang, X.; Zhou, X.; Ji, W.; Zhang, F.; Otto, F. Characterizing the Mechanical Properties of Multi-Layered CNTs Reinforced SBS Modified Asphalt-Binder. Constr. Build. Mater. 2021, 296, 123658. DOI: 10.1016/j.conbuildmat.2021.123658.
  • Li, Y.; Wang, S.; Arash, B.; Wang, Q. A Study on Tribology of nitrile-butadiene Rubber Composites by Incorporation of Carbon Nanotubes: Molecular Dynamics Simulations. Carbon. 2016, 100, 145–150. DOI: 10.1016/j.carbon.2015.12.104.
  • Lu, L.; Zhai, Y.; Zhang, Y.; Ong, C.; Guo, S. Reinforcement of Hydrogenated Carboxylated nitrile-butadiene Rubber by multi-walled Carbon Nanotubes. Appl. Surf. Sci. 2008, 255(5 PART 1), 2162–2166. DOI: 10.1016/j.apsusc.2008.07.052.
  • Liu, X.; Zhou, X.; Kuang, F.; Zuo, H.; Huang, J. Mechanical and Tribological Properties of Nitrile Rubber Reinforced by Nano-SiO2: Molecular Dynamics Simulation. Tribol. Lett. 2021, 69(2), 1–11. DOI: 10.1007/s11249-021-01427-9.
  • Ji, L.; Chen, L.; Lin, L.; Wang, S. Mechanical Properties of Amide Functionalized CNT/NBR at Different Temperatures: A Molecular Dynamics Study. Polymers (Basel). 2022, 14(7), 1307. DOI: 10.3390/polym14071307.
  • Li, Y.; Wang, S.; Wang, Q.; Xing, M. Molecular Dynamics Simulations of Tribology Properties of NBR (Nitrile-Butadiene Rubber) /Carbon Nanotube Composites. Compos. Part B Eng. 2016, 97, 62–67. DOI: 10.1016/j.compositesb.2016.04.053.
  • Yang, B.; Wang, S.; Li, Y.; Liming, T.; Enqiu, H.; Song, S. Molecular Dynamics Simulations of Mechanical Properties of Swollen Nitrile Rubber Composites by Incorporating Carbon Nanotubes. Polym. Compos. 2020, 41(8), 3160–3169. DOI: 10.1002/pc.25607.
  • Geng, H.; Gu, H.; Wang, D.; Li, W.; Luo, R. Comparative Studies on Mechanical Properties and Dehydrochlorination of Chlorinated Natural rubber-based Composites Containing Carbon Nanotubes and Graphene through DFT and Experiments. Plast. Rubber Compos. 2021, 1–9. DOI: 10.1080/14658011.2021.2008703.
  • Ketkaew, R.; Tantirungrotechai, Y. Dissipative Particle Dynamics Study of SWCNT Reinforced Natural Rubber Composite System: An Important Role of Self-Avoiding Model on Mechanical Properties. Macromol. Theory Simul. 2018, 27(3), 1–10. DOI: 10.1002/mats.201700093.
  • Khuntawee, W.; Sutthibutpong, T.; Phongphanphanee, S.; Karttunen, M.; Wong-Ekkabut, J. Molecular Dynamics Study of Natural rubber-fullerene Composites: Connecting Microscopic Properties to Macroscopic Behavior. Phys. Chem. Chem. Phys. 2019, 21(35), 19403–19413. DOI: 10.1039/c9cp03155c.
  • Dhawan, M. Dondapati, R. S., and Sharma, S. Mechanical Characterization of Defective Single-Walled Carbon Nanotubes Reinforced Natural Rubber Composites, Proc. - 4th Int. Conf. Comput. Sci. ICCS Lovely Professional University, Punjab, India, 2018, pp. 209–212, 2019, doi: 10.1109/ICCS.2018.00042.
  • Yang, B.; Wang, S.; Song, Z.; Liu, L.; Li, H.; Li, Y. Molecular Dynamics Study on the Reinforcing Effect of Incorporation of graphene/carbon Nanotubes on the Mechanical Properties of Swelling Rubber. Polym. Test. 2021, 102(July), 107337. DOI: 10.1016/j.polymertesting.2021.107337.
  • Pradhan, B.; Srivastava, S. K. Layered Double hydroxide/multiwalled Carbon Nanotube Hybrids as Reinforcing Filler in Silicone Rubber. Compos. Part A Appl. Sci. Manuf. 2014, 56, 290–299. DOI: 10.1016/j.compositesa.2013.10.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.