90
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Enhancement of optical and piezoelectric properties of P(Vinylidene fluoride-hexafluoropropylene)/N,N-Dimethyl-4-nitro-4-Stilbenamine composites for optoelectronic applications

, , &
Pages 2001-2015 | Received 06 Apr 2022, Accepted 02 Jun 2022, Published online: 28 Jun 2022

References

  • Huh, Y.-H.; Kim, J.; Lee, J.; Hong, S.; Park, J. Application of PVDF Film Sensor to Detect Early Damage in Wind Turbine Blade Components. Procedia Engineering. 2011, 10, 3304–3309. DOI: 10.1016/j.proeng.2011.04.545.
  • Reece, T. J.; Ducharme, S.; Sorokin, A.; Poulsen, M. Nonvolatile Memory Element Based on a Ferroelectric Polymer Langmuir–Blodgett Film. Appl. Phys. Lett. 2003, 82(1), 142–144. DOI: 10.1063/1.1533844.
  • Silva, M.; Botelho, G.; Rocha, J.; Lanceros-Mendez, S. Stability of the Electroactive Response of β-poly (Vinylidene Fluoride) for Applications in the Petrochemical Industry. Polym. Test. 2010, 29(5), 613–615. DOI: 10.1016/j.polymertesting.2010.03.012.
  • Kang, S. J.; Park, Y. J.; Sung, J.; Jo, P. S.; Park, C.; Kim, K. J.; Cho, B. O. Spin Cast Ferroelectric Beta Poly (Vinylidene Fluoride) Thin Films via Rapid Thermal Annealing. Appl. Phys. Lett. 2008, 92(1), 012921. DOI: 10.1063/1.2830701.
  • Mahale, B.; Bodas, D.; Gangal, S. Development of low-cost Poly (Vinyldifluoride) Sensor for low-pressure Application. Micro Nano Lett. 2011, 6(7), 540–542. DOI: 10.1049/mnl.2011.0082.
  • El Mohajir, B.-E.; Heymans, N. Changes in Structural and Mechanical Behaviour of PVDF with Processing and Thermomechanical Treatments. 1. Change in Structure. Polymer. 2001, 42(13), 5661–5667. DOI: 10.1016/S0032-3861(01)00064-7.
  • Gregorio Jr., R. and Cestari, M. Effect of Crystallization Temperature on the Crystalline Phase Content and Morphology of Poly (Vinylidene Fluoride). J. Polym. Sci. B Polym. Phys. 1994, 32(5), 859–870. DOI: 10.1002/polb.1994.090320509.
  • Pan, H.; Na, B.; Lv, R.; Li, C.; Zhu, J.; Yu, Z. Polar Phase Formation in Poly (Vinylidene Fluoride) Induced by Melt Annealing. J. Polym. Sci. B Polym. Phys. 2012, 50(20), 1433–1437. DOI: 10.1002/polb.23146.
  • Ruan, L.; Yao, X.; Chang, Y.; Zhou, L.; Qin, G.; Zhang, X. Properties and Applications of the β Phase Poly (Vinylidene Fluoride). Polymers. 2018, 10(3), 228. DOI: 10.3390/polym10030228.
  • Chen, X.; Tian, H.; Li, X.; Shao, J.; Ding, Y.; An, N.; Zhou, Y. A High Performance P (VDF-TrFE) Nanogenerator with self-connected and Vertically Integrated Fibers by Patterned EHD Pulling. Nanoscale. 2015, 7(27), 11536–11544. DOI: 10.1039/C5NR01746G.
  • Kim, K. M.; Park, N.-G.; Ryu, K. S.; Chang, S. H. Characteristics of PVdF-HFP/TiO2 Composite Membrane Electrolytes Prepared by Phase Inversion and Conventional Casting Methods. Electrochim. Acta. 2006, 51(26), 5636–5644. DOI: 10.1016/j.electacta.2006.02.038.
  • Neese, B.; Wang, Y.; Chu, B.; Ren, K.; Liu, S.; Zhang, Q.; Huang, C.; West, J. Piezoelectric Responses in Poly (Vinylidene fluoride/hexafluoropropylene) Copolymers. Appl. Phys. Lett. 2007, 90(24), 242917. DOI: 10.1063/1.2748076.
  • Shi, J.; Yong, S.; Beeby, S. An Easy to Assemble Ferroelectret for Human Body Energy Harvesting. Smart Mater. Struct. 2018, 27(8), 084005. DOI: 10.1088/1361-665X/aabdbc.
  • Huan, Y.; Liu, Y.; Yang, Y. Simultaneous Stretching and Static Electric Field Poling of Poly (Vinylidene Fluoride‐hexafluoropropylene) Copolymer Films. Polym. Eng. Sci. 2007, 47(10), 1630–1633. DOI: 10.1002/pen.20843.
  • Ahmed, M.; Sarhan, A.; Elqahtani, Z.; Elsharkawy, W. B.; Azzam, M.; Fahmy, T. Linear and Non-linear Optical Parameters of Copper Chloride Doped Poly (Vinyl Alcohol) for Optoelectronic Applications. Egypt. J. Chem. 2022. DOI: 10.21608/EJCHEM.2022.105927.4878.
  • Viswanath, P.; Rambhatla, P. V.; Sai Kiran, P.; Muthukumar, V. S. Third Order Nonlinear Optical Properties of β Enhanced PVDF Based Nanocomposite Thin Films. J. Mater. Sci. 2019, 30(13), 12447–12455. DOI: 10.1007/s10854-019-01604-6.
  • El Wafa, A. M. A.; Okada, S.; Nakanishi, H. Poling and Its Relaxation Studies of Polycarbonate and Poly (styrene-co-acrylonitrile) Doped by a Nonlinear Optical Chromophore. Dyes Pigm. 2006, 69(3), 239–244. DOI: 10.1016/j.dyepig.2005.03.014.
  • Falcao, E. A.; Aguiar, L. W.; Guo, R.; Bhalla, A. S. Optical Absorption of Nd2O3-Doped Polyvinylidene Fluoride Films. Mater. Chem. Phys. 2021, 258, 123904. DOI: 10.1016/j.matchemphys.2020.123904.
  • Sabira, K.; Saheeda, P.; Divyasree, M.; Jayalekshmi, S. Impressive Nonlinear Optical Response Exhibited by Poly (Vinylidene fluoride)(PVDF)/reduced Graphene Oxide (RGO) Nanocomposite Films. Optics Laser Technol. 2017, 97, 77–83. DOI: 10.1016/j.optlastec.2017.06.008.
  • Veved, A.; Ejuh, G. W.; Djongyang, N. Study of the Optoelectronic and Piezoelectric Properties of ZrO2 Doped PVDF from Quantum Chemistry Calculations. Chin. J. Phys. 2020, 63, 213–219. DOI: 10.1016/j.cjph.2019.10.022.
  • Varadwaj, A.; Marques, H. M.; Varadwaj, P. R. Is the Fluorine in Molecules Dispersive? Is Molecular Electrostatic Potential a Valid Property to Explore fluorine-centered non-covalent Interactions? Molecules. 2019, 24(3), 379. DOI: 10.3390/molecules24030379.
  • Davis, G.; McKinney, J.; Broadhurst, M.; Roth, S. Electric‐field‐induced Phase Changes in Poly (Vinylidene Fluoride). J. Appl. Phys. 1978, 49(10), 4998–5002. DOI: 10.1063/1.324446.
  • Muralidhar, C.; Pillai, P. XRD Studies on Barium Titanate (BaTiO3)/polyvinylidene Fluoride (PVDF) Composites. J. Mater. Sci. 1988, 23(2), 410–414. DOI: 10.1007/BF01174664.
  • Schenk, M.; Bauer, S.; Lessle, T.; Ploss, B. Dielectric Spectroscopy on Ferroelectric P (VDF-TrFE). Ferroelectrics. 1992, 127(1), 215–220. DOI: 10.1080/00150199208223373.
  • Luo, Y.; Jiang, X.; Zhang, W.; Li, X. Effect of Aluminium Nitrate Hydrate on the Crystalline, Thermal and Mechanical Properties of Poly (Vinyl Alcohol) Film. Polym. Polym. Composites. 2015, 23(8), 555–562. DOI: 10.1177/096739111502300805.
  • Boccaccio, T.; Bottino, A.; Capannelli, G.; Piaggio, P. Characterization of PVDF Membranes by Vibrational Spectroscopy. J. Membr. Sci. 2002, 210(2), 315–329. DOI: 10.1016/S0376-7388(02)00407-6
  • Prabakaran, P.; Manimuthu, R. P. Enhancement of the Electrochemical Properties with the Effect of Alkali Metal Systems on PEO/PVdF-HFP Complex Polymer Electrolytes. Ionics. 2016, 22(6), 827–839. DOI: 10.1007/s11581-015-1618-5.
  • Isa, K. M.; Osman, Z.; Arof, A. K.; Othman, L.; Zainol, N.; Samin, S.; Chong, W.; Kamarulzaman, N. Lithium Ion Conduction and ion–polymer Interaction in PVdF-HFP Based Gel Polymer Electrolytes. Solid State Ionics. 2014, 268, 288–293. DOI: 10.1016/j.ssi.2014.10.012.
  • Gregorio, J. R. Determination of the α, β, and γ Crystalline Phases of Poly (Vinylidene Fluoride) Films Prepared at Different Conditions. J. Appl. Polym. Sci. 2006, 100(4), 3272–3279. DOI: 10.1002/app.23137.
  • Gohel, K.; Kanchan, D. Ionic Conductivity and Relaxation Studies in PVDF-HFP: PMMA-based Gel Polymer Blend Electrolyte with LiClO4 Salt. J. Adv. Dielectr. 2018, 8(1), 1850005. DOI: 10.1142/S2010135X18500054.
  • Osipov, V. Y.; Romanov, N. M.; Kogane, K.; Touhara, H.; Hattori, Y.; Takai, K. Intrinsic Infrared Absorption for carbon–fluorine Bonding in Fluorinated Nanodiamond. Mendeleev Commun. 2020, 30, 84–87. DOI: 10.1016/j.mencom.2020.01.028.
  • Nandiyanto, A. B. D.; Oktiani, R.; Ragadhita, R. How to Read and Interpret FTIR Spectroscope of Organic Material. Indonesian J. Sci. Technol. 2019, 4(1), 97–118. DOI: 10.17509/ijost.v4i1.15806.
  • Sivakumar, M.; Subadevi, R.; Rajendran, S.; Wu, H.-C.; Wu, N.-L. Compositional Effect of PVdF–PEMA Blend Gel Polymer Electrolytes for Lithium Polymer Batteries. Eur. Polym. J. 2007, 43(10), 4466–4473. DOI: 10.1016/j.eurpolymj.2007.08.001Get.
  • Mishra, R.; Singh, S. K.; Gupta, H.; Tiwari, R. K.; Meghnani, D.; Patel, A.; Tiwari, A.; Tiwari, V. K.; Singh, R. K. Polar β-Phase PVdF-HFP-Based Freestanding and Flexible Gel Polymer Electrolyte for Better Cycling Stability in a Na Battery. Energy Fuels. 2021, 35(18), 15153–15165. DOI: 10.1021/acs.energyfuels.1c02114.
  • Fahmy, T.; Sarhan, A. Characterization and Molecular Dynamic Studies of chitosan–iron Complexes. Bull. Mater. Sci. 2021, 44(2), 1–12. DOI: 10.1007/s12034-021-02434-1.
  • Bhatti, I. N.; Banerjee, M.; Bhatti, I. N. Effect of Annealing and Time of Crystallization on Structural and Optical Properties of PVDF Thin Film Using Acetone as Solvent. IOSR-JAP. 2013, 4, 42–47. DOI: 10.9790/4861-0444247.
  • Jarząbek, B.; Nitschke, P.; Godzierz, M.; Palewicz, M.; Piasecki, T.; Gotszalk, T. P. Thermo-Optical and Structural Studies of Iodine-Doped Polymer: Fullerene Blend Films, Used in Photovoltaic Structures. Polymers. 2022, 14(5), 858. DOI: 10.3390/polym14050858.
  • Tauc, J.; Menth, A.; Wood, D. Optical and Magnetic Investigations of the Localized States in Semiconducting Glasses. Phys. Rev. Lett. 1970, 25(11), 749. DOI: 10.1103/PhysRevLett.25.749.
  • Bhunia, R.; Das, S.; Hussain, S.; Sehgal, G.; Chakraborty, B.; Bhar, R.; Pal, A. Structural and Optical Properties of Manganese‐Doped NanocrystallineZinc Oxide/Polyvinylidene Fluoride Flexible Composite Thin Films Deposited by the Sol–Gel Method. Adv. Polym. Technol. 2018, 37(1), 60–70. DOI: 10.1002/adv.21642.
  • Wemple, S.; DiDomenico, M., Jr. Behavior of the Electronic Dielectric Constant in Covalent and Ionic Materials. Phys. Rev. B. 1971, 3(4), 1338. DOI: 10.1103/PhysRevB.3.1338.
  • Wemple, S. Refractive-index Behavior of Amorphous Semiconductors and Glasses. Phys. Rev. B. 1973, 7(8), 3767. DOI: 10.1103/PhysRevB.7.3767.
  • Baleva, M.; Goranova, E.; Darakchieva, V.; Kossionides, S.; Kokkosis, M.; Jordanov, P. Influence of Grain Size on the Optical Conductivity of β-FeSi2 Layers. Vacuum. 2002, 69(1–3), 425–429. DOI: 10.1016/S0042-207X(02)00369-X
  • Frumar, M.; Jedelský, J.; Frumarova, B.; Wagner, T.; Hrdlička, M. Optically and Thermally Induced Changes of Structure, Linear and non-linear Optical Properties of Chalcogenides Thin Films. J. Non-Cryst. Solids. 2003, 326, 399–404. DOI: 10.1016/S0022-3093(03)00446-0.
  • Tichý, L.; Ticha, H.; Nagels, P.; Callaerts, R.; Mertens, R.; Vlček, M. Optical Properties of Amorphous As–Se and Ge–As–Se Thin Films. Mater. Lett. 1999, 39(2), 122–128. DOI: 10.1016/S0167-577X(98)00227-4
  • Ticha, H.; Tichy, L. Semiempirical Relation between non-linear Susceptibility (Refractive Index), Linear Refractive Index and Optical Gap and Its Application to Amorphous Chalcogenides. J. Optoelectron. Adv. Mater. 2002, 4(2), 381–386.
  • Pankove, J. I. Optical Processes in Semiconductors: Courier Corporation. 1975. New York: Dover Publications, Inc .
  • Fahmy, T.; Ahmed, M. Dielectric Relaxation Spectroscopy of a Poly (Acrylonitrile-Butadiene-Styrene)/Styrene-Acrylonitrile Polymer Blend. J. Korean Phys. Soc. 2011, 58, 1654–1659. DOI: 10.3938/jkps.58.1654.
  • Fahmy, T.; Elhendawi, H.; Elsharkawy, W.; Reicha, F. AC Conductivity and Dielectric Relaxation of chitosan/poly (Vinyl Alcohol) Biopolymer Polyblend. Bull. Mater. Sci. 2020, 43(1), 1–10. DOI: 10.1007/s12034-020-02207-2.
  • Fahmy, T.; Elzanaty, H. AC Conductivity and Broadband Dielectric Spectroscopy of a Poly (Vinyl Chloride)/poly (Ethyl Methacrylate) Polymer Blend. Bull. Mater. Sci. 2019, 42(5), 1–7. DOI: 10.1007/s12034-019-1906-1.
  • Hilczer, B.; Malecki, J. Electrets: Studies in Electrical and Electronic Engineering. New York: Elsevier. 1986, 14, 19.
  • Park, C.; Ounaies, Z.; Wise, K. E.; Harrison, J. S. In Situ Poling and Imidization of Amorphous Piezoelectric Polyimides. Polymer. 2004, 45(16), 5417–5425. DOI: 10.1016/j.polymer.2004.05.057.
  • Elhadidy, H.; Abdelhamid, M.; Aboelwafa, A.; Habib, A. Structure and Piezoelectricity of Poly (styrene-co-acrylonitrile) Copolymer Doped with Different Dyes. Polym.-Plast. Technol. Eng. 2013, 52(12), 1277–1284. DOI: 10.1080/03602559.2013.814676.
  • Abdelhamid, M.; Aboelwafa, A.; Elhadidy, H.; Habib, A. Investigation of the Structure and Piezoelectricity of Poly (Vinylidene fluoride–trifluroethylene) Copolymer Doped with Different Dyes. Int. J. Polym. Mater. 2012, 61(7), 505–519. DOI: 10.1080/00914037.2011.593063.
  • Li, H.; Tian, C.; Deng, Z. D. Energy Harvesting from Low Frequency Applications Using Piezoelectric Materials. Appl. Phys. Rev. 2014, 1(4), 041301. DOI: 10.1063/1.4900845.
  • Wang, C.; Lee, W.-Y.; Kong, D.; Pfattner, R.; Schweicher, G.; Nakajima, R.; Lu, C.; Mei, J.; Lee, T. H.; Wu, H.-C. Significance of the double-layer Capacitor Effect in Polar Rubbery Dielectrics and Exceptionally Stable low-voltage High Transconductance Organic Transistors. Sci. Rep. 2015, 5(1), 1–8. DOI: 10.1038/srep17849.
  • Migahed, M.; Abdel-Hamid, M.; El-Wafa, A. A. Piezoelectricity and Crystallinity Studies in Thermopoled Acrylonitrile-Methylacrylate Copolymer Films. Int. J. Polym. Mater. 2003, 52(2), 133–141. DOI: 10.1080/714975927.
  • Wu, L.; Yuan, W.; Hu, N.; Wang, Z.; Chen, C.; Qiu, J.; Ying, J.; Li, Y. Improved Piezoelectricity of PVDF-HFP/carbon Black Composite Films. J. Phys. D: Appl. Phys. 2014, 47(13), 135302. DOI: 10.1088/0022-3727/47/13/135302.
  • Jones, G. D.; Assink, R. A.; Dargaville, T. R.; Chaplya, P. M.; Clough, R. L.; Elliott, J. M.; Martin, J. W.; Mowery, D. M., and Celina, M. C. Characterization, Performance and Optimization of PVDF as a Piezoelectric Film for Advanced Space Mirror Concepts. Citeseer. 2005, 1-49.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.