675
Views
17
CrossRef citations to date
0
Altmetric
Review

A review on polyaniline and graphene nanocomposites for supercapacitors

ORCID Icon
Pages 1871-1907 | Received 07 Feb 2022, Accepted 02 Jun 2022, Published online: 19 Jun 2022

References

  • Kucinskis, G.; Bajars, G.; Kleperis, J. Graphene in Lithium Ion Battery Cathode Materials: A Review. J. Power Sources. 2013, 240, 66–79. DOI: 10.1016/j.jpowsour.2013.03.160.
  • Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V. Structural Defects in Graphene. ACS Nano. 2011, 5, 26–41.
  • Liu, Y.; Wang, H.; Zhou, J.; Bian, L.; Zhu, E.; Hai, J.; Tang, J.; Tang, W. Graphene/ Polypyrrole Intercalating Nano Composites as Supercapacitors Electrode. Electrochim. Acta. 2013, 112, 44–52.
  • Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191.
  • Kirubasankar, B.; Murugadoss, V.; Lin, J.; Ding, T.; Dong, M.; Liu, H.; Angaiah, S. In Situ Grown Nickel Selenide on Graphene Nanohybrid Electrodes for High Energy Density Asymmetric Supercapacitors. Nanoscale. 2018, 10, 20414–20425.
  • Davies, A.; Audette, P.; Farrow, B.; Hassan, F.; Chen, Z.; Choi, J.-Y.; Yu, A. Graphene-based Flexible Supercapacitors: Pulse-electropolymerization of Polypyrrole on free-standing Graphene Films. J. Phys. Chem. C. 2011, 115, 17612–17620.
  • Khan, Z.; Senthilkumar, B.; Park, S. O.; Park, S.; Yang, J.; Lee, J. H.; Song, H.-K.; Kim, Y.; Kwak, S. K.; Ko, H. Carambola-shaped VO2 Nanostructures: A binder-free Air Electrode for an Aqueous Na–air Battery. J. Mater. Chem. A. 2017, 5, 2037–2044.
  • Sheng, L.; Chang, J.; Jiang, L.; Jiang, Z.; Liu, Z.; Wei, T.; Fan, Z. Multilayer-folded Graphene Ribbon Film with Ultrahigh Areal Capacitance and High Rate Performance for Compressible Supercapacitors. Adv. Funct. Mater. 2018, 28, 1800597.
  • Chen, X.; Gu, M. High-performance ultrafine-structured Graphene Supercapacitors Fabricated by Femtosecond Laser Nanolithography. Front. Opt. 2019.
  • Wang, S.; Wu, Z.; Zheng, S.; Zhou, F.; Sun, C.; Cheng, H.; Bao, X. Scalable Fabrication of Photochemically Reduced graphene-based Monolithic micro-supercapacitors with Superior Energy and Power Densities. ACS Nano. 2017, 11, 4283–4291.
  • Hyun, W. J.; Secor, E. B.; Kim, C.-H.; Hersam, M. C.; Francis, L. F.; Frisbie, C. D. Scalable, self-aligned Printing of Flexible Graphene micro-supercapacitors. Adv. Energy Mater. 2017, 7(17), 1700285. DOI: 10.1002/aenm.201700285.
  • Petnikota, S.; Rotte, N. K.; Srikanth, V. V. S. S.; Kota, B. S. R.; Reddy, M. V.; Loh, K. P.; Chowdari, B. V. R. Electrochemical Studies of few-layered Graphene as an Anode Material for Li Ion Batteries. J. Solid State Electrochem. 2014, 18(4), 941–949. DOI: 10.1007/s10008-013-2338-2.
  • Petnikota, S.; Rotte, N. K.; Reddy, M. V.; Srikanth, V. V. S. S.; Chowdari, B. V. MgO-decorated few-layered Graphene as an Anode for Li-ion Batteries. ACS Appl. Mater. Interfaces. 2015, 7(4), 2301–2309. DOI: 10.1021/am5064712.
  • Li, L.; Secor, E. B.; Chen, K.-S.; Zhu, J.; Liu, X.; Gao, T. Z.; Seo, J.-W. T.; Zhao, Y.; Hersam, M. C. High-performance solid-state Supercapacitors and Microsupercapacitors Derived from Printable Graphene Inks. Adv. Energy Mater. 2016, 6(20), 1600909. DOI: 10.1002/aenm.201600909.
  • Zhang, C.; Nicolosi, V. Graphene and MXene-based Transparent Conductive Electrodes and Supercapacitors. Energy Storage Mater. 2019, 16, 102–125.
  • Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.; Wang, C.; Chen, M.; Chen, Y. Supercapacitor Devices Based on Graphene Materials. J. Phys. Chem. C. 2009, 113, 13103–13107.
  • Naderi, H. R.; Norouzi, P.; Ganjali, M. R. Electrochemical Study of a Novel High Performance Supercapacitor Based on MnO2/nitrogen-doped Graphene Nanocomposite. Appl. Surf. Sci. 2016, 366, 552–560.
  • Ramadoss, A.; Yoon, K.; Kwak, M.; Kim, S.; Ryu, S.; Jang, J. Fully Flexible, Lightweight, High Performance all-solid-state Supercapacitor Based on 3-Dimensional-graphene/graphite-paper. J. Power Sources. 2017, 337, 159–165.
  • Abdelhamid, M. E.; O’Mullane, A. P.; Snook, G. A. Storing Energy in Plastics: A Review on Conducting Polymers & Their Role in Electrochemical Energy Storage. RSC Adv. 2015, 5, 11611–11626.
  • Liu, T.; Finn, L.; Yu, M.; Wang, H.; Zhai, T.; Lu, X.; Tong, Y.; Li, Y. Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability. Nano Lett. 2014, 14, 2522–2527.
  • G.-p, H.; F, H.; M, O.; F. M, W.; A, L.; W, N.; N, M.-N.; Z, Z.; S, K. Stretchable and Semitransparent Conductive Hybrid Hydrogels for Flexible Supercapacitors. ACS Nano. 2014, 8, 7138–7146.
  • Coclite, A. M. ;.; Howden, R. M. ;.; Borrelli, D. C. ;.; Petruczok, C. D. ;.; Yang, R. ;.; J. L, Y. E.; Ugur, A.; N, C.; S, L.; J, J. W., et al. 25th Anniversary Article: CVD Polymers: A New Paradigm for Surface Modification and Device Fabrication. Adv. Mater. 2013, 25, 5392–5422.
  • Snook, G. A.; Kao, P.; Best, A. S. Conducting-polymer-based Supercapacitor Devices and Electrodes. J. Power Sources. 2011, 196, 1–12.
  • Meng, Q. F.; Cai, K. F.; Chen, Y. X.; Chen, L. D. Research Progress on Conducting Polymer Based Supercapacitor Electrode Materials. Nano Energy. 2017, 36, 268–285.
  • Luo, Y. N.; Guo, R. S.; Ti, T.; Li, F.; Liu, Z.; Zheng, M.; Wang, B.; Yang, Z.; Luo, H.; Wan, Y. Applications of Polyaniline for Li-ion Batteries, Li-sulfur Batteries and Supercapacitors. ChemSusChem. 2019, 12, 1591–1611.
  • Yu, H.; Ge, X.; Bulin, C.; Xing, R.; Li, R.; Xin, G.; Zhang, B. Facile Fabrication and Energy Storage Analysis of Graphene/ PANI Paper Electrodes for Super Capacitor Application. Electrochim. Acta. 2017, 253, 239–247.
  • Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. Supercapacitors Based on Flexible graphene/polyaniline Nanofiber Composite Films. ACS nano. 2010, 4, 1963–1970.
  • Zhang, D.; Zhang, X.; Chen, Y.; Yu, P.; Wang, C.; Ma, Y. Enhanced Capacitance and Rate Capability of Graphene/ Polypyrrole Composite as Electrode Material for Supercapacitors. J. Power Sources. 2011, 196, 5990–5996.
  • Akhtar, A. J.; Mishra, S.; Saha, S. K. Charge Transport Mechanism in Reduced Graphene oxide/polypyrrole Based Ultrahigh Energy Density Supercapacitor. J. Mater. Sci.: Mater. Electron. 2020, 31, 11637–11645.
  • Wu, Z. S.; Liu, Z.; Parvez, K.; Feng, X.; Müllen, K. Ultrathin Printable Graphene Supercapacitors with AC line-filtering Performance. Adv.Mate. 2015, 27, 3669–3675.
  • Qu, G.; Cheng, J.; Li, X.; Yuan, D.; Chen, P.; Chen, X.; Wang, B.; Peng, H. A Fiber Supercapacitor with High Energy Density Based on Hollow Graphene/ Conducting Polymer Fiber Electrode. Adv.Mate. 2016, 28, 3646–3652.
  • Liu, Y.; Weng, B.; Razal, J. M.; Xu, Q.; Zhao, C.; Hou, Y.; Seyedin, S.; Jalili, R.; Wallace, G. G.; Chen, J. High-performance Flexible all-solid-state Supercapacitor from Large free-standing graphene-PEDOT/PSS Films. Sci. Rep. 2015, 5, 1–11.
  • Gupta, A.; Akhtar, A. J.; Saha, S. K. In-situ Growth of P3HT/graphene Composites for Supercapacitor Application. Mater. Chem. Phys. 2013, 140, 616–621.
  • Alvi, F.; Ram, M. K.; Basnayaka, P. A.; Stefanakos, E.; Goswami, Y.; Kumar, A. Graphene–polyethylenedioxythiophene Conducting Polymer Nanocomposite Based Supercapacitor. Electrochim. Acta. 2011, 56, 9406–9412.
  • Kausar, A. Conducting Polymer-Based Nanocomposites: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 2021.
  • Koshikawa, Y.; Goto, H. Magnetic Behavior of an Iron gluconate/polyaniline Composite. J. Compos. Sci. 2021, 5, 252.
  • Yamabe, K.; Goto, H. Synthesis and Surface Observation of montmorillonite/polyaniline Composites. J. Compos. Sci. 2018, 2, 15.
  • Le, T.-H.; Kim, Y.; Yoon, H. Electrical and Electrochemical Properties of Conducting Polymers. Polymers. 2017, 9, 150.
  • Alsultan, M.; Ameen, A. M.; Al-Keisy, A.; Swiegers, G. F. Conducting-polymer Nanocomposites as Synergistic Supports that Accelerate electro-catalysis: PEDOT/Nano Co 3 O 4 /Rgo as a Photo Catalyst of Oxygen Production from Water. J. Compos. Sci. 2021, 5, 245.
  • Li, C.; Shi, G. Synthesis and Electrochemical Applications of the Composites of Conducting Polymers and Chemically Converted Graphene. Electrochim. Acta. 2011, 56, 10737–10743.
  • Soares, B.; Barra, G.; Indrusiak, T. Conducting Polymeric Composites Based on Intrinsically Conducting Polymers as Electromagnetic Interference shielding/microwave Absorbing materials—A Review. J. Compos. Sci. 2021, 5, 173.
  • Li, Y.; Ye, D. Carbon-Based Polymer Nanocomposite for Lithium-Ion Batteries. In Carbon-Based Polymer Nanocomposites for Environmental and Energy Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp 537–557.
  • Mohan, V. B.; Lau, K. T.; Hui, D.; Bhattacharyya, D. Graphene-based Materials and Their Composites: A Review on Production, Applications and Product Limitations. Compos. Part B Eng. 2018, 142, 200–220.
  • Yadav, A.; Upadhyaya, A.; Gupta, S. K.; Verma, A. S.; Negi, C. M. S. Solution Processed Flexible Photodiode Based on Poly(3-hexylthiophene): Graphene Composite. AIP Conf. Proc. 2019, 2115, 030218.
  • Wang, Y.-S.; Li, S.-M.; Hsiao, S.-T.; Liao, W.-H.; Yang, S.-Y.; Tien, H.-W.; Ma, -C.-C. M.; Hu, -C.-C. Thickness-self-controlled Synthesis of Porous Transparent polyaniline-reduced Graphene Oxide Composites Towards Advanced Bifacial dye-sensitized Solar Cells. J. Power Sources. 2014, 260, 326–337.
  • Li, Y.; Peng, H.; Li, G.; Chen, K. Synthesis and Electrochemical Performance of sandwich-like polyaniline/graphene Composite Nanosheets. Eur. Polym. J. 2012, 48, 1406–1412.
  • Chauhan, N. P. S.; Mozafari, M.; Chundawat, N. S.; Meghwal, K.; Ameta, R.; Ameta, S. C. High-performance Supercapacitors Based on polyaniline–graphene Nanocomposites: Some Approaches, Challenges and Opportunities. J. Ind. Eng. Chem. 2016, 36, 13–29.
  • https://www.businesswire.com/news/home/20210330005652/en/Global-Graphene-Market-2020-to-2025—Increasing-Demand-for-Graphene-from-Energy-Storage-Applications-in-China—ResearchAndMarkets.com
  • https://www.researchandmarkets.com/reports/4718297/graphene-battery-market-forecasts-from-2018-to2026
  • https://www.marketsandmarkets.com/Market-Reports/graphene-battery-market-96975481.html
  • https://www.prnewswire.com/news-releases/graphene-battery-market-size-to-reach-usd-398-6-million-by-2027–cagr-of-31-2—valuates-reports-301168726.html
  • Chen, Z.; An, X.; Dai, L.; Xu, Y. Holey graphene-based Nanocomposites for Efficient Electrochemical Energy Storage. Nano Energy. 2020, 73, 104762.
  • Sangeetha Vidhya, M.; Ravi, G.; Yuvakkumar, R.; Dhayalan Velauthapillai, M. T.; Cuong Dang, B. S.; Syed, A.; Turki, M. S. D. Functional Reduced Graphene oxide/cobalt Hydroxide Composite for Energy Storage Applications. Mater. Lett. 2020, 276, 128193.
  • Vidhya, M.; Ravi, G.; Yuvakkumar, R.; Velauthapillai, D.; Thambidurai, M.; Dang, C.; Saravanakumar, B.; Syed, A.; Dawoud, T. Functional Reduced Graphene oxide/cobalt Hydroxide Composite for Energy Storage Applications. Mater. Lett. 2020, 276, 128193.
  • Zahed, M. A.; Barman, S. C.; Sharifuzzaman, M.; Zhang, S.; S, Z.; Yoon, H.; Park, C.; Yoon, S. H.; Park, J. Y. Polyaziridine-encapsulated phosphorene-incorporated Flexible 3D Porous Graphene for Multimodal Sensing and Energy Storage Applications. Adv. Funct. Mater. 2021, 31, 2009018. DOI: 10.1002/adfm.202009018.
  • Pothu, R.; Bolagam, R.; Wang, Q. H., et al. Nickel sulfide-based Energy Storage Materials for high-performance Electrochemical Capacitors. Rare Met. 2021, 40, 353–373.
  • Gusain, M.; Singh, P., and Zhan, Y. Energy Storage Devices (Supercapacitors and Batteries). In Advances in Hybrid Conducting Polymer Technology. Engineering Materials ; Shahabuddin, S., A.k, P., Khalid, M., Jagadish, P., Eds.; Springer : Cham, 2021, 53-75. DOI: 10.1007/978-3-030-62090-5_3.
  • Lv, L.; Hu, Z.; An, N.; Xie, K.; Yang, Y.; Zhang, Z.; Li, Z. A Green and Sustainable Organic Molecule Electrode Prepared by Fluorenone for More Efficient Energy Storage. Electrochim. Acta. 2021, 377, 138088.
  • Ashokkumar, S. P.; Vijeth, H.; Yesappa, L.; Niranjana, M.; Vandana, M.; Devendrappa, H. Electrochemically Synthesized polyaniline/copper Oxide Nano Composites: To Study Optical Band Gap and Electrochemical Performance for Energy Storage Devices. Inorg. Chem. Commun. 2020, 115, 107865.
  • E, R.; A, N.; A, S.; S, R.; S, P. Graphene Quantum dots and Its Modified Application for Energy Storage and Conversion. J. Energy Storage. 2021, 39, 102606.
  • Olabi, A. O.; Abdelkareem, M. A.; Wilberforce, T.; Sayed, E. Application of Graphene in Energy Storage Device – A Review. Renewable Sustainable Energy Rev. 2021, 135, 110026.
  • Tian, Y.; Yu, Z.; Cao, L.; Zhang, X.; Sun, C.; Wang, D. Graphene Oxide: An Emerging Electromaterial for Energy Storage and Conversion. J. Energy Chem. 2021, 55, 323–344.
  • Kumar, H.; Sharma, R.; Yadav, A.; Kumari, R. Recent Advancement Made in the Field of Reduced Graphene oxide-based Nanocomposites Used in the Energy Storage Devices: A Review. J. Energy Storage. 2021, 33, 102032.
  • Wei, D.; Wu, C.; Jiang, G.; Sheng, X.; Xie, Y. Lignin-assisted Construction of well-defined 3D Graphene aerogel/PEG form-stable Phase Change Composites Towards Efficient Solar Thermal Energy Storage. Solar Energy Mater. Solar Cells. 2021, 224, 111013.
  • B, G.; S, L. Y.; Y, W.; C, Z.; J, B. 3D Printing of reduced Graphene Oxide Aerogels for energy Storage Devices: A Paradigm from Materials and Technologies to Applications. Energy Storage Mater. 2021, 39, 146–165.
  • Tarasov, B.; Arbuzov, A.; Volodin, A.; Fursikov, P.; Mozhzhuhin, S.; Lototskyy, M.; Yartys, V. Metal Hydride – Graphene Composites for Hydrogen Based Energy Storage. J. Alloys Compd. 2021. 2022, 896, 162881.
  • Aadil, M.; Zulfiqar, S.; Agboola, P.; Aboud, M.; Shakir, I.; Warsi, M. Fabrication of Graphene Supported Binary Nanohybrid with Multiple Approaches for Electrochemical Energy Storage Applications. Synth. Met. 2021, 272, 116645.
  • Ganganboina, A.; Park, E.; Doong, R. Boosting the Energy Storage Performance of V2O5 Nanosheets by Intercalating Conductive Graphene Quantum Dots. Nanoscale. 2020, 12, 16944–16955.
  • Tang, M.; Wu, Y.; Yang, J.; Xue, Y. Hierarchical core-shell Fibers of Graphene fiber/radially-aligned Molybdenum Disulfide Nanosheet Arrays for Highly Efficient Energy Storage. J. Alloys Compd. 2020, 828, 153622.
  • Lu, X.; Liang, B.; Sheng, X.; Yuan, T.; Qu, J. Enhanced Thermal Conductivity of polyurethane/wood Powder Composite Phase Change Materials via Incorporating Low Loading of Graphene Oxide Nanosheets for Solar Thermal Energy Storage. Solar Energy Mater. Solar Cells. 2020, 208, 110391.
  • Israr, M.; Iqbal, J.; Arshad, A.; Aisida, S.; Ahmad, I. A Unique ZnFe2O4/graphene Nanoplatelets Nanocomposite for Electrochemical Energy Storage and Efficient Visible Light Driven Catalysis for the Degradation of Organic Noxious in Wastewater. J. Phys. Chem. Solids. 2020, 140, 109333.
  • Li, Y.; Li, Y.; Huang, X.; Zheng, H.; Lu, G.; Xi, Z.; Wang, G. Graphene-CoO/PEG Composite Phase Change Materials with Enhanced solar-to-thermal Energy Conversion and Storage Capacity. Compos. Sci. Technol. 2020, 195, 108197.
  • Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S. I.; Seal, S. Graphene Based mate-rials: Past, Present and Future. Prog. Mater. Sci. 2011, 56, 1178–1271.
  • Gao, Y.; Han, B.; Zhao, W.; Ma, Z.; Yu, Y.; Sun, H. Light-Responsive Actuators Based on Graphene. Front. Chem. 2019, 7, 506.
  • Gadgil, B.; Damlin, P.; Kvarnstrom, C. Graphene Vs. reduced Graphene Oxide: A com-parative Study of graphene-based Nanoplatforms on Electrochromic Switching Kinetics. Car-bon. 2016, 96, 377–381.
  • Oh, H. M.; Kim, H.; Kim, H.; Jeong, M. S. Fabrication of Stacked MoS 2 Bilayer with Weak Interlayer Coupling by Reduced Graphene Oxide Spacer. Sci. Rep. 2019, 9, 5900.
  • Zhang, X.; Zhang, H.; Li, C.; Wang, K.; Sun, X.; Ma, Y. Recent Advances in Porous Graphene Materials for Supercapacitor Applications. RSC Adv. 2014, 4, 45862–45884.
  • El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors. Science. 2012, 335, 1326–1330.
  • Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-Based Ultracapacitors. Nano Lett. 2008, 8, 3498–3502. CrossRef
  • Nanaji, K.; Sarada, B. V.; Varadaraju, U. V.; Rao, T. N.; Anandan, S. A Novel Approach to Synthesize Porous Graphene Sheets by Exploring KOH as Pore Inducing Agent as Well as A Catalyst for Supercapacitors with ultra-fast Rate Capability. Renew. Energy. 2021, 172, 502–513.
  • Yoon, Y.; Lee, K.; Kwon, S.; Seo, S.; Yoo, H.; Kim, S.; Shin, Y.; Park, Y.; Kim, D.; Choi, J., et al. Vertical Alignments of Graphene Sheets Spatially and Densely Piled for Fast Ion Diffusion in Compact Supercapacitors. ACS Nano. 2014, 8, 4580–4590.
  • Li, P.; Li, H.; Zhang, X.; Zheng, X. Facile Fabrication and Improved Supercapacitive Performance of Exfoliated Graphene with Hierarchical Porous Structure. J. Energy Storage. 2021, 33, 102044.
  • Wang, C.; Liu, F.; Chen, J.; Yuan, Z.; Liu, C.; Zhang, X.; Xu, M.; Wei, L.; Chen, Y. A graphene-covalent Organic Framework Hybrid for high-performance Supercapacitors. Ener-gy Storage Mater. 2020, 32, 448–457.
  • Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The Role of Graphene for Electrochemical Energy Storage. Nat. Mater. 2015, 14, 271–279.
  • Christen, T.; Carlen, M. W. Theory of Ragone Plots. J. Power Sources. 2000, 91, 210–216. 110.
  • Liu, X., and Li, K. Energy Storage Devices in Electrified Railway Systems: A Review. Transp. Saf. En-viron 3 . 2020, (2), 183–201.
  • Chatzivasileiadi, A.; Ampatzi, E.; Knight, I. Characteristics of Electrical Energy Storage tech-nologies and Their Applications in Buildings. Renew. Sustain. Energy Rev. 2013, 25, 814–830.
  • Koohi-Kamali, S.; Tyagi, V.; Rahim, N.; Panwar, N.; Mokhlis, H. Emergence of Energy Storage Technologies as the Solution for Reliable Operation of Smart Power Systems: A Review. Renew. Sus-tain. Energy Rev. 2013, 25, 135–165.
  • Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical Energy Storage for the Grid: A Battery of Choices. Science. 2011, 334, 928–935.
  • Yao, K.; Chen, S.; Rahimabady, M.; Mirshekarloo, M. S.; Yu, S.; Tay, F. E. H.; Sritharan, T.; Lu, L. Nonlinear Dielectric Thin Films for high-power Electric Storage with Energy Density compa-rable with Electrochemical Supercapacitors. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control; IEEE: New York, NY, USA, 2011; Vol. 58. pp. 1968–1974.
  • Frackowiak, E.;. Carbon Materials for Supercapacitor Application. Phys. Chem. Chem. Phys. 2007, 9, 1774–1785.
  • Yang, L.; Kong, X.; Li, F.; Hao, H.; Cheng, Z.; Liu, H.; Li, J.; Zhang, S. Perovskite lead-free die-lectrics for Energy Storage Applications. Prog. Mater. Sci. 2019, 102, 72–108.
  • Borenstein, A.; Hanna, O.; Attias, R.; Luski, S.; Brousse, T.; Aurbach, D. Carbon-based com-posite Materials for Supercapacitor Electrodes: A Review. J. Mater. Chem. A. 2017, 5, 12653–12672.
  • Iro, Z. S.; Subramani, C.; Dash, S. A Brief Review on Electrode Materials for Supercapacitor. Int. J. Electrochem. Sci. 2016, 11, 10628–10643.
  • Bhadra, S.; Khastgir, D.; Singha, N. K.; Lee, J. H. Progress in Preparation, Processing and Applications of Polyaniline. Prog. Polym. Sci. 2009, 34, 783–810.
  • Bhadra, S.; Singha, N. K.; Khastgir, D. Electrochemical Synthesis of Polyaniline and Its Comparison with Chemically Synthesized Polyaniline. J. Appl. Polym. Sci. 2007, 104, 1900–1904.
  • Shen, K.; Ran, F.; Tan, Y.; Niu, X.; Fan, H.; Yan, K.; Kong, L.; Kang, L. Toward Interconnected Hierarchical Porous Structure via Chemical Depositing Organic nano-polyaniline on Inorganic Carbon Sca Old for Supercapacitor. Synth. Met. 2015, 199, 205–213.
  • Lyu, H.;. Triple Layer Tungsten Trioxide, Graphene, and Polyaniline Composite Films for Combined Energy Storage and Electrochromic Applications. Polymers. 2020, 12, 49.
  • Chang, X., et al. 3D Graphene Network with Covalently‐Grafted Aniline Tetramer for Ultralong‐Life Supercapacitors. Adv. Funct. Mater. 2021, 32, 2102397.
  • Breczko, J.; Grzeskiewicz, B.; Gradzka, E.; Bobrowska, D. M.; Basa, A.; Goclon, J., and Winkler, K. Synthesis of Polyaniline Nanotubes Decorated with Graphene Quantum Dots: Structural & Electrochemical Studies. Electrochim. Acta. 2021, 388, 138614. DOI: 10.1016/j.electacta.2021.138614.
  • Kausar, A.;. Polyaniline/graphene Nanoplatelet Nanocomposite Towards high-end Features and Applications. Mater. Res. Innovations . 2021, 388, 1–13.
  • Kung, C.-Y.; Wang, T.-L.; Lin, H.-Y.; Yang, C.-H., et al. A high-performance Covalently Bonded self-doped polyaniline–graphene Assembly Film with Superior Stability for Supercapacitors. J. Power Sources. 2021, 490, 229538. DOI: 10.1016/j.jpowsour.2021.229538.
  • Chen, W.; Jiang, S.; Xiao, H.; Zhou, X.; Xu, X.; Yang, J.; Siddique, A. H.; Liu, Z., et al. Graphene Modified Polyaniline-Hydrogel Based Stretchable Supercapacitor with High Capacitance and Excellent Stretching Stability. ChemSusChem. 2021, 14(3), 938–945.
  • Tran, L. T.; Tran, H. V.; Dang, H. T. M.; Nguyen, A. V.; Tran, T. H.; Huynh, C. D., et al. Electrosynthesis of Electrochemically Reduced Graphene oxide/polyaniline nanowire/silver Nanoflower Nanocomposite for Development of a Highly Sensitive Electrochemical DNA Sensor. RSC Adv. 2021, 11(32), 19470–19481.
  • Guoxiang, X. I. N., et al. One-step Synthesis of Polyaniline nanowire/self-supported Graphene Composite with Excellent Cycling Stability. 复合材料学报. 2021, 38(4), 1272–1282.
  • Liu, B.; Sun, H.; Peng, T.; Zhi, X., et al. 3D core-shell poly(aniline-co-pyrrole)/reduced Graphene Oxide Composite for Supercapacitor Performance. Diamond Relat. Mater. 2021, 118, 108498. DOI: 10.1016/j.diamond.2021.108498.
  • Li, H.; Zang, P.; Liu, H.; Li, J.; Zhang, B.; Yu, C.; Jiao, Y.; Li, H. Fabrication and Electrochemical Behavior of Halloysite/ graphene-polyaniline three-dimensional Hybrid Aerogel Loaded with Iron Oxide. J. Alloys Compd. 2021, 871, 159157. DOI: 10.1016/j.jallcom.2021.159157.
  • Thota, A.; Wang, Q.; Liu, P.; Jian, Z. Highly Electrochemical Active Composites Based on Capacitive graphene/aniline Oligomer Hybrid for high-performance Sustainable Energy Storage Devices. Electrochim. Acta. 2021, 368, 137587. DOI: 10.1016/j.electacta.2020.137587.
  • Pal, R.; Goyal, S.; Rawal, I.; Gupta, A. Efficient Energy Storage Performance of Electrochemical Supercapacitors Based on polyaniline/graphene Nanocomposite Electrodes. J. Phys. Chem. Solids. 2021, 154, 110057. DOI: 10.1016/j.jpcs.2021.110057.
  • Wu, Y.; Meng, Z.; Yang, J.; Xue, Y. Flexible fiber-shaped Supercapacitors Based on graphene/polyaniline Hybrid Fibers with High Energy Density and Capacitance. Nanotechnology. 2021, 32(29), 295401. DOI: 10.1088/1361-6528/abf5fe.
  • Zhang, M.; Wang, X.; Yang, T.; Zhang, P.; Wei, X.; Zhang, L., and Li, H. Polyaniline/graphene Hybrid Fibers as Electrodes for Flexible Supercapacitors. Synth. Met. 2021, 268.
  • Almeida, D.; Couto, A.; Ferreira, G. Flexible polyaniline/reduced Graphene oxide/carbon Fiber Composites Applied as Electrodes for Supercapacitors. J. Alloys Compd. 2019, 788, 453–460. DOI: 10.1016/j.jallcom.2019.02.194.
  • Qu, K.; Bai, Y.; Gao, X., and Deng, M. Application of Poly (aniline-co-o-methoxyaniline) as Energy Storage Material. Synth. Met. 2020, 48(1), 262.
  • Payami, E.; Aghaiepour, A.; Rahimpour, K.; Mohammadi, R.; Teimuri-Mofrad, R. Design and Synthesis of Ternary GO-Fc/Mn3O4/PANI Nanocomposite for Energy Storage Applications. J. Alloys Compd. 2020, 829, 154485. DOI: 10.1016/j.jallcom.2020.154485.
  • Tounsi, A.; Habelhames, F.; Sayah, A.; Bahloul, A.; Lamiri, L.; Nessark, B., et al. Electrosynthesis of a Ternary Composite Film polyaniline-MnO2-graphene in a one-step. Ionics. 2022, 28(1), 317–328.
  • Ullah, T.; Gul, K.; Khan, H.; Ara, B.; Zia, T. U. H., et al. Efficient Removal of Selected Fluoroquinolones from the Aqueous Environment Using Reduced Magnetic Graphene oxide/polyaniline Composite. Chemosphere. 2022, 293, 133452. DOI: 10.1016/j.chemosphere.2021.133452.
  • Verma, S.; Mal, D. S.; de Oliveira, P. R.; Janegitz, B. C.; Prakash, J.; Gupta, R. K., et al. A Facile Synthesis of Novel polyaniline/graphene Nanocomposite Thin Films for enzyme-free Electrochemical Sensing of Hydrogen Peroxide. Mol. Syst. Des. Eng. 2022, 7(2), 158–170.
  • Liu, Y.; Qin, Z.; Shen, Y.; Dou, Z.; Liu, N., et al. Tuning Spatial Distribution of Graphene Sheets Composited with Polyaniline Nanofiber Array on Carbon Cloth Towards Ultrahigh Areal Energy Density Flexible Supercapacitors. Carbon. 2022, 186, 688–698. DOI: 10.1016/j.carbon.2021.10.066.
  • Menzel, V. C.; Tudela, I. Additive Manufacturing of polyaniline-based Materials: An Opportunity for New Designs and Applications in Energy and Biotechnology. Curr. Opin. Chem. Eng. 2022, 35, 100742. DOI: 10.1016/j.coche.2021.100742.
  • Qin, L.; Yang, G.; Li, D.; Ou, K.; Zheng, H.; Fu, Q.; Sun, Y., et al. High Area Energy Density of all-solid-state Supercapacitor Based on double-network Hydrogel with High Content of graphene/PANI Fiber. Chem. Eng. J. 2022, 430, 133045. DOI: 10.1016/j.cej.2021.133045.
  • Macherla, N., et al. Improved Performance of Flexible Supercapacitor Using Naphthalene Sulfonic Acid‐doped polyaniline/sulfur‐doped Reduced Graphene Oxide Nanocomposites. Int. J. Energy Res.
  • Xiaobo, L., et al. Rational Preparation of Ternary Carbon cloth/MnO2/polyaniline Nanofibers for high-performance Electrochemical Supercapacitors. J. Mater. Sci.: Mater. Electron. 2022, 1–12.
  • Majumdar, D.;. Role of MXenes/Polyaniline Nanocomposites in Fabricating Innovative Supercapacitor Technology. Adv. Energy Conver6sion Mater. 2022, 30–53.
  • Zhang, J.; Huang, W.; Yuan, B.; Hu, R.; Yang, L., et al. Polyaniline Intercalated MoS2 Nanosheet Array Aligned on Reduced Oxide Graphene as High Performance Anode for lithium-ion Batteries. Solid State Ionics. 2022, 375, 115838.
  • Li, R.; Li, T.; Wan, Y.; Zhang, X.; Liu, X.; Li, R.; Pu, H.; Gao, T.; Wang, X.; Zhou, Q. Efficient Decolorization of Azo Dye Wastewater with polyaniline/graphene Modified Anode in Microbial Electrochemical Systems. J. Hazard. Mater. 2022, 421, 126740.
  • Zhang, J.; Huang, W.; Yuan, B.; Hu, R.; Yang, L. Polyaniline Intercalated MoS2 Nanosheet Array Aligned on Reduced Oxide Graphene as High Performance Anode for lithium-ion Batteries. Solid State Ionics. 2022, 375, 115838.
  • Li, R.; Li, T.; Wan, Y.; Zhang, X.; Liu, X.; Li, R.; Pu, H.; Gao, T.; Wang, X.; Zhou, Q. Efficient Decolorization of Azo Dye Wastewater with polyaniline/graphene Modified Anode in Microbial Electrochemical Systems. J. Hazard. Mater. 2022, 421, 126740. DOI: 10.1016/j.jhazmat.2021.126740.
  • Pal, R.; Goyal, S. L.; Rawal, I.; Gupta, A. K., et al. Efficient Energy Storage Performance of Electrochemical Supercapacitors Based on polyaniline/graphene Nanocomposite Electrodes. J. Phys. Chem. Solids. 2021, 154, 110057.
  • Youssef, A. M.; Hasanin, M. S.; El-Aziz, M. E. A.; Turky, G. M., et al. Conducting chitosan/hydroxylethyl cellulose/polyaniline Bionanocomposites Hydrogel Based on Graphene Oxide Doped with Ag-NPs. Int. J. Biol. Macromol. 2021, 167, 1435–1444. DOI: 10.1016/j.ijbiomac.2020.11.097.
  • Fazli-Shokouhi, S.; Nasirpouri, F.; Khatamian, M. Epoxy-matrix Polyaniline/ P -phenylenediamine-functionalised Graphene Oxide Coatings with Dual anti-corrosion and anti-fouling Performance. RSC Adv. 2021, 11(19), 11627–11641. DOI: 10.1039/D0RA10665H.
  • Yeasmin, S.; Talukdar, S.; Mahanta, D. Paper Based Pencil Drawn Multilayer graphene-polyaniline Nanofiber Electrodes for all-solid-state Symmetric Supercapacitors with Enhanced Cyclic Stabilities. Electrochim. Acta. 2021, 389, 138660. DOI: 10.1016/j.electacta.2021.138660.
  • Yoruk, O.; Bayrak, Y.; Ates, M. Design and Assembly of Supercapacitor Based on Reduced Graphene oxide/TiO 2/polyaniline Ternary Nanocomposite and Its Application in Electrical Circuit. Polym. Bull. 2021, 1–25.
  • Ding, Y.; Sheng, H.; Gong, B.; Tang, P.; Pan, G.; Zeng, Y.; Yang, L.; Tang, Y.; Liu, C.; et al. Polyaniline/reduced Graphene Oxide Nanosheets on TiO2 Nanotube Arrays as a high-performance Supercapacitor Electrode: Understanding the Origin of High Rate Capability. Electrochim. Acta. 2021, 368, 137615. DOI: 10.1016/j.electacta.2020.137615.
  • Kuzhandaivel, H.; et al. Sulfur and nitrogen-doped Graphene Quantum dots/PANI Nanocomposites for Supercapacitors. New J. Chem. 2021, 45(8), 4101–4110.
  • Lashkenari, M. S.; Rezaei, S., and Fallah, J. Experimental and theoreti-cal Studies of Methanol Oxidation in the Presence of Co-Pd@ polyaniline/N-doped Reduced gra-phene Oxide Electrocatalyst. J. Appl. Electrochem. 199 2021, 1–12.
  • Gupta, A.; Ohlan, A., and Singh, K. Efficient Electrode Material Based on Carbon Cloth Supported Polyaniline/Reduced Graphene Oxide Composites for Supercapacitor Applica-tion. Indian J. Pure Appl. Phys. (IJPAP). 2021, 59(1), 68–74.
  • Khalid, N. A.; et al. A Review on Polyaniline-Graphene Nanoplatelets (PANI/GNPs-DBSA) Based Nanocomposites Enhancing the Electrical Conductivity. In Intelligent Manufactur-ing and Mechatronics, Springer: Singapore, 2021; pp 951–958.
  • Siddique, A. B.; et al. Charge Transport through Functionalized Graphene Quantum Dots Embedded in a Polyaniline Matrix. ACS Appl. Electron. Mater. 2021, 3(3), 1437–1446.
  • Zhu, T.; et al. Chloride Ion Storage Performance of polyaniline/graphene Nanocomposite in Aqueous Sodium Chloride Solution. Mater. Res. Bull. 2021, 138, 111209.
  • Liu, Z.; et al. Facile Preparation of graphene/polyaniline Composite Hydrogel Film by elec-trodeposition for binder-free all-solid-state Supercapacitor. J. Alloys Compd. 2021, 875, 159931.
  • Jung, J. W.; Hwan Son, S.; Choi, J. Polyaniline/Reduced Graphene Oxide Com-posites for Hole Transporting Layer of High-Performance Inverted Perovskite Solar Cells. Pol-ymers. 2021, 13(8), 1281.
  • Xiong, C.; et al. Fabrication of Reduced Graphene oxide-cellulose Nanofibers Based hy-brid Film with Good Hydrophilicity and Conductivity as Electrodes of Supercapacitor. Cellulose. 2021, 28(6), 3733–3743.
  • Sang, Y.; et al. Transfunctionalization of Graphite Fluoride Engineered Polyaniline Grafting to Graphene for High–Performance Flexible Supercapacitors. J. Colloid Interface Sci. 2021, 597, 289–296.
  • Khairy, M.; et al. Ternary V-doped Li4Ti5O12-polyaniline-graphene Nanostructure with en-hanced Electrochemical Capacitance Performance. Mater. Sci. Eng. 2021, 271, 115312.
  • Chen, G.; Zheng, J. Non-enzymatic Electrochemical Sensor for Nitrite Based on a Graphene oxide–polyaniline–Au Nanoparticles Nanocomposite. Microchem. J. 2021, 164, 106034.
  • Du, Y.; et al. AQDS-guided Growth of nanocilia-like Polyaniline on Graphene Nanofiber as Cathode Material for high-performance Asymmetric Supercapacitors. Synth. Met. 2021, 272, 116660.
  • Macherla, N.; et al. Heat Assisted Facile Synthesis of Nanostructured polyaniline/reduced Crumbled Graphene Oxide as a high-performance Flexible Electrode Material for Supercapacitors. Colloids Surf. A. 2021, 612, 125982.
  • Dhamodharan, D.; Pradnya, D.; Ghoderao, N. P.; Veeman, D.; Byun, H. A Review on Graphene Oxide Effect in Energy Storage Devices. J. Ind. Eng. Chem. 2021. DOI: 10.1016/j.jiec.2021.10.033.
  • Qi, P. P.; Ruan, Y. L.; Wang, K.; Wang, Z. The Energy Storage Performance of the Graphene oxide/Polyaniline Composite. AMM. 2013, 448–453, 2938–2941.
  • Dong, C.; Zhang, X.; Yu, Y.; Huang, L.; Li, J.; Wu, Y.; Liu, Z. An Ionic liquid-modified RGO/polyaniline Composite for Highperformance Flexible all-solid-state Supercapacitors. Chem. Commun. 2020, 56, 11993–11996.
  • Gholami Laelabadi, K.; Moradian, R.; Manouchehri, I. One-Step Fabrication of Flexible, Cost/Time Effective, and High Energy Storage Reduced Graphene Oxide@PANI Supercapacitor. ACS Appl. Energy Mater. 2020, 3, 5301–5312.
  • Mohan, V. B.; Lau, K.-T.; Hui, D.; Bhattacharyya, D. Graphene-based Materials and Their Composites: A Review on Production, Applications and Product Limitations. Compos. Part B Eng. 2018, 142, 200–220.
  • Guo, Y.; Jianpo, S.; Yang, H.; Fengling, G.; Song, Y.; Zhu, Y. Flexible Foam carbon/graphene oxide/Schiff Base polymer-derived carbon/polyaniline for high-performance Supercapacitor. Ionics. 2021, 27(6), 2639–2647.
  • Kooti, M.; Naghdi Sedeh, A.; Gheisari, K.; Figuerola, A. Synthesis, Characterization, and Performance of Nanocomposites Containing Reduced Graphene Oxide, Polyaniline, and Cobalt Ferrite. Physica B Condens. Matter. 2021, 612, 412974.
  • Song, Y.; Zhanhu, S.; Zhao, Z.; Lin, S.; Wang, D. A New As3Mo8V4/PANi/rGO Composite for High Performance Supercapacitor Electrode. Ceram. Int. 2021, 47, 21367–21372.
  • Sayantan, S.; Singh, W.; Nongthombam, S.; Devi, N.; Laha, S.; Swain, B.; Swain, B. Optical Properties, Electrochemical Analysis and Corrosion Resistance Studies of polyaniline/reduced Graphene oxide/ZrO2 for Supercapacitor Application. J. Phys. Chem. Solids. 2022, 161, 110478.
  • Gul, H.; Shah, A. A.; Krewer, U.; Bilal, S. Study on Direct Synthesis of Energy Efficient Multifunctional Polyaniline–Graphene Oxide Nanocomposite and Its Application in Aqueous Symmetric Supercapacitor Devices. Nanomaterials. 2020, 10, 118.
  • Moyseowicz, A.; Gryglewicz, G. Hydrothermal-assisted Synthesis of a Porous polyaniline/reduced Graphene Oxide Composite as a high-performance Electrode Material for Supercapacitors. Compos. Part B Eng. 2019, 159, 4–12.
  • Meti, S.; Rahman, M. R.; Ahmad, M. I.; Bhat, K. U. Chemical Free Synthesis of Graphene Oxide in the Preparation of Reduced Graphene oxide-zinc Oxide Nanocomposite with Improved Photocatalytic Properties. Appl. Surf. Sci. 2018, 451, 67–75.
  • Yan, J.; Wei, T.; Shao, B.; Fan, Z.; Qian, W.; Zhang, M.; Wei, F. Preparation of a Graphene nanosheet/polyaniline Composite with High Specific Capacitance; Carbon, 2010; Vol. 48. pp 487–493.
  • Hao, Q.; Wang, H.; Yang, X.; Lu, L.; Wang, X. Morphology-controlled Fabrication of Sulfonated graphene/polyaniline Nanocomposites by liquid/liquid Interfacial Polymerization and Investigation of Their Electrochemical Properties. Nano Res. 2011, 4, 323–333.
  • Li, Y.; Xia, Z.; Gong, Q.; Liu, X.; Yang, Y.; Chen, C.; Qian, C. Green Synthesis of Free Standing cellulose/graphene oxide/polyaniline Aerogel Electrode for high-performance Flexible all-solid-state Supercapacitors. Nanomaterials. 2020, 10, 1546.
  • Tang, Y.; Hu, X.; Liu, D.; Guo, D.; Zhang, J. Effect of Microwave Treatment of Graphite on the Electrical Conductivity and Electrochemical Properties of Polyaniline/Graphene Oxide Composites. Polymers. 2016, 8, 399.
  • Sánchez, J.; Díez-Pascual, A.; Capilla, R.; Díaz, P. The Effect of Hexamethylene Diisocyanate-Modified Graphene Oxide as a Nanofiller Material on the Properties of Conductive Polyaniline. Polymers. 2019, 11, 1032.
  • Li, W.; Gao, F.; Wang, X.; Zhang, N.; Ma, M. Strong and Robust polyaniline-based Supramolecular Hydrogels for Flexible Supercapacitors. Angew. Chem. Int. Ed. 2016, 55, 9196–9201.
  • Pyarasani, R. D.; Jayaramudu, T.; John, A. Polyaniline-based Conducting Hydrogels. J. Mater. Sci. 2019, 54, 974–996.
  • Wang, L.; Lu, X.; Lei, S.; Song, Y. Graphene-based Polyaniline Nanocomposites: Preparation, Properties and Applications. J. Mater. Chem. A. 2014, 2, 4491–4509.
  • Liu, X.; Wen, N.; Wang, X.; Zheng, Y. A High-performance Hierarchical Graphene@polyaniline@graphene Sandwich Containing Hollow Structures for Supercapacitor Electrodes. ACS Sustain. Chem. Eng. 2015, 3, 475–482.
  • Kim, M.; Lee, C.; Jang, J. Fabrication of Highly Flexible, Scalable, and high-performance Supercapacitors Using polyaniline/reduced Graphene Oxide Film with Enhanced Electrical Conductivity and Crystallinity. Adv. Funct. Mater. 2013, 24, 2489–2499.
  • Joo, H.; Han, H.; Cho, S. Fabrication of Poly (Vinyl Alcohol)-polyaniline nanofiber/graphene Hydrogel for high-performance Coin Cell Supercapacitor. Polymers. 2020, 12, 928.
  • Martins, V.; Siqueira, N.; Fonsaca, J.; Domingues, S.; Souza, V. Ternary Nanocomposites of Reduced Graphene Oxide, Polyaniline, and Iron Oxide Applied for Energy Storage. ACS Appl. Nano Mater. 2021, 4(5), 5553–5563.
  • Tokgoz, S. R.; Firat, Y. E.; Akkurt, N.; Pat, S.; Peksoz, A. Energy Storage and Semiconducting prop-erties of polyaniline/graphene Oxide Hybrid Electrodes Synthesized by one-pot Electrochemical Method. Mater. Sci. Semicond. Process. 2021, 135, 106077.
  • Viswanathan, A.;. Adka Nityananda Shetty, Effect of Dopants on the Energy Storage Performance of Reduced Graphene oxide/polyaniline Nanocomposite. Electrochim. Acta. 2019, 327, 135026.
  • Zhang, J.; Huang, W.; Yuan, B.; Renzong, H.; Yang, L. Polyaniline Intercalated MoS2 Nanosheet Array Aligned on Reduced Oxide Graphene as High Performance Anode for lithium-ion Batteries. Solid State Ionics. 2022, 375, 115838.
  • Palsaniya, S.; Nemade, H. B.; Kumar Dasmahapatra, A. Hierarchical Nylon-6/reduced Graphene oxide/polyaniline Nanocomposites with Enhanced Dielectric Properties for Energy Storage Applications. J. Energy Storage. 2020, 32, 101821.
  • Kandasamy, M.; Seetharaman, A.; Chakraborty, B.; Inbamani Manohara Babu, J. J. W.; Muralidharan, G.; Jothivenkatachalam, K.; Sivasubramanian, D. Experimental and Theoretical Investigation of the Energy-Storage Behavior of a Polyaniline-Linked Reduced-Graphene-Oxide–SnO2 Ternary Nanohybrid Electrode. Phys. Rev. Applied. 2020, 14, 024067.
  • Giri, S.; Ghosh, D.; Kumar Das, C. Growth of Vertically Aligned Tunable Polyaniline on graphene/ZrO2 Nanocomposites for Supercapacitor Energy‐storage Application. Adv. Funct. Mater. 2014, 24(9), 1312–1324.
  • Gholami Laelabadi, K.; Moradian, R.; Manouchehri, I. One-Step Fabrication of Flexible, Cost/Time Effective, and High Energy Storage Reduced Graphene Oxide@PANI Supercapacitor. ACS Appl. Energy Mater. 2020, 3(6), 5301–5312.
  • Huang, S.; Li, J.; Zhang, X.; Yang, X.; Wang, L.; Lia, X.; W, L. Reduced Graphene oxide/polyaniline wrapped Carbonized Sponge with Elasticity for Energy Storage and Pressure Sensing. New J. Chem. 2021, 45, 7860–7866.
  • Macherla, N.; Singh, K.; Nerella, M.; Kumari, K.; Reddy Lekkala, R. G. Improved per-formance of Flexible Supercapacitor Using Naphthalene Sulfonic acid-doped polyaniline/sulfur-doped Reduced Graphene Oxide Nanocomposites. Int. J. Energy Res. 2022, 1–14. DOI: 10.1002/er.7589.
  • Zhao, H.-B.; Yang, J.; Lin, -T.-T., Dr; Qiu-Feng, L.; Guo, C. Nanocomposites of Sulfonic Polyaniline Nanoarrays on Graphene Nanosheets with an Improved Supercapacitor Performance. Chem. Eur. J. 2015, 21, 682–690—.
  • Bumaa, B.; Uyanga, E.; Sevjidsuren, G.; et al. Evolution of Electrochemical Properties of Polyaniline Doped by Graphene Oxide. Polym. Bull. 2021. DOI: 10.1007/s00289-021-03837-0.
  • Simon, P.; Gogotsi, Y. Materials for Electrochemical Capacitors. Nat. Mater. 2008, 7, 845–854.
  • Bi, Z. H.; Kong, Q. Q.; Cao, Y. F.; Sun, G. H.; Su, F. Y.; Wei, X. X.; Li, X. M.; Ahmad, A.; Xie, L. J.; Chen, C. M. Biomass-derived Porous Carbon Materials with Di Erent Dimensions for Supercapacitor Electrodes: A Review. J. Mater. Chem. A. 2019, 7, 16028–16045.
  • Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruo, R. S.; Pellegrini, V. Graphene, Related two-dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage. Science. 2015, 347, UNSP1246501.
  • Hall, P. J.; Mirzaeian, M.; Fletcher, S. I.; Sillars, F. B.; Rennie, A. J. R.; Shitta-Bey, G. O.; Wilson, G.; Cruden, A.; Carter, R. Energy Storage in Electrochemical Capacitors: Designing Functional Materials to Improve Performance. Energy Environ. Sci. 2010, 3, 1238–1251.
  • Peng, C.; Zhang, S.; Jewell, D.; Chen, G. Z. Carbon Nanotube and Conducting Polymer Composites for Supercapacitors. Prog. Nat. Sci. 2008, 18, 777–788.
  • Gracita, M.; Tomboc, H. K. Derivation of Both EDLC and Pseudocapacitance Characteristics Based on Synergistic Mixture of NiCo2O4 and Hollow Carbon Nanofiber: An Efficient Electrode Towards High Energy Density Supercapacitor. Electrochim. Acta. 2019, 318, 392–404.
  • Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruo, R. S. Graphene-based Ultracapacitors. Nano Lett. 2008, 8, 3498–3502.
  • Xia, J.; Chen, F.; Li, J.; Tao, N. Measurement of the Quantum Capacitance of Graphene. Nat. Nanotechnol. 2009, 4, 505–509.
  • Florence, F.; Pascal, G.; Dominique, V.; Daniel, B. Electrochemical Characterization of Polyaniline in Nonaqueous Electrolyte and Its Evaluation as Electrode Material for Electrochemical Supercapacitors. J. Electrochem. Soc. 2001, 148, A1–A6.
  • Chen, H.; Chen, J. J.; Zhou, H. H.; Jiao, S. Q.; Chen, J. H.; Kuang, Y. F. The Application of nano-fibrous Polyaniline in Electrochemical Capacitor. Acta Phys. Chim. Sin. 2004, 20, 593–597.
  • Zhou, H. H.; Chen, H.; Luo, S. L.; Lu, G. W.; Wei, W. Z.; Kuang, Y. F. The E Ect of the Polyaniline Morphology on the Performance of Polyaniline Supercapacitors. J. Solid State Electrochem. 2005, 9, 574–580.
  • Liu, J. L.; Zhou, M. Q.; Fan, L. Z.; Li, P.; Qu, X. H. Porous Polyaniline Exhibits Highly Enhanced Electrochemical Capacitance Performance. Electrochim. Acta. 2010, 55, 5819–5822.
  • Sivakkumar, S. R.; Kim, W. J.; Choi, J. A.; Douglas, R.; MacFarlane, D. R.; Forsyth, M.; Kim, D. W. Electrochemical Performance of Polyaniline Nanofibres and polyaniline/multi-walled Carbon Nanotube Composite as an Electrode Material for Aqueous Redox Supercapacitors. J. Power Sources. 2007, 171, 1062–1068.
  • Chen, W. C.; Wen, T. C.; Teng, H. Polyaniline-deposited Porous Carbon Electrode for Supercapacitor. Electrochim. Acta. 2003, 48, 641–649.
  • Liu, Y.; Qin, Z.; Shen, Y.; Dou, Z.; Liu, N. Tuning Spatial Distribution of Graphene Sheets Composited with Polyaniline Nanofiber Array on Carbon Cloth Towards Ultrahigh Areal Energy Density Flexible Supercapacitors. Carbon. 2022, 186, 688–698.
  • Bingjian, L.; Liu, S.; Yang, H.; Xu, X.; Zhou, Y.; Yang, R.; Zhang, Y.; Li, J. Continuously Reinforced Carbon Nanotube Film sea-cucumber-like Polyaniline Nanocomposites for Flexible self-supporting energy-storage Electrode Materials. Nanomaterials. 2022, 12, 8.
  • Sun, W.; Hou, Y.; Zhang, X. “Bi-Functional Paraffin@ polyaniline/TiO2/PCN-222 (Fe) Microcapsules for Solar Thermal Energy Storage and CO2 Photoreduction. Nanomaterials. 2022, 12, 2.
  • Ullah, T.; Gul, K.; Khan, H.; Ara, B.; Ul Haq Zia, T. Efficient Removal of Selected Fluoroquinolones from the Aqueous Environment Using Reduced Magnetic Graphene oxide/polyaniline Composite. Chemosphere. 2022, 133452.
  • Gao, M.; Wan, X.; Lai, S.; Cui, H.; Chen, Z.; Qian, Y.; Ding, G.; Cheng, G. Electrical Properties of Composite Based on in-situ Synthesis of Polyaniline and Graphite. Mater. Lett. 2022, 308, 131133.
  • Ding, Y.; Sheng, H.; Gong, B.; Tang, P.; Pan, G.; Zeng, Y.; Yang, L.; Tang, Y.; Liu, C. Polyaniline/reduced Graphene Oxide Nanosheets on TiO2 Nanotube Arrays as a high-performance Supercapacitor Electrode: Understanding the Origin of High Rate Capability. Electrochim. Acta. 2021, 368, 137615.
  • Shubhadarshinee, L.; Ranjan Jali, B.; Kumar Barick, A.; Mohapatra, P. Preparation and Characterisation of Silver nanoparticles/graphene Oxide Hybrid Nanofiller reinforced-polyaniline. Plast., Rubber Compos. 2021, 1–13.
  • Guo, B.; Liang, G.; Shixiang, Y.; Wang, Y.; Zhi, C.; Bai, J. 3D Printing of Reduced Graphene Oxide Aerogels for Energy Storage Devices: A Paradigm from Materials and Technologies to Applications. Energy Storage Mater. 2021, 39, 146-–165.
  • Gupta, A.; Ohlan, A.; Singh, K. “Efficient Electrode Material Based on Carbon Cloth Supported polyaniline/reduced Graphene Oxide Composites for Supercapacitor Application. Indian J. Pure Appl. Phys. (IJPAP). 2021, 59, 68–74.
  • Xu, J.; Wang, K.; Zu, S. Z.; Han, B. H., and Wei, Z. Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage. ACS Nano. 2010, 4, 5019–5026.
  • Kumar, N. A.; Choi, H. J.; Shin, Y. R.; Chang, D. W.; Dai, L. M.; Baek, J. B. Polyaniline-grafted Reduced Graphene Oxide for Efficient Electrochemical Supercapacitors. ACS Nano. 2012, 6, 1715–1723.
  • Wei, H.; Zhu, J.; Wu, S.; Wei, S.; Guo, Z. Electrochromic polyaniline/graphite Oxide Nanocomposites with Endured Electrochemical Energy Storage. Polymer. 2013, 54, 1820–1831.
  • He, W.; Zhang, W.; Li, Y.; Jing, X. A High Concentration Graphene Dispersion Stabilized by Polyaniline Nanofibers. Synth. Met. 2012, 162, 1107–1113.
  • Li, J.; Xie, H.; Li, Y.; Liu, J.; Li, Z. Electrochemical Properties of Graphene nanosheets/polyaniline Nanofibers Composites as Electrode for Supercapacitors. J. Power Sources. 2011, 196, 10775–10781.
  • Liu, S.; Liu, X.; Li, Z.; Yang, S.; Wang, J. Fabrication of free-standing graphene/polyaniline Nanofibers Composite Paper via Electrostatic Adsorption for Electrochemical Supercapacitors. New J. Chem. 2011, 35, 369–374.
  • Athira, A. R.; Deepthi, S.; Xavier, T. S. Impact of an Anionic Surfactant on the Enhancement of the Capacitance Characteristics of polyaniline-wrapped Graphene Oxide Hybrid Composite. Bull. Mater. Sci. 2021, 44, 3. DOI: 10.1007/s12034-021-02481-8.
  • Cai, X.; Sun, K.; Qiu, Y.; Jiao, X. Recent Advances in Graphene and Conductive Polymer Composites for Supercapacitor Electrodes: A Review. Crystals. 2021, 11(8), 947.
  • Gholami Laelabadi, K.; Moradian, R.; Manouchehri, I. Facile Method of Fabricating Interdigitated and Sandwich Electrodes for high-performance and Flexible Reduced Graphene Oxide@polyaniline Nanocomposite Supercapacitors. ACS Appl. Energy Mater. 2021, 4, 6697–6710.
  • Çıplak, Z. Processable GO-PANI Nanocomposite for Supercapacitor Applications. J. Electron. Mater. 2022, 403.
  • Yang, Y.; Wang, J.; Zuo, P.; Shijie, Q.; Shen, W. Layer-stacked graphite-like Porous Carbon for Flexible all-solid-state Supercapacitor. Chem. Eng. J. 2021, 425, 130609.
  • Xinghe, X.; Sun, S.; Luo, J.; Rui, M.; Lin, J.; Fang, L.; Zhang, P., and Chen, Y. Few-layer Graphene Prepared via Microwave Irradiation of Black Sesame for Supercapacitor Applications. Chem. Eng. J. 425 2021, 130664.
  • Jeon, J.-W.; Kwon, S. R.; Li, F.; Lutkenhaus, J. L. Spray-on polyaniline/poly (Acrylic Acid) Electrodes with Enhanced Electrochemical Stability. Acs Appl. Mater. Interfaces. 2015, 7, 24150–24158.
  • Yan, J.; Wei, T.; Fan, Z.; Qian, W.; Zhang, M.; Shen, X.; Wei, F. Preparation of gra-phene nanosheet/carbon nanotube/polyaniline Composite as Electrode Material for superca-pacitors. J. Power Sources. 2010, 195, 3041–3045.
  • Kumar, N. A.; Baek, J.-B. Electrochemical Supercapacitors from Conducting polyaniline–graphene Platforms. Chem. Commun. 2014, 50, 6298–6308.
  • Pruneanu, S.; Veress, E.; Marian, I.; Oniciu, L. Characterization of Polyaniline by Cyclic Voltammetry and UV-Vis Absorption Spectroscopy. J. Mater. Sci. 1999, 34, 2733–2739.
  • Mo, Y.; Meng, W.; Xia, Y.; Du, X. Redox-active Gel Electrolyte Combined with Branched Polyaniline Nanofibers Doped with Ferrous Ions for Ultra-High-Performance Flexible Supercapacitors. Polymers. 2019, 11, 1357.
  • Ajpi, C.; Leiva, N.; Vargas, M.; Lundblad, A.; Lindbergh, G.; Cabrera, S. Synthesis and Characterization of LiFePO4 –PANI Hybrid Material as Cathode for Lithium-Ion Batteries. Materials. 2020, 13, 2834.
  • Niu, Z.; Luan, P.; Shao, Q.; Dong, H.; Li, J.; Chen, J.; Zhao, D.; Cai, L.; Zhou, W.; Chen, X., et al. A “skeleton/skin” Strategy for Preparing Ultrathin free-standing single-walled Carbon nanotube/polyaniline Films for High Performance Supercapacitor Electrodes. Energy Environ. Sci. 2012, 5, 8726–8733.
  • Li, G.; Li, G.; Ye, S.; Gao, X. A Polyaniline-Coated Sulfur/Carbon Composite with an Enhanced High-Rate Capability as A Cathode Material for Lithium/Sulfur Batteries. Adv. Energy Mater. 2012, 2, 1238–1245.
  • Banerjee, J.; Dutta, K.; Kader, M. A.; Nayak, S. K. An Overview on the Recent develop-ments in polyaniline-based Supercapacitors Polym. Adv. Technol. 2019, 30, 1902–1921.
  • Hao, Q.; Wang, H.; Yang, X.; Lu, L.; Wang, X. Morphology-controlled Fabrication of Sulfonated graphene/polyaniline Nanocomposites by liquid/liquid Interfacial Polymerization and Investigation of Their Electrochemical proper-ties. Nano Res. 2011, 4, 323–333.
  • Zhao, Y.; Arowo, M.; Wu, W.; Zou, H.; Chen, J.; Chu, G. Polyaniline/graphene nano-composites Synthesized by in Situ High Gravity Chemical Oxidative Polymerization for Supercapacitor. J. Ind. Eng. Chem. 2015, 25, 280–287.
  • Feng, X.; Li, R.; Ma, Y.; Chen, R.; Shi, N.; Fan, Q.; Huang, W. One-Step Electrochemi-cal Synthesis of Graphene/Polyaniline Composite Film and Its Applications. Adv. Funct. Mater. 2011, 21, 2989–2996.
  • Gholami Laelabadi, K.; Moradian, R.; Manouchehri, I. One-step Fabrication of Flexible, cost/time Effective, and High Energy Storage Reduced Graphene oxide@PANI Supercapacitor. ACS Appl. Energy Mater. 2020, 3, 5301–5312.
  • Moyseowicz, A.; Gryglewicz, G. Hydrothermal-assisted Synthesis of a Porous polyani-line/reduced Graphene Oxide Composite as a high-performance Electrode Material for Supercapacitors. Compos. Part B Eng. 2019, 159, 4–12.
  • Idumah, C. I.; Nwuzor, I. C.; Odera, R. S. Recent Advances in Polymer Hydrogel Nanocomposites and Applications. Curr. Res. Green Sustainable Chem. 2021. DOI: 10.1016/j.crgsc.2021.100143.
  • C, I, I.; A, E.; V, O. Emerging Trends in Polymer aerogel Nanocomposites, Surfaces, Interfaces and Applications. Surf. Interfaces. 2021, 25, 101258.
  • Idumah, C. I. Progress in Polymer Nanocomposites for Bone Regeneration and Engineering. Polym. Polym. Composites. 2021, 29, 509–527.
  • Idumah, C. I. Novel Trends in self-healable Polymer Nanocomposites. J. Thermoplast. Compos. Mater. 2021, 34, 834–858.
  • Idumah, C. I.; Ezeani, E. O.; Nwuzor, I. C. A. Review: Advancements in Conductive Polymers Nanocomposites. Polym. Plast. Technol. Eng. 2021, 60, 756–783.
  • Idumah, C. I. Recent Advancements in self-healing Polymers, Polymer Blends, and Nanocomposites. Polym. Polym. Composites. 2021, 29, 246–258.
  • Idumah, C. I. Recent Advancements in Thermolysis of Plastic Solid Wastes to Liquid Fuel. J. Therm. Anal. Calorim. 2021. DOI: 10.1007/s10973-021-10776-5.
  • Idumah, C. I.; Obele, C. M.; Enwerem, U. E. On Interfacial and Surface Behavior of Polymeric MXenes Nanocomposites and Applications. Curr. Res. Green Sustainable Chem. 2021, 4, 100104.
  • Idumah, C. I. Novel Trends in Polymer aerogel Nanocomposites. Polym. Plast. Technol. Eng. 159 2021, 1–13 doi:144.
  • Nwuzor, I. C.; Idumah, C. I.; Nwanonenyi, S. C.; Ezeani, O., . E. Emerging Trends in self-polishing anti-fouling Coatings for Marine Environment. Safety in Extreme Environ. 2021, 3, 9–25.
  • Idumah, C. I. Novel Trends in Conductive Polymeric Nanocomposites, and Bionanocomposites. Synth. Met. 2021, 273, 116674.
  • Idumah, C. I.; Ogbu, J.; Ndem, J.; Obiana, V. Influence of Chemical Modification of Kenaf Fiber on xGNP-PP- nano-biocomposites. SN Appl. Sci. 2019, 1, 1261.
  • Idumah, C. I.; Hassan, A.; Affam, A. A Review of Recent Developments in Flammability of Polymer Nanocomposites. Rev. Chem. Eng. 2015, 31, 149–177.
  • Idumah, C.; Hassan, A. Characterization and Preparation of Conductive Exfoliated Graphene Nanoplatelets Kenaf Fibre Hybrid Polypropylene Composites. Syn. Met. 2016, 212, 91–104.
  • Idumah, C.; Hassan, A. Recently Emerging Trends in Thermal Conductivity of Polymer Nanocomposites. Rev. Chem. Eng. 2016, 32, 413–457.
  • Idumah, C.; Hassan, A. Emerging Trends in Flame Retardancy of Biofibers, Biopolymers, Biocomposites, and Bionanocomposites. Rev. Chem. Eng. 2015, 32, 115–148.
  • Idumah, C.; Hassan, A. Emerging Trends in Graphene Carbon Based Polymer Nanocomposites and Applications. Rev. Chem. Eng. 2016, 32, 223–226.
  • Idumah, C.; Hassan, A. Effect of Exfoliated Graphite Nanoplatelets on Thermal and Heat Deflection Properties of Kenaf Polypropylene Hybrid Nanocomposites. J. Polym. Eng. 2016, 36, 877–889.
  • Idumah, C.; Hassan, A. Emerging Trends in eco-compliant, Synergistic, and Hybrid Assembling of Multifunctional Polymeric Bionanocomposites. Rev. Chem. Eng. 2016, 32, 305–361.
  • Idumah, C.; Hassan, A.; Bourbigot, S. Influence of Exfoliated Graphene Nanoplatelets on Flame Retardancy of Kenaf Flour Polypropylene Hybrid Nanocomposites. J. Anal. Appl. Pyrolysis. 2017, 123, 65–72.
  • Idumah, C.; Hassan, A. Hibiscus Cannabinus fiber/PP Based nano-biocomposites Reinforced with Graphene Nanoplatelets. J. Nat. Fibers. 2017, 14, 691–706.
  • Idumah, C.; Hassan, A.; Ogbu, J.; Ndem, J.; Nwuzor, I. Recently Emerging Advancements in Halloysite Nanotubes Polymer Nanocomposites. Compos. Interface. 2018, 26, 751–824.
  • Idumah, C.; Hassan, A.; Bourbigot, S. Synergistic Effect of Exfoliated Graphene Nanoplatelets and non-halogen Flame Retardants on Flame Retardancy and Thermal Properties of Kenaf flour-PP Nanocomposites. J. Therm. Anal. Calorim. 2018, 134, 1681–1703.
  • Idumah, C.; Hassan, A.; Ihuoma, D. Recently Emerging Trends in Polymer Nanocomposites Packaging Materials. Polym.-Plast. Technol. Eng. 2019, 58, 1054–1109.
  • Idumah, C. I.; Hassan, A.; Ogbu, J. E.; Ndem, J.; Oti, W.; Obiana, V. Electrical, Thermal and Flammability Properties of Conductive Filler kenaf–reinforced Polymer Nanocomposites. J. of Therm. Compos. Mater. 2020, 33, 516–540.
  • Idumah, C. I.; Obere, C. M. Understanding Interfacial Influence on Properties of Polymer Nanocomposites. Surf. Interfaces. 2021, 22, 100879.
  • Idumah, C. I.; Obele, M. C.; Ezeani, E. O. Understanding Interfacial Dispersions in Ecobenign Polymer nano-biocomposites. Polym.-Plast. Technol. Mater. 2021, 60, 233–252.
  • Idumah, C. I.; Obele, C. M.; Ezeani, E. O.; Hassan, A. Recently Emerging Nanotechnological Advancements in Polymer Nanocomposite Coatings for anti-corrosion, anti-fouling and self-healing. Surf. Interfaces. 2020, 21, 100734.
  • Idumah, C. I. Novel Trends in Selfhealable Polymer Nanocomposites. J. Thermoplast. Compos. Mater. 34 2019, 834–858 2021.
  • Idumah, C. I.; Zurina, M.; Hassan, A.; Norhayani, O., and Shuhadah, I. . Nanostruct. Polym. Compos. Biomed. Appl. (Elsevier netherlands: Elsevier) 2019, 139–166 Access 23rd April 2022. English language
  • Idumah, C. I. Advancements in Conducting Polymer Bionanocomposites, and Hydrogels for Biomedical Applications. Int. J. Polym. Mater. Polym. Biomater. 2020. DOI: 10.1080/00914037.2020.1857384.
  • Idumah, C. I. Influence of NT in Polymeric Textiles, Applications, and Fight against COVID-19. J. Text. Inst. 2020. DOI: 10.1080/00405000.2020.1858600.
  • Idumah, C. I.; Iheoma, N. Novel Trends in Plastic Wastes Management. SN Appl. Sci. 2019, 1, 1402.
  • Idumah, C. I.; Nwabanne, J. T.; Tanjung, F. A. Novel Trends in Poly (Lactic) Acid Hybrid Bionanocomposites. Cleaner Mater. 2021, 2, 100022.
  • Idumah, C. I.; Ezeani, E. O.; Ezika, A. C.; Timothy, U. T. Recent Advancements in Flame Retardancy of MXene Polymer Nanocomposites. Safety in Extreme Environ. 2021, 3, 1–21.
  • Ezika, A. C.; Sadiku, E. R.; Idumah, C. I.; Ray, S. S.; Hamam, Y. On Energy Storage Capacity of Conductive MXene Hybrid Nanocomposites. J. Energy Storage. 2022, 45, 103686.
  • Idumah, C. I.; Okonkwo, U. C.; Obele, C. M. Recently Emerging Advancements in Montmorillonite Polymeric Nanoarchitectures and Applications. Cleaner Mater. 2022. DOI: 10.1016/j.clema.2022.100071.
  • Tanjung, F. A.; Kuswardani, R. A.; Idumah, C. I.; Siregar, J. P.; Karim, A. Characterization of Mechanical and Thermal Properties of Esterified Lignin Modified Polypropylene Composites Filled with Chitosan Fibers. Polym. Polym. Composites. 2022, 30, 09673911221082482.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.