186
Views
3
CrossRef citations to date
0
Altmetric
Review

Fullerene nanowhisker nanocomposite—current stance and high-tech opportunities

Pages 1908-1923 | Received 27 Feb 2022, Accepted 31 May 2022, Published online: 14 Jun 2022

References

  • Chang, L.; Sheng, M.; Duan, L.; Uddin, A. Ternary Organic Solar Cells Based on non-fullerene Acceptors: A Review. Org. Electron. 2021, 90, 106063. DOI: 10.1016/j.orgel.2021.106063.
  • Kausar, A. Poly (Methyl methacrylate)/Fullerene nanocomposite—Factors and Applications. Polym.-Plast. Technol. Mater. 2022, 61, 593–608.
  • Kausar, A. Advances in polymer/fullerene Nanocomposite: A Review on Essential Features and Applications. Polym.-Plast. Technol. Mater. 2017, 56(6), 594–605. DOI: 10.1080/03602559.2016.1233278
  • Tsai, T. Y.; Bunekar, N.; Huang, C. C.; Huang, Y. S.; Chen, L. C. Novolac Cured Epoxy resin/fullerene Modified Clay Composites: Applied to Copper Clad Laminates. RSC Adv. 2015, 5(116), 95649–95656. DOI: 10.1039/C5RA18073B.
  • Kausar, A. Advances in Condensation Polymer Containing zero-dimensional Nanocarbon reinforcement—fullerene, Carbon nano-onion, and Nanodiamond. Polym.-Plast. Technol. Mater. 2021, 60, 695–713.
  • Kumar, A., and Kumar, N. Advances in Transparent Polymer Nanocomposites and Their Applications: A Comprehensive Review. Polym.-Plast. Technol. Mater. 2022, 61, 937–974.
  • Ariga, K. Self‐assembly Enabling Materials Nanoarchitectonics. In Functional Materials from Colloidal Self‐Assembly; Zhao, G., Yan, Q., Eds.; Wiley: USA, 2022; pp 87–107.
  • Blacha-Grzechnik, A.; Krzywiecki, M.; Motyka, R.; Czichy, M. Electrochemically Polymerized Terthiopehene–C 60 Dyads for the Photochemical Generation of Singlet Oxygen. J. Phys. Chem. C. 2019, 123(42), 25915–25924. DOI: 10.1021/acs.jpcc.9b06101.
  • Yadav, D.; Yadav, R. K.; Kumar, A.; Park, N. J.; Kim, J. Y.; Baeg, J. O. Fullerene Polymer Film as a Highly Efficient Photocatalyst for Selective Solar Fuel Production from Co 2. J. Appl. Polym. Sci. 2020, 137(14), 48536. DOI: 10.1002/app.48536.
  • Haghgoo, M.; Ansari, R.; Hassanzadeh-Aghdam, M. K. The Effect of Nanoparticle Conglomeration on the Overall Conductivity of Nanocomposites. Int. J. Eng. Sci. 2020, 157, 103392. DOI: 10.1016/j.ijengsci.2020.103392.
  • Hassanzadeh-Aghdam, M. K.; Mahmoodi, M. J.; Ansari, R. Creep Performance of CNT Polymer nanocomposites-An Emphasis on Viscoelastic Interphase and CNT Agglomeration. Compos. B Eng. 2019, 168, 274–281. DOI: 10.1016/j.compositesb.2018.12.093.
  • Hassanzadeh-Aghdam, M. K. Evaluating the Effective Creep Properties of graphene-reinforced Polymer Nanocomposites by a Homogenization Approach. Compos. Sci. Technol. 2021, 209, 108791. DOI: 10.1016/j.compscitech.2021.108791.
  • Bunekar, N.; Tsai, T. Y.; Huang, H. P. Effect of Functionalized Graphene with Modified Clay on Flammability of Copper Clad Laminated Novolac Cured Epoxy Composites. Polym.-Plast. Technol. Mater. 2019, 58, 547–559.
  • Miyazawa, K.; Kato, R.; Saito, K.; Kizuka, T.; Mashino, T.; Nakamura, S. Fullerene Nanowhiskers and Related Fullerene Nanomaterials. J. Phys.: Conf. Ser. 2009, 159, 012007.
  • Baskar, A. V.; Benzigar, M. R.; Talapaneni, S. N.; Singh, G.; Karakoti, A. S.; Yi, J.; Al‐Muhtaseb, A. A. H.; Ariga, K.; Ajayan, P. M.; Vinu, A. Self-Assembled Fullerene Nanostructures: Synthesis and Applications. Advanced Functional Materials. 2022, 32(6), 2106924. DOI: 10.1002/adfm.202106924.
  • Lopez, A. M.; Mateo-Alonso, A.; Prato, M. Materials Chemistry of Fullerene C 60 Derivatives. J. Mater. Chem. 2011, 21, 1305–1318.
  • Lun-Fu, A. V.; Bubenchikov, A. M.; Bubenchikov, M. A.; Ovchinnikov, V. A. Computational Analysis of Strain-Induced Effects on the Dynamic Properties of C60 in Fullerite. Crystals. 2022, 12(2), 260. DOI: 10.3390/cryst12020260.
  • Mojica, M.; Alonso, J. A.; Méndez, F. Synthesis of Fullerenes. J. Phys. Org. Chem. 2013, 26(7), 526–539. DOI: 10.1002/poc.3121.
  • Nedelcu, S.; Thodkar, K.; Hierold, C. A Customizable, low-power, Wireless, Embedded Sensing Platform for Resistive Nanoscale Sensors. Microsys. Nanoengineer. 2022, 8(1), 1–11. DOI: 10.1038/s41378-021-00343-1.
  • Chae, S.-R.; Therezien, M.; Budarz, J. F.; Wessel, L.; Lin, S.; Xiao, Y.; Wiesner, M. R. Comparison of the Photosensitivity and Bacterial Toxicity of Spherical and Tubular Fullerenes of Variable Aggregate Size. J. Nanopart. Res. 2011, 13(10), 5121–5127. DOI: 10.1007/s11051-011-0492-y.
  • Nouraliei, M.; Karimkhani, M.; Mansouri, S.; Bagheri, Z. Geometry-controlled Carbon Nanostructures as Effective Drug Delivery Carriers for MAO Enzyme Inhibitors: A DFT Study. J. Molecul. Liq. 2021, 340, 116857. DOI: 10.1016/j.molliq.2021.116857.
  • Tang, Q.; Zhang, G.; Jiang, B.; Ji, D.; Kong, H.; Riehemann, K.; Ji, Q.; Fuchs, H. Self-assembled Fullerene (C 60)-pentacene Superstructures for Photodetectors. SmartMat. 2021, 2(1), 109–118. DOI: 10.1002/smm2.1024.
  • Dmitruk, N.; Borkovskaya, O. Y.; Havrylenko, T.; Naumenko, D.; Petrik, P.; Meza-Laguna, V.; Basiuk, E. Effect of Chemical Modification of Thin C60 Fullerene Films on the Fundamental Absorption Edge. Semiconduct. Phys. Quant. Electron. Optoelectron. 2010, 13(2), 180–185. DOI: 10.15407/spqeo13.02.180.
  • Behera, M.; Ram, S. Strongly Optical Absorptive Nanofluids and Rheology in Bonded Fullerene C 60 via Poly(vinyl Pyrrolidone) Molecules in Water. Fuller. Nanotub. Carb. Nanostruct. 2017, 25(3), 143–150. DOI: 10.1080/1536383X.2016.1271788.
  • Kroto, H. W.; Heath, J. R.; OBrien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature. 1985, 318(6042), 162–163. DOI: 10.1038/318162a0.
  • Wang, L.; Liu, B.; Liu, D.; Yao, M.; Hou, Y.; Yu, S.; Cui, T.; Li, D.; Zou, G.; Iwasiewicz, A. Synthesis of Thin, Rectangular C60 Nanorods Using m‐Xylene as a Shape Controller. Adv. Mater. 2006, 18(14), 1883–1888. DOI: 10.1002/adma.200502738.
  • Guo, H.; Wang, C.; Miyazawa, K. I.; Wang, H.; Masuda, H.; Fujita, D. Thermal Decomposition of Fullerene Nanowhiskers Protected by Amorphous Carbon Mask. Scientif. Rep. 2016, 6, 1–8.
  • Cohen-Tanugi, D.; Yao, N. Superior Imaging Resolution in Scanning helium-ion Microscopy: A Look at beam-sample Interactions. J. Appl. Phys. 2008, 104(6), 063504. DOI: 10.1063/1.2976299.
  • Sathish, M.; Miyazawa, K.; Sasaki, T. Nanoporous fullerene nanowhiskers. Chem. Mater. 2007, 19(10), 2398–2400. DOI: 10.1021/cm070114a.
  • Wang, L.; Liu, B.; Yu, S.; Yao, M.; Liu, D.; Hou, Y.; Cui, T.; Zou, G.; Sundqvist, B.; You, H. Highly Enhanced Luminescence from Single-Crystalline C 60 ·1 M -xylene Nanorods. Chem. Mater. 2006, 18(17), 4190–4194. DOI: 10.1021/cm060997q.
  • Wu, Z.; Gao, G.; Zhang, J.; Soldatov, A.; Kim, J.; Wang, L.; Tian, Y. Tunable Electrical Properties of C60· m-xylene and the Formation of Semiconducting Ordered Amorphous Carbon Clusters under Pressure. Nano Res. 2022, 15(4), 788–3793. DOI: 10.1007/s12274-022-4092-1.
  • Kyzyma, O. A.; Mchedlov-Petrossyan, N. O.; Turki Mahmood Al-Shuuchi, Y.; Tropin, T. V.; Ivankov, O. I.; Kriklya, N. N.; Gromovoy, T. Y.; Kryshtal, A. P.; Zhigunov, A. N.; Korosteleva, E. A., et al. Diluted and Concentrated Organosols of Fullerene C 60 in the toluene–acetonitrile Solvent System as Studied by Diverse Experimental Methods. Fuller. Nanotub. Carb. Nanostruct. 2021, 29(4), 315–330. DOI: 10.1080/1536383X.2020.1841752.
  • Ummiti, K.; Kumar, J. S. Applications of Fourier Transform Infrared and UV-Visible Spectroscopy for the Demonstrating Sameness of Ganirelix Peptide in Liquid Injection Formulation. Res. J. Pharm. Technol. 2022, 15, 1709–1712. DOI: 10.52711/0974-360X.2022.00286.
  • Shrestha, L. K.; Hill, J. P.; Tsuruoka, T.; Miyazawa, K. I.; Ariga, K. Surfactant-Assisted Assembly of Fullerene (C 60) Nanorods and Nanotubes Formed at a Liquid–Liquid Interface. Langmuir. 2013, 29(24), 7195–7202. DOI: 10.1021/la304549v.
  • Miyazawa, K. I. Synthesis of Fullerene Nanowhiskers Using the liquid–liquid Interfacial Precipitation Method and Their Mechanical, Electrical and Superconducting Properties. Sci. Technol. Adv. Mater. 2015, 16(1), 013502. DOI: 10.1088/1468-6996/16/1/013502.
  • Wakahara, T.; Miyazawa, K. I.; Nemoto, Y.; Ito, O. Diameter Controlled Growth of Fullerene Nanowhiskers and Their Optical Properties. Carbon. 2011, 49(14), 4644–4649. DOI: 10.1016/j.carbon.2011.06.041.
  • Sathish, M.; Miyazawa, K.; Sasaki, T. Preparation and Characterization of Ni Incorporated Fullerene Nanowhiskers. Diam. Relat. Mater. 2008, 17(4–5), 571–575. DOI: 10.1016/j.diamond.2007.10.032.
  • Minami, K.; Song, J.; Shrestha, L. K.; Ariga, K. Nanoarchitectonics for Fullerene Biology. Appl. Mater. Today. 2021, 23, 100989. DOI: 10.1016/j.apmt.2021.100989.
  • Ariga, K. Nanoarchitectonics Revolution and Evolution: From Small Science to Big Technology. Small Sci. 2021, 1(1), . 2000032. DOI: 10.1002/smsc.202000032.
  • Krishnan, V.; Kasuya, Y.; Ji, Q.; Sathish, M.; Shrestha, L. K.; Ishihara, S.; Minami, K.; Morita, H.; Yamazaki, T.; Hanagata, N. Vortex-aligned Fullerene Nanowhiskers as a Scaffold for Orienting Cell Growth. ACS Appl. Mater. Interf. 2015, 7(28), 15667–15673. DOI: 10.1021/acsami.5b04811.
  • Onishi, T.; Tsukamoto, T.; Oya, T. Simple Annealing Process for Producing Unique one-dimensional Fullerene Crystal Named Fullerene finned-micropillar. Scientif. Rep. 2020, 10, 1–9.
  • Gupta, V.; Scharff, P.; Miura, N. Ultrasound Induced Growth of C60 Fullerites over KBr. Mater. Lett. 2006, 60(25–26), 3156–3159. DOI: 10.1016/j.matlet.2006.02.082.
  • Takeya, H.; Miyazawa, K. I.; Kato, R.; Wakahara, T.; Ozaki, T.; Okazaki, H.; Ya.maguchi, T.; Takano, Y. Superconducting Fullerene Nanowhiskers. Molecules. 2012, 17(5), 4851–4859. DOI: 10.3390/molecules17054851.
  • Takeya, H.; Kato, R.; Wakahara, T.; Miyazawa, K. I.; Yamaguchi, T.; Ozaki, T.; Okazaki, H.; Takano, Y. Preparation and Superconductivity of potassium-doped Fullerene Nanowhiskers. Mater. Res. Bull. 2013, 48(2), 343–345. DOI: 10.1016/j.materresbull.2012.10.033.
  • Fan, X.; Soin, N.; Li, H.; Li, H.; Xia, X.; Geng, J. Fullerene (C 60) Nanowires: The Preparation, Characterization, and Potential Applications. Ener. Environ. Mater. 2020, 3(4), 469–491. DOI: 10.1002/eem2.12071.
  • Kang, W.; Kitamura, M.; Kamura, M.; Aomori, S.; Arakawa, Y. Solvent Dependence of Vacuum-Dried C 60 Thin-Film Transistors. Jpn. J. Appl. Phys. 2012, 51(2S), 02BK10. DOI: 10.7567/JJAP.51.02BK10.
  • Somani, P. R.; Somani, S. P.; Umeno, M. Toward Organic Thick Film Solar Cells: Three Dimensional Bulk Heterojunction Organic Thick Film Solar Cell Using Fullerene Single Crystal Nanorods. Appl. Phys. Lett. 2007, 91(17), 173503. DOI: 10.1063/1.2801624.
  • Miyazawa, K. I.; Ringor, C. Platinum Chloride Deposition into C60 Nanotubes. Mater. Lett. 2008, 62(3), 410–413. DOI: 10.1016/j.matlet.2007.05.069.
  • Zhang, X.; Qu, Y.; Piao, G.; Zhao, J.; Jiao, K. Reduced Working Electrode Based on Fullerene C60 Nanotubes@ DNA: Characterization and Application. Mater. Sci. Eng.: B. 2010, 175(2), 159–163. DOI: 10.1016/j.mseb.2010.07.020.
  • Saxena, V.; Malhotra, B. Prospects of Conducting Polymers in Molecular Electronics. Curr. Appl. Phys. 2003, 3(2–3), 293–305. DOI: 10.1016/S1567-1739(02)00217-1.
  • Kausar, A. Conducting Polymer-Based Nanocomposites: Fundamentals and Applications; Elsevier: Netherlands, 2021.
  • Kausar, A. Review on Conducting polymer/nanodiamond Nanocomposites: Essences and Functional Performance. J. Plast. Film Sheet. 2019, 35(4), 331–353. DOI: 10.1177/8756087919835870.
  • Le, T.-H.; Kim, Y.; Yoon, H. Electrical and Electrochemical Properties of Conducting Polymers. Polymers. 2017, 9(12), 150. DOI: 10.3390/polym9040150.
  • Seo, K. D.; Park, D. S.; Shim, Y. B. Spectroelectrochemical and Electrochromic Characterization of a Conductive Polymer Bearing Both Electron Donor and Acceptor Groups. J. Electrochem. Soc. 2022, 169(2), 020555. DOI: 10.1149/1945-7111/ac5305.
  • Cheng, P.; Zhao, X.; Zhan, X. Perylene Diimide-Based Oligomers and Polymers for Organic Optoelectronics. Acc. Mater. Res. 2022, 3(3), 309–318. DOI: 10.1021/accountsmr.1c00191.
  • Yang, L.; Li, X.; Yang, Q.; Wang, S.; Tian, H.; Ding, J.; Wang, L. Efficient Narrowband Red Electroluminescence from a Thermally Activated Delayed Fluorescence Polymer and Quantum Dot Hybrid. Chem. Engineer. J. 2022, 436, 135221. DOI: 10.1016/j.cej.2022.135221.
  • Rivnay, J.; Inal, S.; Collins, B. A.; Sessolo, M.; Stavrinidou, E.; Strakosas, X.; Tassone, C.; Delongchamp, D. M.; Malliaras, G. G. Structural Control of Mixed Ionic and Electronic Transport in Conducting Polymers. Nat. Commun. 2016, 7, 1–9.
  • Stejskal, J.; Gilbert, R. P. Preparation of a Conducting Polymer (IUPAC Technical Report). Pure Appl. Chemi. 2002, 74(5), 857–867. DOI: 10.1351/pac200274050857.
  • Thines, K. R.; Abdullah, E. C.; Mubarak, N. M.; Ruthiraan, M. In-situ Polymerization of Magnetic biochar–polypyrrole Composite: A Novel Application in Supercapacitor. Biomass. bioener. 2017, 98, 95–111. DOI: 10.1016/j.biombioe.2017.01.019.
  • Zhang, M. Y.; Song, Y.; Mu, X.; Yang, D.; Qin, Z.; Guo, D.; Sun, X.; Liu, X. X. Decavanadate Doped Polyaniline for Aqueous Zinc Batteries. Small. 2022, 18(16), 2107689. DOI: 10.1002/smll.202107689.
  • Fang, Y.; Yuan, B.; Jiang, Y.; Song, R. B.; Zhang, J. R.; Zhu, J. J. Layer-by-layer Construction of in Situ Formed Polypyrrole and Bacterial Cells as Capacitive Bioanodes for paper-based Microbial Fuel Cells. J. Mater. Chem. A. 2022, 10(9), 4915–4925. DOI: 10.1039/D1TA10611B.
  • Muralidhar, J. R.; Kodama, K.; Hirose, T.; Ito, Y.; Kawamoto, M. Photocleavage Behavior of a Polythiophene Derivative Containing a Coumarin Unit. Polym. J. 2022, 54(2), 191–198. DOI: 10.1038/s41428-021-00574-z.
  • Hao, M.; Hu, Z.; Zhang, Y.; Qian, X.; Liu, L.; Yang, J.; Wang, X.; Zhi, J.; Huang, Y.; Shi, X. Facile Preparation of Ultraviolet Resistant “Hard Armors” on poly(p-phenylene Benzobisoxazole) Fibers through heat-induced Surface Treatment. Polym. Degrad. Stab. 2022, 199, 109896. DOI: 10.1016/j.polymdegradstab.2022.109896.
  • Zong, W.; Qiu, W.; Yuan, P.; Wang, F.; Liu, Y.; Xu, S.; Su, S. J.; Cao, S. Thermally Activated Delayed Fluorescence Polymers for high-efficiency solution-processed non-doped OLEDs: Convenient Synthesis by Binding TADF Units and Host Units to the pre-synthesized polycarbazole-based Backbone via Click Reaction. Polymer. 2022, 240, 124468. DOI: 10.1016/j.polymer.2021.124468.
  • Bhadra, S.; Khastgir, D.; Singha, N. K.; Lee, J. H. Progress in Preparation, Processing and Applications of Polyaniline. Prog. Polym. Sci. 2009, 34, 783–810.
  • Sapurina, I. Y.; Shishov, M. Oxidative Polymerization of Aniline: Molecular Synthesis of Polyaniline and the Formation of Supramolecular Structures. New Polym. Spec. Applicat. 2012, 740, 272.
  • Morávková, Z.; Bober, P. Writing in A Polyaniline Film with Laser Beam and Stability of the Record: A Raman Spectroscopy Study. Int. J. Polym. Sci. 2018, 2018, 1797216. DOI: 10.1155/2018/1797216.
  • Kocherginsky, N.; Wang, Z. Transmembrane Redox Reactions through Polyaniline Membrane Doped with Fullerene C60. Synth. Met. 2006, 156(7–8), 558–565. DOI: 10.1016/j.synthmet.2006.02.010.
  • Giusca, C.; Baibarac, M.; Lefrant, S.; Chauvet, O.; Baltog, I.; Devenyi, A.; Manaila, R. C60–polymer Nanocomposites: Evidence for Interface Interaction. Carbon. 2002, 40(9), 1565–1574. DOI: 10.1016/S0008-6223(02)00024-6.
  • Sapurina, I. Y.; Gribanov, A.; Mokeev, M.; Zgonnik, V.; Trchová, M.; Stejskal, J. Polyaniline Composites with Fullerene C60. Phys. Sol. State. 2002, 44(3), 574–575. DOI: 10.1134/1.1462712.
  • Calamba, K.; Ringor, C.; Pascua, C.; Miyazawa, K. I. Pleated Surface Morphology of C 60 Fullerene Nanowhiskers Incorporated by Polyaniline in N -methyl-2-pyrrolidone. Fuller. Nanotub. Carb. Nanostruct. 2015, 23(8), 709–714. DOI: 10.1080/1536383X.2014.971118.
  • Qu, Y.; Yu, W.; Liang, S.; Li, S.; Zhao, J.; Piao, G. Structure and Morphology Characteristics of Fullerene C60 Nanotubes Fabricated with n-methyl-2-pyrrolidone as a Good Solvent. J. Nanomater. 2011, 2011, 69. DOI: 10.1155/2011/706293.
  • Baibarac, M.; Baltog, I.; Daescu, M.; Lefrant, S.; Chirita, P. Optical Evidence for Chemical Interaction of the polyaniline/fullerene Composites with N-methyl-2-pyrrolidinone. J. Molecul. Struct. 2016, 1125, 340–349. DOI: 10.1016/j.molstruc.2016.07.001.
  • Wang, B.; Gao, X.; Piao, G. Preparation of polyaniline-doped Fullerene Whiskers. Int. J. Polym. Sci. 2013, 2013, 867934. DOI: 10.1155/2013/867934.
  • Liu, D.; Zhao, W.; Liu, S.; Cen, Q.; Xue, Q. Comparative Tribological and Corrosion Resistance Properties of Epoxy Composite Coatings Reinforced with Functionalized Fullerene C60 and Graphene. Surf. Coat. Technol. 2016, 286, 354–364. DOI: 10.1016/j.surfcoat.2015.12.056.
  • Wang, H.; Yan, X.; Piao, G. A high-performance Supercapacitor Based on Fullerene C60 Whisker and Polyaniline Emeraldine Base Composite. Electrochim. Acta. 2017, 231, 264–271. DOI: 10.1016/j.electacta.2017.02.057.
  • Behera, A., Ed. Nanomaterials In Advanced Materials; Springer: Cham, Switzerland, 2022. pp 77–125.
  • Song, J.; Jia, X.; Ariga, K. Methods with Nanoarchitectonics for Small Molecules and Nanostructures to Regulate Living Cells. Small Meth. 2020, 4(10), 2000500. DOI: 10.1002/smtd.202000500.
  • Nurmawati, M. H.; Ajikumar, P. K.; Renu, R.; Sow, C. H.; Valiyaveettil, S. Amphiphilic Poly(P -phenylene)-driven Multiscale Assembly of Fullerenes to Nanowhiskers. ACS nano. 2008, 2(7), 1429–1436. DOI: 10.1021/nn8001664.
  • Ravindranath, R.; Ajikumar, P. K.; Advincula, R. C.; Knoll, W.; Valiyaveettil, S. Fabrication and Characterization of Multilayer Films from Amphiphilic Poly(P -phenylene)s. Langmuir. 2006, 22(21), 9002–9008. DOI: 10.1021/la060539w.
  • Mahesh, K.; Karpagam, S.; Goubard, F. Conductive and Photoactive Nature of Conjugated Polymer Based on Thiophene Functionalized Thiazole or Benzothiadiazole. Express Polym. Lett. 2018, 12(3), 238–255. DOI: 10.3144/expresspolymlett.2018.22.
  • Bao, L.; Zang, J.; Li, X. Flexible Zn 2 SnO 4 /Mno 2 Core/Shell Nanocable−Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes. Nano Lett. 2011, 11(3), 1215–1220. DOI: 10.1021/nl104205s.
  • Chen, Z.; Augustyn, V.; Wen, J.; Zhang, Y.; Shen, M.; Dunn, B.; Lu, Y. High‐performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites. Adv. Mater. 2011, 23(6), 791–795. DOI: 10.1002/adma.201003658.
  • Chen, Z.; Qin, Y.; Weng, D.; Xiao, Q.; Peng, Y.; Wang, X.; Li, H.; Wei, F.; Lu, Y. Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy Storage. Adv. Funct. Mater. 2009, 19(21), 3420–3426. DOI: 10.1002/adfm.200900971.
  • Sen, P.; De, A.; Chowdhury, A. D.; Bandyopadhyay, S.; Agnihotri, N.; Mukherjee, M. Conducting Polymer Based Manganese Dioxide Nanocomposite as Supercapacitor. Electrochim. Acta. 2013, 108, 265–273. DOI: 10.1016/j.electacta.2013.07.013.
  • Snook, G. A.; Peng, C.; Fray, D. J.; Chen, G. Z. Achieving High Electrode Specific Capacitance with Materials of Low Mass Specific Capacitance: Potentiostatically Grown Thick micro-nanoporous PEDOT Films. Electrochem. Commun. 2007, 9(1), 83–88. DOI: 10.1016/j.elecom.2006.08.037.
  • Liu, K.; Hu, Z.; Xue, R.; Zhang, J.; Zhu, J. Electropolymerization of High Stable Poly (3, 4-ethylenedioxythiophene) in Ionic Liquids and Its Potential Applications in Electrochemical Capacitor. J. Power Sources. 2008, 179(2), 858–862. DOI: 10.1016/j.jpowsour.2008.01.024.
  • White, A. M.; Slade, R. C. Electrochemically and Vapour Grown Electrode Coatings of Poly (3, 4-ethylenedioxythiophene) Doped with Heteropolyacids. Electrochim. Acta. 2004, 49(6), 861–865. DOI: 10.1016/j.electacta.2003.10.003.
  • Jayalakshmi, M.; Balasubramanian, K. Simple Capacitors to supercapacitors-an Overview. Int. J. Electrochem. Sci. 2008, 3, 1196–1217.
  • Hui, Y.; Bian, C.; Xia, S.; Tong, J.; Wang, J. Synthesis and Electrochemical Sensing Application of Poly (3,4-ethylenedioxythiophene)-based Materials: A Review. Anal. Chim. Acta. 2018, 1022, 1–19. DOI: 10.1016/j.aca.2018.02.080.
  • Zhang, K.; Zhang, L. L.; Zhao, X.; Wu, J. Graphene/polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chem. Mater. 2010, 22(4), 1392–1401. DOI: 10.1021/cm902876u.
  • Song, B.; Tuan, -C.-C.; Huang, X.; Li, L.; Moon, K.-S.; Wong, C.-P. Sulfonated Polyaniline Decorated Graphene Nanocomposites as Supercapacitor Electrodes. Mater. Lett. 2016, 166, 12–15. DOI: 10.1016/j.matlet.2015.11.108.
  • Simotwo, S. K.; DelRe, C.; Kalra, V. Supercapacitor Electrodes Based on high-purity Electrospun Polyaniline and polyaniline–carbon Nanotube Nanofibers. ACS Appl. Mater. Interf. 2016, 8(33), 21261–21269. DOI: 10.1021/acsami.6b03463.
  • Benzigar, M. R.; Joseph, S.; Saianand, G.; Gopalan, A.-I.; Sarkar, S.; Srinivasan, S.; Park, D.-H.; Kim, S.; Talapaneni, S. N.; Ramadass, K. Highly Ordered Iron oxide-mesoporous Fullerene Nanocomposites for Oxygen Reduction Reaction and Supercapacitor Applications. Micropor. Mesopor. Mater. 2019, 285, 21–31. DOI: 10.1016/j.micromeso.2019.04.071.
  • Pech, D.; Brunet, M.; Durou, H.; Huang, P.; Mochalin, V.; Gogotsi, Y.; Taberna, P.-L.; Simon, P. Ultrahigh-power micrometre-sized Supercapacitors Based on onion-like Carbon. Nat. Nanotechnol. 2010, 5(9), 651–654. DOI: 10.1038/nnano.2010.162.
  • Lin, J.; Zhang, C.; Yan, Z.; Zhu, Y.; Peng, Z.; Hauge, R. H.; Natelson, D.; Tour, J. M. 3-dimensional Graphene Carbon Nanotube carpet-based Microsupercapacitors with High Electrochemical Performance. Nano lett. 2013, 13(1), 72–78. DOI: 10.1021/nl3034976.
  • Xiong, S.; Yang, F.; Jiang, H.; Ma, J.; Lu, X. Covalently Bonded polyaniline/fullerene Hybrids with coral-like Morphology for high-performance Supercapacitor. Electrochim. Acta. 2012, 85, 235–242. DOI: 10.1016/j.electacta.2012.08.056.
  • Da-Wei, W.; Li, F.; Zhao, J.; Ren, W.; Chen, Z.-G.; Tan, J.; Wu, Z.-S.; Gentle, I.; Lu, G. Q.; Cheng, H.-M. Fabrication of Graphene/Polyaniline Composite Paper via in Situ Anodic Electropolymerization for High-Performance Flexible Electrode. ACS nano. 2009, 3(7), 1745–1752. DOI: 10.1021/nn900297m.
  • Liu, Y.; Ma, Y.; Guang, S.; Ke, F.; Xu, H. Polyaniline-graphene Composites with a three-dimensional array-based Nanostructure for high-performance Supercapacitors. Carbon. 2015, 83, 79–89. DOI: 10.1016/j.carbon.2014.11.026.
  • Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I. B.; Nørskov, J. K.; Jaramillo, T. F. Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science. 2017, 355(6321), 4998. DOI: 10.1126/science.aad4998.
  • Zeng, K.; Zhang, D. Recent Progress in Alkaline Water Electrolysis for Hydrogen Production and Applications. Prog. Ener. Combust. Sci. 2010, 36(3), 307–326. DOI: 10.1016/j.pecs.2009.11.002.
  • Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds. Chem. Rev. 2010, 110(11), 6474–6502. DOI: 10.1021/cr100246c.
  • Huang, D. M.; Moule, A. J.; Faller, R. Characterization of polymer–fullerene Mixtures for Organic Photovoltaics by Systematically coarse-grained Molecular Simulations. Fluid Phase Equilib. 2011, 302(1–2), 21–25. DOI: 10.1016/j.fluid.2010.07.025.
  • Chirvase, D.; Parisi, J.; Hummelen, J. C.; Dyakonov, V. Influence of Nanomorphology on the Photovoltaic Action of polymer–fullerene Composites. Nanotechnology. 2004, 15(9), 1317. DOI: 10.1088/0957-4484/15/9/035.
  • Richards, J. J.; Rice, A. H.; Nelson, R. D.; Kim, F. S.; Jenekhe, S. A.; Luscombe, C. K.; Pozzo, D. C. Modification of PCBM Crystallization via Incorporation of C 60 in Polymer/Fullerene Solar Cells. Adv. Funct. Mater. 2013, 23(4), 514–522. DOI: 10.1002/adfm.201201100.
  • Li, H.-C.; Rao, K. K.; Jeng, J.-Y.; Hsiao, Y.-J.; Guo, T.-F.; Jeng, Y.-R.; Wen, T.-C. Nano-scale Mechanical Properties of polymer/fullerene Bulk hetero-junction Films and Their Influence on Photovoltaic Cells. Sol. Ener. Mater. Sol. Cel. 2011, 95(11), 2976–2980. DOI: 10.1016/j.solmat.2011.05.039.
  • Wakahara, T.; Miyazawa, K. I.; Ito, O.; Tanigaki, N. Preparation of Composite Films of a Conjugated Polymer and C60NWs and Their Photovoltaic Application. J. Nanomater. 2016, 2016, 2895850. DOI: 10.1155/2016/2895850.
  • Armin, A.; Chen, Z.; Jin, Y.; Zhang, K.; Huang, F.; Shoaee, S. A Shockley‐Type Polymer: Fullerene Solar Cell. Adv. Ener. Mater. 2018, 8(7), 1701450. DOI: 10.1002/aenm.201701450.
  • Senthilkumar, B.; Selvan, R. K.; Meyrick, D.; Minakshi, M. Synthesis and Characterization of Manganese Molybdate for Symmetric Capacitor Applications. Int. J. Electrochem. Sci. 2015, 10, 185–193/.
  • Amoura, D.; Sánchez-Jiménez, M.; Estrany, F.; Makhloufi, L.; Alemán, C. Clay Incorporation at the Dielectric Layer of Multilayer Polymer Films for Electrochemical Activation. Eur. Polym. J. 2015, 69, 296–307. DOI: 10.1016/j.eurpolymj.2015.05.030.
  • Pandolfo, T.; Ruiz, V.; Sivakkumar, S., and Nerkar, J. General Properties of Electrochemical Capacitors. In Supercapacitors: Materials, Systems and Applications. Fran¸cois Beguin and El ´ zbieta Fr ˙ a¸ckowiak, Eds.;Wliey, Germany, 2013; 69–110.
  • Iqbal, M. Z.; Haider, S. S.; Zakar, S.; Alzaid, M.; Afzal, A. M.; Aftab, S. Cobalt-oxide/carbon Composites for Asymmetric solid-state Supercapacitors. Mater. Res. Bull. 2020, 131, 110974. DOI: 10.1016/j.materresbull.2020.110974.
  • Shi, L.; Yang, W.; Zha, X.; Zeng, Q.; Tu, D.; Li, Y.; Yang, Y.; Xu, J.; Chen, F. In Situ Deposition of Conducting Polymer on Metal Organic Frameworks for High Performance Hybrid Supercapacitor Electrode Materials. J. Ener. Storage. 2022, 52, 104729. DOI: 10.1016/j.est.2022.104729.
  • Cericola, D.; Kötz, R. Hybridization of Rechargeable Batteries and Electrochemical Capacitors: Principles and Limits. Electrochim. Acta. 2012, 72, 1–17. DOI: 10.1016/j.electacta.2012.03.151.
  • Abdelhamid, M. E.; OMullane, A. P.; Snook, G. A. Storing Energy in Plastics: A Review on Conducting Polymers & Their Role in Electrochemical Energy Storage. RSC Adv. 2015, 5(15), 11611–11626. DOI: 10.1039/C4RA15947K.
  • Bunekar, N.; Tsai, T. Y. Green Nanocomposites: Advances and Applications in Environmentally Friendly Carbon Nanomaterials. In Emerging Carbon‐Based Nanocomposites for Environmental Applications; Mishra, A. K., Hussain, C. M., Mishra, S. B., Eds.; Scrivener Publishing LLC: Wiley, USA, 2020; pp 55–70.
  • Miyazawa, K. I.; Minato, J. I.; Mashino, T.; Nakamura, S.; Fujino, M.; Suga, T. Structural Characterization of room-temperature Synthesized Fullerene Nanowhiskers. Nukleonika. 2006, 51, 41–48.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.