967
Views
15
CrossRef citations to date
0
Altmetric
Review

Recent advancements in electromagnetic interference shielding of polymer and mxene nanocomposites

ORCID Icon
Pages 19-53 | Received 14 Feb 2022, Accepted 09 Jun 2022, Published online: 23 Jun 2022

References

  • Mariappan, P. M.; Raghavan, D. R.; Abdel Aleem, S. H. E.; Zobaa, A. F. Effects of Electromagnetic Interference on the Functional Usage of Medical Equipment by 2G/3G/4G Cellular Phones: A Review. J. Adv. Res. 2016, 7, 727–738. https://doi.org/10.1016/j.jare.2016.04.004.
  • Weng, G. M.; Li, J.; Alhabeb, M.; Karpovich, C.; Wang, H.; Lipton, J.; Maleski, K.; Kong, J.; Shaulsky, E.; Elimelech, M., et al. Layer-by-layer Assembly of cross-functional semi-transparent MXene-carbon Nanotubes Composite Films for next-generation Electromagnetic Interference Shielding. Adv. Funct. Mater. 2018, 28 1803360. https://doi.org/10.1002/adfm.201803360
  • Chen, Z.; Xu, C.; Ma, C.; Ren, W.; Cheng, H. M. Lightweight and Flexible Graphene Foam Composites for high-performance Electromagnetic Interference Shielding. Adv. Mater. 2013, 25, 1296–1300. https://doi.org/10.1002/adma.201204196.
  • Xu, J.; Xia, L.; Luo, J.; Lu, S.; Huang, X.; Zhong, B.; Zhang, T.; Wen, G.; Wu, X.; Xiong, L., et al. High-Performance Electromagnetic Wave Absorbing CNT/SiC F Composites: Synthesis, Tuning, and Mechanism. ACS Appl. Mater. Interfaces. 2020, 12, 20775–20784. DOI: 10.1021/acsami.9b19281.
  • Cao, W. T.; Chen, F. F.; Zhu, Y. J.; Zhang, Y. G.; Jiang, Y. Y.; Ma, M.-G., and Chen, F. Binary Strengthening and Toughening of MXene/cellulose Nanofiber Composite Paper with nacre-inspired Structure and Superior Electromagnetic Interference Shielding Properties. ACS Nano. 2018, 12, 4583–4593. DOI: 10.1021/acsnano.8b00997.
  • Cao, M. S.; Wang, X. X.; Zhang, M.; Shu, J. C.; Cao, W. Q.; Yang, H.-J.; Fang, X.-Y., and Yuan, J. Electromagnetic Response and Energy Conversion for Functions and Devices in low-dimensional Materials. Adv. Funct. Mater. 2019, 29, 1807398. DOI: 10.1002/adfm.201807398.
  • Xu, H.; Yin, X.; Li, X.; Li, M., and Liang, S. Lightweight Ti 2 CT X MXene/poly(vinyl Alcohol) Composite Foams for Electromagnetic Wave Shielding with absorption-dominated Feature. ACS Appl. Mater. Interfaces. 2019, 11 10198–10207. https://doi.org/10.1021/acsami.8b21671
  • Jia, X.; Shen, B.; Zhang, L.; Zheng, W. Waterproof MXene‐decorated Wood‐pulp Fabrics for High‐efficiency Electromagnetic Interference Shielding and Joule Heating. Compos. B Eng. 2020, 198, 108250. DOI: 10.1016/j.compositesb.2020.108250.
  • Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Man Hong, S.; Koo, C. M., and Gogotsi, Y. Electromagnetic Interference Shielding with 2D Transition Metal Carbides (Mxenes). Science. 2016, 353(6304), 1137‐1140.
  • Liu, J.; Zhang, H. ‐. B., and Sun, R. Hydrophobic, Flexible, and Lightweight MXene Foams for High‐performance Electromagnetic‐interference Shielding. Adv. Mater. 2017, 29(38), 1702367.
  • Deng, Z.; Tang, P.; Wu, X.; Zhang, H. ‐. B.; Yu, Z. ‐. Z. Superelastic, Ultralight, and Conductive Ti 3 C 2 T X MXene/acidified Carbon Nanotube Anisotropic Aerogels for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces. 2021, 13(17), 20539‐20547. DOI: 10.1021/acsami.1c02059.
  • Liu, L. X.; Chen, W.; Zhang, H. ‐. B.; Wang, Q. W.; Guan, F.; Yu, Z. ‐. Z. Flexible and Multifunctional Silk Textiles with Biomimetic Leaf‐like MXene/silver Nanowire Nanostructures for Electromagnetic Interference Shielding, Humidity Monitoring, and Self‐derived Hydrophobicity. Adv. Funct. Mater. 2019, 29(44), 1905197. DOI: 10.1002/adfm.201905197.
  • Zhan, Z.; Song, Q.; Zhou, Z.; Lu, C. Ultrastrong and Conductive MXene/cellulose Nanofiber Films Enhanced by Hierarchical Nano‐architecture and Interfacial Interaction for Flexible Electromagnetic Interference Shielding. J. Mater. Chem. C. 2019, 7(32), 9820‐9829. DOI: 10.1039/C9TC03309B.
  • Wang, L.; Song, P.; Lin, C. T.; Kong, J.; Gu, J. 3D Shapeable, Superior Electrically Conductive Cellulose nanofibers/Ti 3 C 2 T X MXene aerogels/epoxy Nanocomposites for Promising EMI Shielding. Research. 2020, 2020, 4093732. DOI: 10.34133/2020/4093732.
  • Jin, X.; Wang, J.; Dai, L.; Liu, X.; Li, L.; Yang, Y.; Cao, Y.; Wang, W.; Wu, H.; Guo, S., et al. Flame‐retardant Poly (Vinyl alcohol)/MXene Multilayered Films with Outstanding Electromagnetic Interference Shielding and Thermal Conductive Performances. Chem. Eng. J. 2020, 380, 122475. DOI: 10.1016/j.cej.2019.122475.
  • Xu, H.; Yin, X.; Li, X.; Li, M.; Liang, S.; Zhang, L., and Cheng, L. Lightweight Ti 2 CT X MXene/poly (Vinyl Alcohol) Composite Foams for Electromagnetic Wave Shielding with Absorption‐dominated Feature. ACS Appl. Mater. Interfaces. 2019, 11(10), 10198‐10207.
  • Cao, W.; Ma, C.; Tan, S.; Ma, M.; Wan, P.; Chen, F. Ultrathin and Flexible CNTs/MXene/cellulose Nanofibrils Composite Paper for Electromagnetic Interference Shielding. Nano-Micro Lett. 2019, 11(1), 72. DOI: 10.1007/s40820-019-0304-y.
  • Zhou, B.; Li, Q., and Xu, P. An Asymmetric Sandwich Structural Cellulose‐based Film with Self‐supported MXene and AgNW Layers for Flexible Electromagnetic Interference Shielding and Thermal Management. ACS Appl. Mater. Interfaces. 2021, 13(4), 2378‐2388.
  • Liu, R.; Miao, M.; Li, Y.; Zhang, J.; Cao, S.; Feng, X. Ultrathin Biomimetic Polymeric Ti3C2T X MXene Composite Films for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces. 2018, 10(51), 44787‐44795. DOI: 10.1021/acsami.8b18347.
  • Xie, F.; Jia, F.; Zhuo, L.; Lu, Z.; Si, L.; Huang, J.; Zhang, M., and Ma, Q. Ultrathin MXene/aramid Nanofiber Composite Paper with Excellent Mechanical Properties for Efficient Electromagnetic Interference Shielding. Nanoscale. 2019, 11(48), 23382‐23391.
  • Yan, F.; Zhang, C., and Wang, H. A Coupled Conductor of Ionic Liquid with MXene to Improve Electrochemical Properties. J. Mater. Chem. A. 2021, 9(1), 442‐452.
  • Shao, B.; Wang, J.; Liu, Z.; Zeng, G.; Tang, L.; Liang, Q.; He, Q.; Wu, T.; Liu, Y.; Yuan, X., et al. Ti 3 C 2 T X MXene Decorated Black Phosphorus Nanosheets with Improved visible-light Photocatalytic Activity: Experimental and Theoretical Studies. J. Mater. Chem. A. 2020, 8(10), 5171‐5185.
  • Iqbal, A.; Kwon, J.; Kim, M.; Koo, C. M. MXenes for Electromagnetic Interference Shielding: Experimental and Theoretical Perspectives. Mater Today Adv. 2021, 9, 100124. DOI: 10.1016/j.mtadv.2020.100124.
  • Raagulan, K.; Kim, B.; Chai, K. Recent Advancement of Electromagnetic Interference (EMI) Shielding of Two Dimensional (2D) MXene and Graphene Aerogel Composites. Nanomaterials. 2020, 10, 702. DOI: 10.3390/nano10040702.
  • Zhao, S.; Zhang, H. ‐. B.; Luo, J. Q.; Wang, Q.-W.; Xu, B.; Hong, S., and Yu, -Z.-Z. Highly Electrically Conductive Three-Dimensional Ti 3 C 2 T X MXene/Reduced Graphene Oxide Hybrid Aerogels with Excellent Electromagnetic Interference Shielding Performances. ACS Nano. 2018, 12(11), 11193‐11202.
  • Liao, Y.; Qian, J.; Xie, G.; Han, Q.; Dang, W.; Wang, Y.; Lv, L.; Zhao, S.; Luo, L.; Zhang, W., et al. 2D‐layered Ti 3 C 2 MXenes for Promoted Synthesis of NH 3 on P25 Photocatalysts. Appl. Catal. B. 2020, 273, 119054. DOI: 10.1016/j.apcatb.2020.119054.
  • Yu, M.; Zhou, S.; Wang, Z.; Zhao, J.; Qiu, J. Boosting Electrocatalytic Oxygen Evolution by Synergistically Coupling Layered Double Hydroxide with MXene. Nano Energy. 2017, 44, 181‐190.
  • Li, X.; Yin, X.; Song, C.; Han, M.; Xu, H.; Duan, W.; Cheng, L., and Zhang, L. Self‐assembly core–shell Graphene‐ Bridged Hollow MXenes Spheres 3D Foam with Ultrahigh Specific EM Absorption Performance. Adv. Funct. Mater. 2018, 28(41), 1803938.
  • Han, M.; Yin, X.; Wu, H.; Hou, Z.; Song, C.; Li, X.; Zhang, L., and Cheng, L. Ti 3 C 2 MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band. ACS Appl. Mater. Interfaces. 2016, 8(32), 21011‐21019.
  • Bian, R.; He, G.; Zhi, W.; Xiang, S.; Wang, T.; Cai, D. Ultralight MXene-based Aerogels with High Electromagnetic Interference Shielding Performance. J. Mater. Chem. C. 2019, 7(3), 474–478.
  • Zhang, Y.; Wang, L.; Zhang, J.; Song, P.; Xiao, Z.; Liang, C.; Qiu, H.; Kong, J.; Gu, J. Fabrication and Investigation on the ultra-thin and Flexible Ti 3 C 2 T X /co-doped Polyaniline Electromagnetic Interference Shielding Composite Films. Compos. Sci. Technol. 2019, 183, 107833. DOI: 10.1016/j.compscitech.2019.107833.
  • Raagulan, K.; Braveenth, R.; Jang, H.; Seon Lee, Y.; Yang, C. M.; Mi Kim, B.; Moon, J.; Chai, K. Electromagnetic Shielding by MXene-graphene-PVDF Composite with Hydrophobic, Lightweight and Flexible Graphene Coated Fabric. Materials. 2018, 11(10), 1803. DOI: 10.3390/ma11101803.
  • Tanvir, A.; Sobol, P.; Ciak, A. P.; Mrlik, M.; Spitalsky, Z.; Micusik, M.; Prokes, J.; Krupa, I. Electrically Conductive, Transparent Polymeric Nanocomposites Modified by 2D Ti 3 C 2 T X (Mxene. Polymers. 2019, 11(8), 1272. DOI: 10.3390/polym11081272.
  • Raagulan, K.; Braveenth, R.; Jang, H. J.; Lee, Y. S.; Yang, C. M.; Kim, B. M.; Moon, J. J.; Chai, K. Y. Fabrication of Nonwetting Flexible Free-Standing MXene-Carbon Fabric for Electromagnetic Shielding in S-Band Region, Bull. Korean Chem. Soc. 2018, 39(12), 1412–1419. DOI: 10.1002/bkcs.11616.
  • Xin, W.; Xi, G. Q.; Cao, W. T.; Ma, C.; Liu, T.; Ma, M. G.; Bian, J. Lightweight and Flexible MXene/CNF/silver Composite Membranes with a brick-like Structure and high-performance electromagnetic-interference Shielding. RSC Adv. 2019, 9(51), 29636–29644. DOI: 10.1039/C9RA06399D.
  • Han, M.; Yin, X.; Hantanasirisakul, K.; Li, X.; Iqbal, A.; Hatter, C. B.; Anasori, B.; Koo, C. M.; Torita, T.; Soda, Y., et al. Anisotropic MXene Aerogels with a Mechanically Tunable Ratio of Electromagnetic Wave Reflection to Absorption. Adv. Opt. Mater. 2019, 7(10), 1900267. DOI: 10.1002/adom.201900267.
  • Liu, J.; Zhang, H. B.; Xie, X.; Yang, R.; Liu, Z.; Liu, Y.; Yu, Z. Z. Multifunctional, Superelastic, and Lightweight MXene/polyimide Aerogels. Small. 2018, 14(45), 1802479. DOI: 10.1002/smll.201802479.
  • Sun, R.; Zhang, H.-B.; Liu, J.; Xie, X.; Yang, R.; Li, Y.; Hong, S.; Yu, -Z.-Z. Highly Conductive Transition Metal Carbide/Carbonitride(MXene)@polystyrene Nanocomposites Fabricated by Electrostatic Assembly for Highly Efficient Electromagnetic Interference Shielding. Adv. Funct. Mater. 2017, 27, 1702807. DOI: 10.1002/adfm.201702807.
  • Raagulan, K.; Braveenth, R.; Kim, B. M.; Lim, K. J.; Lee, S. B.; Kim, M.; Chai, K. Y. An Effective Utilization of MXene and Its Effect on Electromagnetic Interference Shielding: Flexible, free-standing and Thermally Conductive Composite from MXene-AT-poly (p-aminophenol)–polyaniline co-polymer. RSC Adv. 2020, 10, 1613–1633. DOI: 10.1039/C9RA09522E.
  • Wu, W.; Wang, C.; Zhao, C.; Wei, D.; Zhu, J.; Xu, Y. Facile Strategy of Hollow Polyaniline Nanotubes Supported on Ti 3 C 2 -mxene Nanosheets for High-performance Symmetric Supercapacitors. J. Colloid Interface Sci. 2020, 580, 601–613. DOI: 10.1016/j.jcis.2020.07.052.
  • Wu, W.; Niu, D.; Zhu, J.; Gao, Y.; Wei, D.; Liu, X.; Wang, F.; Wang, L.; Yang, L. Organ-like Ti 3 C 2 Mxenes/polyaniline Composites by Chemical Grafting as high-performance Supercapacitors. J. Electroanal. Chem. 2019, 847, 113203. DOI: 10.1016/j.jelechem.2019.113203.
  • Fu, J.; Yun, J.; Wu, S.; Li, L.; Yu, L.; Kim, K. H. Architecturally Robust graphene-encapsulated MXene Ti 2 CT X@polyaniline Composite for high-performance pouch-type Asymmetric Supercapacitor. ACS Appl. Mater. Interfaces. 2018, 10(40), 34212–34221. DOI: 10.1021/acsami.8b10195.
  • Kumar, S.; Arti,; Kumar, P.; Singh, N.; Verma, V. Steady Microwave Absorption Behavior of two-dimensional Metal Carbide MXene and Polyaniline Composite in X-band. J. Magn. Magn. Mater. 2019, 488, 165364. DOI: 10.1016/j.jmmm.2019.165364.
  • Lei, Y.; Yao, Z.; Li, S.; Zhou, J.; Haidry, A. A.; Liu, P. Broadband high-performance Electromagnetic Wave Absorption of Co-doped NiZn ferrite/polyaniline on MXenes. Ceram. Int. 2020, 46(8), 10006–10015. DOI: 10.1016/j.ceramint.2019.12.189.
  • Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional Nanocrystals Produced by Exfoliation of Ti 3 AlC 2 . Adv. Mater. 2011, 23(37), 4248–4253. DOI: 10.1002/adma.201102306.
  • Boota, M.; Gogotsi, Y. MXene Conducting Polymer Asymmetric Pseudocapacitors. Adv. Energy Mater. 2019, 9(7), 1802917. DOI: 10.1002/aenm.201802917.
  • Li, Y.; Kamdem, P.; Jin, X.-J. Hierarchical Architecture of MXene/PANI Hybrid Electrode for Advanced Asymmetric Supercapacitors. J. Alloys Compd. 2021, 850, 156608. DOI: 10.1016/j.jallcom.2020.156608.
  • Xu, H.; Zheng, D.; Liu, F.; Li, W.; Lin, J. Synthesis of an MXene/polyaniline Composite with Excellent Electrochemical Properties. J. Mater. Chem. A. 2020, 8(12), 5853. DOI: 10.1039/D0TA00572J.
  • Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th Anniversary Article: MXenes: A New Family of Two dimensional Materials. Adv. Mater. 2014, 26(7), 992–1005. DOI: 10.1002/adma.201304138.
  • Chen, Z.; Wang, Y.; Han, J.; Wang, T.; Leng, Y.; Wang, Y.; Li, T.; Han, Y. Preparation of Polyaniline onto DL -tartaric Acid Assembled MXene Surface as an Electrode Material for Supercapacitors. ACS Appl. Energy Mater. 2020, 3(9), 9326–9336. DOI: 10.1021/acsaem.0c01662.
  • Lu, X.; Zhu, J.; Wu, W.; Zhang, B. Hierarchical Architecture of PANI@TiO 2 /Ti 3 C 2 T X Ternary Composite Electrode for Enhanced Electrochemical Performance. Electrochim. Acta. 2017, 228, 282–289. DOI: 10.1016/j.electacta.2017.01.025.
  • Tang, T.; Wang, S.; Jiang, Y.; Xu, Z.; Chen, Y.; Peng, T.; Khan, F.; Feng, J.; Song, P.; Zhao, Y. Flexible and flame-retarding Phosphorylated MXene/polypropylene Composites for Efficient Electromagnetic Interference Shielding. J. Mater. Sci. Technol. 2022, 111, 66–75. DOI: 10.1016/j.jmst.2021.08.091.
  • Tan, Z.; Zhao, H.; Sun, F.; Ran, L.; Yi, L.; Zhao, L.; Wu, J. Fabrication of Chitosan/MXene Multilayered Film Based on layer-by-layer Assembly: Toward enhanced Electromagnetic Interference Shielding and Thermal Management Capacity. Compos. Part A Appl. Sci. Manuf. 2022, 155, 106809. DOI: 10.1016/j.compositesa.2022.106809.
  • Zheng, X.; Wang, P.; Zhang, X.; Qiaole, H.; Wang, Z.; Nie, W.; Zou, L.-H.; Changlong, L.; Han, X. Breathable, Durable and bark-shaped MXene/textiles for high-performance Wearable Pressure Sensors, EMI Shielding and Heat Physiotherapy. Compos. Part A Appl. Sci. Manuf. 2022, 152, 106700. DOI: 10.1016/j.compositesa.2021.106700.
  • Wang, X.; Lei, Z.; Xianda, M.; Guifang, H.; Tong, X.; Tan, J.; Wang, L.; Zhang, X.; Lijun, Q.; Zhang, X. A Lightweight MXene-Coated Nonwoven Fabric with Excellent Flame Retardancy, EMI Shielding, and Electrothermal/Photothermal Conversion for Wearable Heater. Chem. Eng. J. Part 1. 2022, 430, 132605. DOI: 10.1016/j.cej.2021.132605.
  • Liu, H.; Huang, Z.; Chen, T.; Xinqing, S.; Liu, Y.; Renli, F. Construction of 3D MXene/Silver Nanowires Aerogels Reinforced Polymer Composites for Extraordinary electromagnetic Interference Shielding and Thermal Conductivity. Chem. Eng. J. 2022, 427, 131540. DOI: 10.1016/j.cej.2021.131540.
  • Jiang, Y.; Xiaolin, R.; Che, W.; Jiang, Z.; Chen, H.; Hou, J.; Youming, Y. Flexible, Mechanically Robust and self-extinguishing MXene/wood Composite for Efficient Electromagnetic Interference Shielding. Compos. B Eng. 2022, 229, 109460. DOI: 10.1016/j.compositesb.2021.109460.
  • Nguyen, V.-T.; Nguyen, Q.-D.; Ki Min, B.; Yoonsik, Y.; Choi, C.-G. Ti3C2Tx MXene/carbon nanotubes/waterborne Polyurethane Based Composite Ink for Electromagnetic interference Shielding and Sheet Heater Applications. Chem Eng J Part 4. 2022, 4(30), 133171. DOI: 10.1016/j.cej.2021.133171.
  • Wei, Y.; Liang, D.; Zhou, H.; Huang, S.; Zhang, W.; Jin, G.; Chuanshuang, H.; Lin, X. Facile Preparation of MXene-decorated Wood with Excellent electromagnetic Interference Shielding Performance, Composites Part A. Appl Sci Manuf. 2022, 15310, 6739.
  • Zhang, Y.; Gao, Q.; Zhang, S.; Fan, X.; Qin, J.; Shi, X. Guangcheng Zhang, rGO/MXene Sandwich-structured Film at Spunlace Non-woven Fabric Substrate: Application to Electromagnetic Shielding and Electrical Heating. J. Colloid Interface Sci. 2022.
  • Lu, J.; Cheng, L.; Liao, C.; Jia, P.; Song, L.; Wang, B.; Hu, Y. Ultrathin and Mechanically Robust Mussel Byssus-Inspired MXene@Aramid Nanofibers Materials with Superior Endurance in Harsh Environments for Tunable EMI Shielding Performance. Adv. Mater. Interfaces. 2022, 9, 2101359. DOI: 10.1002/admi.202101359.
  • Zhou, Z.; Liu, J.; Zhang, X.; Tian, D.; Zhan, Z.; Lu, C. Ultra thin and high-performance electromagnetic Interference (EMI) Shielding Materials are Urgently Demanded for Modern microelec-tronic Devices. Adv. Mater. Interfaces. 2019, 6, 1802040. DOI: 10.1002/admi.201802040.
  • Wang, Q.-W.; Zhang, H.-B.; Liu, J.; Zhao, S.; Xie, X.; Liu, L.; Yang, R.; Koratkar, N.; Yu, -Z.-Z. Multifunctional and Water-Resistant MXene-Decorated Polyester Textiles with Outstanding Electromagnetic Interference Shielding and Joule Heating Performances. Adv. Funct. Mater. 2019, 29, 1806819. DOI: 10.1002/adfm.201806819.
  • Yuehu, L.; Chen, Y.; Xiaofeng, H.; Xiang, Z.; Heinze, T.; Haisong, Q. Lignocellulose nanofibril/gelatin/MXene Composite Aerogel with fire-warning Properties for Enhanced Electromagnetic Interference Shielding Performance. Chem. Eng. J. Part 1. 2022, 431, 133907.
  • Yao, Y.; Jin, S.; Wang, M.; Gao, F.; Bolin, X.; Xijuan, L.; Shu, Q. MXene Hybrid Polyvinyl Alcohol Flexible Composite Films for Electromagnetic Interference shield-ing. Appl. Surf. Sci. 2022, 578, 152007.
  • Wan, Y.-J.; Xing-Miao, L.; Zhu, P.-L.; Sun, R.; Wong, C.-P.; Liao, W.-H. Lightweight, Flexible MXene/polymer Film with Simultaneously Excellent Mechanical Property and high-performance Electromagnetic Interference Shielding. Compos. Part A. 2020, 130, 105764. DOI: 10.1016/j.compositesa.2020.105764.
  • Zhan, Y.; Meng, Y.; Xie, Q. Simple Approach to Fabricate MXene/cellulose Paper for electromagnetic Interference Shielding Applications. J. Appl. Polym. Sci. 2021, 138, e50597. DOI: 10.1002/app.50597.
  • Huang, J.; Wang, T.; Su, Y.; Ding, Y.; Tu, C.; Li, W. Hydrophobic MXene/Hydroxyethyl Cellulose/Silicone Resin Composites with Electromagnetic Interference Shielding. Adv. Mater. In-terfaces. 2021, 8, 2100186. DOI: 10.1002/admi.202100186.
  • Raagulan, K.; Braveenth, R.; Kim, B.; Lim, K.; Lee, S.; Kim, M.; Chai, K. An Effective Utilization of MXene and Its Effect on Electromagnetic Interference Shielding: Flexible, free-standing and thermally Conductive Composite from MXene–PAT–poly(p-aminophenol)–polyaniline co-polymer. RSC Adv. 2020, 10, 1613.
  • Wang, L.; Ma, Z.; Zhang, Y.; Qiu, H.; Ruan, K.; Gu, J. Mechanically Strong and Folding‐endurance Ti 3 C 2 T X MXene/PBO Nanofiber Films for Efficient Electromagnetic Interference Shielding and Thermal Management. Carbon Energy. 2022, 1–11.
  • Ma, L.; Hamidinejad, M.; Zhao, B.; Liang, C. Park C.Layered Foam/Film Polymer Nanocomposites with Highly Efficient EMI Shielding Properties and Ultra low Reflection. Nano-Micro. Lett. 2022, 14, 19. DOI: 10.1007/s40820-021-00759-4.
  • Wu, N.; Zeng, Z.; Kummer, N.; Han, D.; Zenobi, R.; Nyström, G. Ultrafine Cellulose Nanofiber-Assisted Physical and Chemical Cross-Linking of MXene Sheets for Electromagnetic Interference Shielding. Small Methods. 2021, 5, 2100889. DOI: 10.1002/smtd.202100889.
  • Zeng, Z.; Wang, C.; Siqueira, G.; Han, D.; Huch, A.; Abdolhosseinzadeh, S.; Heier, J.; Nüesch, F.; Zhang, C. Nyström G.Nanocellulose-MXene Biomimetic Aerogels with Orientation-Tunable Electromagnetic Interference Shielding Performance. Adv. Sci. 2020, 7, 2000979. DOI: 10.1002/advs.202000979.
  • Miao, Z.; Chen, X.; Zhou, H.; Liu, P.; Fu, S.; Yang, J.; Gao, Y.; Ren, Y.; Rong, D. Interfacing MXene Flakes on a Magnetic Fiber Network as a Stretchable, Flexible, Electromagnetic Shielding Fabric. Nanomaterials. 2022, 12, 20. DOI: 10.3390/nano12010020.
  • Hu, D.; Huang, X.; Li, S.; Jiang, P. Flexible and Durable cellulose/MXene Nanocomposite Paper for Efficient Electromagnetic Interference Shielding. Compos. Sci. Technol. 2020, 188, 107995. DOI: 10.1016/j.compscitech.2020.107995.
  • Zhou, B.; Zhang, Z.; Li, Y.; Han, G.; Feng, Y.; Wang, B.; Zhang, D.; Ma, J.; Liu, C. F. Robust and Multifunctional Electromagnetic Interference Shielding Film with Alternating Cellulose Nanofiber and MXene Layers. ACS Appl. Mater. Interfaces. 2020, 12, 4895–4905. DOI: 10.1021/acsami.9b19768.
  • Song, P.; Qiu, H.; Wang, L.; Liu, X.; Zhang, Y.; Zhang, J.; Kong, J.; Gu, J. Honeycomb Structural rGO-MXene/epoxy Nanocomposites for Superior Electromagnetic Interference Shielding Performance. Sustain. Mater. Technol. 2020, e00153.
  • Wang, L.; Qiu, H.; Song, P.; Zhang, Y.; Lu, Y.; Liang, C.; Kong, J.; Chen, L.; Gu, J. 3D Ti3C2Tx MXene/C Hybrid foam/epoxy Nanocomposites with Superior Electromagnetic Interference Shielding Performances and Robust Mechanical Properties. Compos. Part A: Appl. Sci. Manuf. 2019, 123, 293–300. DOI: 10.1016/j.compositesa.2019.05.030.
  • Tong, Y.; He, M.; Zhou, Y.; Zhong, X.; Fan, L.; Huang, T.; Liao, Q.; Wang, Y. Hybridizing Polypyrrole Chains with Laminated and two-dimensional Ti 3 C 2 T X toward high-performance Electromagnetic Wave Absorption. Appl. Surf. Sci. 2018, 434, 283–293. DOI: 10.1016/j.apsusc.2017.10.140.
  • Yu, B.; Tawiah, B.; Wang, L. Q.; Yin Yuen, A. C.; Zhang, Z. C.; Shen, L. L.; Lin, B.; Fei, B.; Yang, W.; Li, A., et al. Interface Decoration of Exfoliated MXene Ultrathin Nanosheets for Fire and Smoke Suppressions of Thermoplastic Polyurethane Elastomer. J. Hazard. Mater. 2019, 374, 110–119. DOI: 10.1016/j.jhazmat.2019.04.026.
  • Wei, H.; Dong, J.; Fang, X.; Zheng, W.; Sun, Y.; Qian, Y.; Jiang, Z.; Huang, Y. Ti 3 C 2 T X MXene/polyaniline (PANI) Sandwich Intercalation Structure Composites Constructed for Microwave Absorption. Compos. Sci. Technol. 2019, 169, 52–59. DOI: 10.1016/j.compscitech.2018.10.016.
  • Qing, Y.; Zhou, W.; Luo, F.; Zhu, D. Titanium Carbide (Mxene) Nanosheets as Promising Microwave Absorbers. Ceram. Int. 2016, 42, 16412–16416.
  • Li, X.; Yin, X.; Han, M.; Song, C.; Xu, H.; Hou, Z.; Zhang, L.; Cheng, L. Ti 3 C 2 MXenes Modified with in Situ Grown Carbon Nanotubes for Enhanced Electromagnetic Wave Absorption Properties. J. Mater. Chem. C. 2017, 5, 4068–4074. DOI: 10.1039/C6TC05226F.
  • Li, Y.; Zhou, X.; Wang, J.; Deng, Q.; Li, M.; Du, S.; Han, Y.-H.; Lee, J.; Huang, Q. Facile Preparation of in Situ Coated Ti3C2Tx/Ni0.5Zn0.5Fe2O4 Composites and Their Electromagnetic Performance. RSC Adv. 2017, 7, 24698–24708.
  • Liu, X.; Wu, J.; He, J.; Zhang, L. Electromagnetic Interference Shielding Effectiveness of Titanium Carbide Sheets. Mater. Lett. 2017, 205, 261–263. DOI: 10.1016/j.matlet.2017.06.101.
  • Qian, Y.; Wei, H.; Dong, J.; Du, Y.; Fang, X.; Zheng, W.; Sun, Y.; Jiang, Z. Fabrication of urchin-like ZnO-MXene Nanocomposites for high-performance Electromagnetic Absorption. Ceram. Int. 2017, 43, 10757–10762. DOI: 10.1016/j.ceramint.2017.05.082.
  • Yang, H.; Dai, J.; Liu, X.; Lin, Y.; Wang, J.; Wang, L.; Wang, F. Layered PVB/Ba 3 Co 2 Fe 24 O 41 /Ti 3 C 2 Mxene Composite: Enhanced Electromagnetic Wave Absorption Properties with High Impedance Match in a Wide Frequency Range. Mater. Chem. Phys. 2017, 200, 179–186. DOI: 10.1016/j.matchemphys.2017.05.057.
  • Cao, W. T.; Chen, F. F.; Zhu, Y. J.; Zhang, Y. G.; Jiang, Y. Y.; Ma, M. G.; Chen, F. Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties. ACS Nano. 2018, 12, 4583–4593.
  • Gund, G. S.; Park, J. H.; Harpalsinh, R.; Kota, M.; Shin, J. H.; Kim, T.-I.; Gogotsi, Y.; Park, H. S. MXene/Polymer Hybrid Materials for Flexible AC-Filtering Electrochemical Capacitors. Joule. 2019, 3, 164–176. DOI: 10.1016/j.joule.2018.10.017.
  • Weng, G.-M.; Li, J.; Alhabeb, M.; Karpovich, C.; Wang, H.; Lipton, J.; Maleski, K.; Kong, J.; Shaulsky, E.; Elimelech, M., et al. Layer-by-Layer Assembly of Cross-Functional Semi transparent MXene-Carbon Nanotubes Composite Films for Next- Generation Electromagnetic Interference Shielding. Adv. Funct. Mater. 2018, 28, 1803360. DOI: 10.1002/adfm.201803360.
  • Zhao, S.; Zhang, H. B.; Luo, J. Q.; Wang, Q. W.; Xu, B.; Hong, S.; Yu, Z. Z. Highly Electrically Conductive Three-Dimensional Ti 3 C 2 T X MXene/Reduced Graphene Oxide Hybrid Aerogels with Excellent Electromagnetic Interference Shielding Performances. ACS Nano. 2018, 12, 11193–11202.
  • Cui, C.; Xiang, C.; Geng, L.; Lai, X.; Guo, R.; Zhang, Y.; Xiao, H.; Lan, J.; Lin, S.; Jiang, S. Flexible and Ultrathin Electrospun Regenerate Cellulose Nanofibers and d-Ti 3 C 2 T X (Mxene) Composite Film for Electromagnetic Interference Shielding. J. Alloys Compd. 2019, 788, 1246–1255. DOI: 10.1016/j.jallcom.2019.02.294.
  • Luo, J.-Q.; Zhao, S.; Zhang, H.-B.; Deng, Z.; Li, L.; Yu, -Z.-Z. Flexible, Stretchable and Electrically Conductive MXene/natural Rubber Nanocomposite Films for Efficient Electromagnetic Interference Shielding. Compos. Sci. Technol. 2019, 182, 107754. DOI: 10.1016/j.compscitech.2019.107754.
  • Miao, M.; Liu, R.; Thaiboonrod, S.; Shi, L. Y.; Cao, S.; Zhang, J.; Fang, J.; Feng, X. Silver Nanowires Intercalating Ti3C2Tx MXene Composite Films with Excellent Flexibility for Electromagnetic Interference Shielding. J. Mater. Chem. C. 2020, 8, 3120–3126. DOI: 10.1039/C9TC06361G.
  • Ling, Z.; Ren, C. E.; Zhao, M. Q.; Yang, J.; Giammarco, J. M.; Qiu, J.; Barsoum, M. W.; Gogotsi, Y. Flexible and Conductive MXene Films and Nanocomposites with High Capacitance. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 16676–16681. DOI: 10.1073/pnas.1414215111.
  • Liu, Y.; Zhang, J.; Zhang, X.; Li, Y.; Wang, J. Ti 3 C 2 T X Filler Effect on the Proton Conduction Property of Polymer Electrolyte Membrane. ACS Appl. Mater. Interfaces. 2016, 8, 20352–20363.
  • Wu, X.; Hao, L.; Zhang, J.; Zhang, X.; Wang, J.; Liu, J. Polymer-Ti 3 C 2 T X Composite Membranes to Overcome the trade-off in Solvent Resistant Nanofiltration for alcohol-based System. J. Membr. Sci. 2016, 515, 175–188.
  • Zhang, H.; Wang, L.; Chen, Q.; Li, P.; Zhou, A.; Cao, X.; Hu, Q. Preparation, Mechanical and anti-friction Performance of MXene/polymer Composites. Mater. Des. 2016, 92, 682–689. DOI: 10.1016/j.matdes.2015.12.084.
  • Hu, C.; Shen, F.; Zhu, D.; Zhang, H.; Xue, J.; Han, X. Characteristics of Ti 3 C 2 X-Chitosan Films with Enhanced Mechanical Properties. Front. Energy Res. 2017, 4, 41. DOI: 10.3389/fenrg.2016.00041.
  • Chen, K.; Chen, Y.; Deng, Q.; Jeong, S.-H.; Jang, T.-S.; Du, S.; Kim, H.-E.; Huang, Q.; Han, C.-M. Strong and Biocompatible Poly(lactic Acid) Membrane Enhanced by Ti 3 C 2 T Z (Mxene) Nanosheets for Guided Bone Regeneration. Mater. Lett. 2018, 229, 114–117. DOI: 10.1016/j.matlet.2018.06.063.
  • Liu, Z.-J.; Yin, C.-G.; Cecen, V.; Fan, J.-C.; Shi, P.-H.; Xu, Q. J.; Min, Y.-L. Polybenzimidazole Thermal Management Composites Containing Functionalized Boron Nitride Nanosheets and 2D Transition Metal Carbide MXenes. Polymer. 2019, 179, 121613. DOI: 10.1016/j.polymer.2019.121613.
  • Sheng, X. Zhao, Y.; Zhang, L.; Lu, X. Properties of Two dimensional Ti 3 C 2 MXene/thermoplastic Polyurethane Nanocomposites with Effective Reinforcement via Melt Blending. Compos. Sci.Technol. 2019, 181, 107710. DOI: 10.1016/j.compscitech.2019.107710.
  • Chung, D. Electromagnetic Interference Shielding Effectiveness of Carbon Materials. Carbon. 2001, 39, 279–285. DOI: 10.1016/S0008-6223(00)00184-6.
  • Wu, N.; Liu, C.; Xu, D.; Liu, J.; Liu, W.; Liu, H.; Zhang, J.; Xie, W.; Guo, Z. Ultrathin high-performance Electromagnetic Wave Absorbers with Facilely Fabricated Hierarchical Porous Co/C Crabapples. J. Mater. Chem. C. 2019, 7, 1659–1669.
  • Qin, K.; Kang, J.; Li, J.; Shi, C.; Li, Y.; Qiao, Z.; Zhao, N. Freestanding Porous Carbon nanofiber/ultrathin Graphite Hybrid for Flexible solid-state Supercapacitors. ACS Nano. 2015, 9, 481–487. DOI: 10.1021/nn505658u.
  • Qin, F.; Brosseau, C. A Review and Analysis of Microwave Absorption in Polymer Composites Filled with Carbonaceous Particles. J. Appl. Phys. 2012, 111, 061301. DOI: 10.1063/1.3688435.
  • Tao, Y.; Xie, X.; Lv, W.; Tang, D.-M.; Kong, D.; Huang, Z.; Nishihara, H.; Ishii, T.; Li, B.; Golberg, D., et al. Towards Ultrahigh Volumetric Capacitance: Graphene Derived Highly Dense but Porous Carbons for Supercapacitors. Sci. Rep. 2013, 3, 2975. DOI: 10.1038/srep02975.
  • Couly, C. ;.; Alhabeb, M. ;.; Van Aken, K. L. ;.; Kurra, N. ;.; Gomes, L.; Navarro-Suárez, A. M.; Anasori, B.; Alshareef, H. N.; Gogotsi, Y. Asymmetric Flexible MXene-Reduced Graphene Oxide Micro-Supercapacitor. Adv. Electron. Mater. 2018, 4, 1700339. DOI: 10.1002/aelm.201700339.
  • Wei, H.; Dong, J.; Fang, X.; Zheng, W.; Sun, Y.; Qian, Y.; mJiang, Z.; Huang, Y. Ti 3 C 2 T X MXene/polyaniline (PANI) Sandwich Intercalation Structure Composites Constructed for Microwave Absorption. Compos. Sci. Technol. 2019, 169, 52–59.
  • Kim, H. W.; Yoon, H. W.; Yoon, S.-M.; Yoo, B. M.; Ahn, B. K.; Cho, Y. H.; Shin, H. J.; Yang, H.; Paik, U.; Kwon, S., et al. Selective Gas Transport through few-layered Graphene and Graphene Oxide Membranes. Science. 2013, 342, 91–95. DOI: 10.1126/science.1236098.
  • Shen, J.; Liu, G.; Huang, K.; Chu, Z.; Jin, W.; Xu, N. Sub Nanometer two-dimensional Graphene Oxide Channels for Ultrafast Gas Sieving. ACS Nano. 2016, 10, 3398–3409. DOI: 10.1021/acsnano.5b07304.
  • Chi, C.; Wang, X.; Peng, Y.; Qian, Y.; Hu, Z.; Dong, J.; Zhao, D. Facile Preparation of Graphene Oxide Membranes for Gas Separation. Chem. Mater. 2016, 28, 2921–2927. DOI: 10.1021/acs.chemmater.5b04475.
  • Chen, C.; Boota, M.; Xie, X.; Zhao, M.; Anasori, B.; Ren, C. E.; Miao, L.; Jiang, J.; Gogotsi, Y. Charge Transfer Induced Polymerization of EDOT Confined between 2D Titanium Carbide Layers. J. Mater. Chem. A. 2017, 5, 5260–5265.
  • He, P.; Cao, M. S.; Cai, Y. Z.; Shu, J. C.; Cao, W. Q.; Yuan, J. Self-assembling Flexible 2D Carbide MXene Film with Tunable Integrated Electron Migration and Group Relaxation toward Energy Storage and Green EMI Shielding. Carbon. 2020, 157, 80–89. DOI: 10.1016/j.carbon.2019.10.009.
  • Lipton, J.; Röhr, J. A.; Dang, V.; Goad, A.; Maleski, K.; Lavini, F.; Han, M.; Tsai, E. H.; Weng, G.-M.; Kong, J., et al. Scalable, Highly Conductive, and Micropatternable MXene Films for Enhanced Electromagnetic Interference Shielding. Matter. 2020, 3, 546–557. DOI: 10.1016/j.matt.2020.05.023.
  • Jia, X.; Shen, B.; Zhang, L.; Zheng, W. Construction of Compressible Polymer/MXene Composite Foams for high-performance absorption-dominated Electromagnetic Shielding with ultra-low Reflectivity. Carbon. 2021, 173, 932–940. DOI: 10.1016/j.carbon.2020.11.036.
  • Zhou, B.; Su, M.; Yang, D.; Han, G.; Feng, Y.; Wang, B.; Ma, J.; Ma, J.; Liu, C.; Shen, C. Flexible MXene/Silver Nanowire-Based Transparent Conductive Film with Electromagnetic Interference Shielding and Electro-Photo-Thermal Performance. ACS Appl. Mater. Interfaces. 2020, 12, 40859–40869. DOI: 10.1021/acsami.0c09020.
  • Chen, W.; Liu, L.-X.; Zhang, H.-B.; Yu, -Z.-Z. Flexible, Transparent, and Conductive Ti 3 C 2 T X MXene–Silver Nanowire Films with Smart Acoustic Sensitivity for High-Performance Electromagnetic Interference Shielding. ACS Nano. 2020, 14, 16643–16653. DOI: 10.1021/acsnano.0c01635.
  • Han, M.; Shuck, C. E.; Rakhmanov, R.; Parchment, D.; Anasori, B.; Koo, C. M.; Friedman, G.; Gogotsi, Y. Beyond Ti3C2Tx: MXenes for Electromagnetic Interference Shielding. ACS Nano. 2020, 14, 5008–5016. DOI: 10.1021/acsnano.0c01312.
  • Sambyal, P.; Iqbal, A.; Hong, J.; Kim, H.; Kim, M.-K.; Hong, S. M.; Han, M.; Gogotsi, Y.; Koo, C. M. Ultralight and Mechanically Robust Ti3C2Tx Hybrid Aerogel Reinforced by Carbon Nanotubes for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces. 2019, 11, 38046–38054. DOI: 10.1021/acsami.9b12550.
  • Yao, Y.; Zhao, J.; Yang, X.; Chai, C. Recent Advance in Electromagnetic Shielding of MXenes. Chin. Chem. Lett. 2020, 1602725.
  • Liang, L.; Yang, R.; Han, G.; Feng, Y.; Zhao, B.; Zhang, R.; Wang, Y.; Liu, C. Enhanced Electromagnetic wave-absorbing Performance of Magnetic nanoparticles-anchored 2D Ti3C2 TX MXene. ACS Appl. Mater. Interfaces. 2020, 12, 2644–2654. DOI: 10.1021/acsami.9b18504.
  • Li, Y.; Tian, X.; Gao, S. P.; Jing, L.; Li, K.; Yang, H.; Fu, F.; Lee, J. Y.; Guo, Y. X.; Ho, J. S. Reversible Crumpling of 2D Titanium Carbide (Mxene) Nanocoatings for Stretchable Electromagnetic Shielding and Wearable Wireless Communication. Adv. Funct. Mater. 2020, 30, 1907451. DOI: 10.1002/adfm.201907451.
  • Yun, T.; Kim, H.; Iqbal, A.; Cho, Y. S.; Lee, G. S.; Kim, M. K.; Kim, S. J.; Kim, D.; Gogotsi, Y.; Kim, S. O., et al. Electromagnetic Shielding of Monolayer Mxene Assemblies. Adv. Mater. 2020, 32, e1906769. DOI: 10.1002/adma.201906769.
  • Fan, Z.; Wang, D.; Yuan, Y.; Wang, Y.; Cheng, Z.; Liu, Y.; Xie, Z. A Lightweight and Conductive MXene/graphene Hybrid Foam for Superior Electromagnetic Interference Shielding. Chem. Eng. J. 2020, 381, 122696. DOI: 10.1016/j.cej.2019.122696.
  • Muzaffar, A.; Kalim Deshmukh, M. B. A. Chapter 20 - MXene-based multifunc-tional Polymer Composites for Electromagnetic Interference Shielding Applications. In Micro and Nano Technologies, Mxenes and Their Composites; Sadasivuni, K. K., Deshmukh, K., Khadheer Pasha, S. K., Kovářík, T., Eds.; Elsevier, 2022; pp 649–686.
  • Idumah, C. I.; Nwuzor, I. C.; Odera, R. S. Recent Advances in Polymer Hydrogel Nanocomposites and Applications. Curr. Res. Green Sustainable Chem. 2021, 100143. DOI: 10.1016/j.crgsc.2021.100143.
  • Idumah, C., . I.; Ezika, A.; Okpechi, V. Emerging Trends in Polymer Aerogel Nanocomposites, Surfaces, Interfaces and Applications. Surf. Interfaces. 2021, 25, 101258. DOI: 10.1016/j.surfin.2021.101258.
  • Idumah, C. I. Progress in Polymer Nanocomposites for Bone Regeneration and Engineering. Polym. Polym. Composites. 2021, 29, 509–527. DOI: 10.1177/0967391120913658.
  • Idumah, C. I. Novel Trends in self-healable Polymer Nanocomposites. J. Thermoplast. Compos. Mater. 2021, 34, 834–858. DOI: 10.1177/0892705719847247.
  • Idumah, C. I.; Ezeani, E., . O.; Nwuzor, I. C. A Review: Advancements in Conductive Polymers Nanocomposites. Polym. Plast. Technol. Eng. 2021, 60, 756–783. DOI: 10.1080/25740881.2020.1850783.
  • Idumah, C. I. Recent Advancements in self-healing Polymers, Polymer Blends, and Nanocomposites. Polym. Polym. Composites. 2021, 29, 246–258. DOI: 10.1177/0967391120910882.
  • Idumah, C. I. Recent Advancements in Thermolysis of Plastic Solid Wastes to Liquid Fuel. J. Therm. Anal. Calorim. 2021. DOI: 10.1007/s10973-021-10776-5.
  • Idumah, C. I.; Obele, C. M.; Enwerem, U. E. On Interfacial and Surface Behavior of Polymeric MXenes Nanocomposites and Applications. Curr. Res. Green Sustainable Chem. 2021, 4, 100104. DOI: 10.1016/j.crgsc.2021.100104.
  • Idumah, C. I. Novel Trends in Polymer Aerogel Nanocomposites. Polym. Plast. Technol. Eng. 2021, 1–13. doi:10.1080/25740881.2021.1912092.
  • Nwuzor, I. C.; Idumah, C. I.; Nwanonenyi, S. C.; Ezeani, O., . E. Emerging Trends in self-polishing anti-fouling Coatings for Marine Environment. Safety in Extreme Environ. 2021, 3, 9–25. DOI: 10.1007/s42797-021-00031-3.
  • Idumah, C. I. Novel Trends in Conductive Polymeric Nanocomposites, and Bionanocomposites. Synth. Met. 2021, 273, 116674.
  • Idumah, C. I.; Ogbu, J.; Ndem, J.; Obiana, V. Influence of Chemical Modification of Kenaf Fiber on xGNP-PP- nano-biocomposites. SN Appl. Sci. 2019, 1, 1261. DOI: 10.1007/s42452-019-1319-1.
  • Idumah, C. I.; Hassan, A.; Affam, A. A Review of Recent Developments in Flammability of Polymer Nanocomposites. Rev. Chem. Eng. 2015, 31, 149–177. DOI: 10.1515/revce-2014-0038.
  • Idumah, C.; Hassan, A. Characterization and Preparation of Conductive Exfoliated Graphene Nanoplatelets Kenaf Fibre Hybrid Polypropylene Composites. Syn. Met. 2016, 212, 91–104. DOI: 10.1016/j.synthmet.2015.12.011.
  • Idumah, C.; Hassan, A. Recently Emerging Trends in Thermal Conductivity of Polymer Nanocomposites. Rev. Chem. Eng. 2016, 32, 413–457.
  • Idumah, C.; Hassan, A. Emerging Trends in Flame Retardancy of Biofibers, Biopolymers, Biocomposites, and Bionanocomposites. Rev. Chem. Eng. 2015, 32, 115–148.
  • Idumah, C.; Hassan, A. Emerging Trends in Graphene Carbon Based Polymer Nanocomposites and Applications. Rev. Chem. Eng. 2016, 32, 223–226.
  • Idumah, C.; Hassan, A. Effect of Exfoliated Graphite Nanoplatelets on Thermal and Heat Deflection Properties of Kenaf Polypropylene Hybrid Nanocomposites. J. Polym. Eng. 2016, 36, 877–889.
  • Idumah, C.; Hassan, A. Emerging Trends in eco-compliant, Synergistic, and Hybrid Assembling of Multifunctional Polymeric Bionanocomposites. Rev. Chem. Eng. 2016, 32, 305–361.
  • Idumah, C.; Hassan, A.; Bourbigot, S. Influence of Exfoliated Graphene Nanoplatelets on Flame Retardancy of Kenaf Flour Polypropylene Hybrid Nanocomposites. J. Anal. Appl. Pyrolysis. 2017, 123, 65–72. DOI: 10.1016/j.jaap.2017.01.006.
  • Idumah, C.; Hassan, A. Hibiscus Cannabinus fiber/PP Based nano-biocomposites Reinforced with Graphene Nanoplatelets. J. Nat. Fibers. 2017, 14, 691–706. DOI: 10.1080/15440478.2016.1277817.
  • Idumah, C.; Hassan, A.; Ogbu, J.; Ndem, J.; Nwuzor, I. Recently Emerging Advancements in Halloysite Nanotubes Polymer Nanocomposites. Compos. Interface. 2018, 26, 751–824. DOI: 10.1080/09276440.2018.1534475.
  • Idumah, C.; Hassan, A.; Bourbigot, S. Synergistic Effect of Exfoliated Graphene Nanoplatelets and non-halogen Flame Retardants on Flame Retardancy and Thermal Properties of Kenaf flour-PP Nanocomposites. J. Therm. Anal. Calorim. 2018, 134, 1681–1703. DOI: 10.1007/s10973-018-7833-3.
  • Idumah, C.; Hassan, A.; Ihuoma, D. Recently Emerging Trends in Polymer Nanocomposites Packaging Materials. Polym.-Plast. Technol. Eng. 2019, 58, 1054–1109.
  • Idumah, C. I.; Hassan, A.; Ogbu, J. E.; Ndem, J.; Oti, W.; Obiana, V. Electrical, Thermal and Flammability Properties of Conductive Filler kenaf–reinforced Polymer Nanocomposites. J. of Therm. Compos. Mater. 2020, 33, 516–540. DOI: 10.1177/0892705718807957.
  • Idumah, C. I.; Obere, C. M. Understanding Interfacial Influence on Properties of Polymer Nanocomposites. Surf. Interfaces. 2021, 22, 100879.
  • Idumah, C. I.; Obele, M. C.; Ezeani, E. O. Understanding Interfacial Dispersions in Ecobenign Polymer nano-biocomposites. Polym.-Plast. Technol. Mater. 2021, 60, 233–252.
  • Idumah, C. I.; Obele, C. M.; Ezeani, E. O.; Hassan, A. Recently Emerging Nanotechnological Advancements in Polymer Nanocomposite Coatings for anti-corrosion, anti-fouling and self-healing. Surf. Interfaces. 2020, 21, 100734. DOI: 10.1016/j.surfin.2020.100734.
  • Idumah, C. I. Novel Trends in Selfhealable Polymer Nanocomposites. J. Thermoplast. Compos. Mater. 2019, 0892705719847247.
  • Idumah, C. I.; Zurina, M.; Hassan, A.; Norhayani, O.; Shuhadah, I. Recently Emerging Trends in Bone Replacement Polymer Nanocomposites. Nanostruct. Polym. Compos. Biomed. Appl. 2019, 139–166.
  • Idumah, C. I. Advancements in Conducting Polymer Bionanocomposites, and Hydrogels for Biomedical Applications. Int. J. Polym. Mater. Polym. Biomater. 2020. DOI: 10.1080/00914037.2020.1857384.
  • Idumah, C. I. Influence of NT in Polymeric Textiles, Applications, and Fight against COVID-19. J. Text. Inst. 2020. DOI: 10.1080/00405000.2020.1858600.
  • Idumah, C. I.; Iheoma, N. Novel Trends in Plastic Wastes Management. SN Appl. Sci. 2019, 1, 1402. DOI: 10.1007/s42452-019-1468-2.
  • Idumah, C. I.; Nwabanne, J. T.; Tanjung, F. A. Novel Trends In Poly (Lactic) Acid Hybrid Bionanocomposites. Cleaner Mater. 2021, 2, 100022. DOI: 10.1016/j.clema.2021.100022.
  • Idumah, C. I.; Ezeani, E. O.; Ezika, A. C.; Timothy, U. T. Recent Advancements In Flame Retardancy Of Mxene Polymer Nanocomposites. Safety in Extreme Environ. 2021, 1–21.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.