188
Views
1
CrossRef citations to date
0
Altmetric
Research Article

High-efficiency antibacterial and barrier properties of natural rubber/graphene oxide@Ag/carboxymethyl chitosan composites

, , , &
Pages 270-280 | Received 07 Mar 2022, Accepted 12 Aug 2022, Published online: 19 Aug 2022

References

  • Jin, Y. H.; Huang, Q.; Wang, Y. Y.; Zeng, X. T.; Luo, L. S.; Pan, Z. Y.; Yuan, Y. F.; Chen, Z. M.; Cheng, Z. S.; Huang, X., et al. Perceived Infection Transmission Routes, Infection Control Practices, Psychosocial Changes, and Management of COVID-19 Infected Healthcare Workers in a Tertiary Acute Care Hospital in Wuhan: A cross-sectional Survey. Mil. Med. Res. 2020, 7, 24. DOI: 10.1186/s40779-020-00254-8.
  • Rathnayake, I.; Ismail, H.; Azahari, B.; Bandara, C.; Rajapakse, S. Novel Method of Incorporating Silver Nanoparticles into Natural Rubber Latex Foam. Polym.-Plast. Technol. Eng. 2013, 52, 885–891. DOI: 10.1080/03602559.2013.763366.
  • Kahar Bador, M.; Rai, V.; Yusof, M. Y.; Kwong, W. K.; Assadian, O. Evaluation of the Efficacy of Antibacterial Medical Gloves in the ICU Setting. J. Hosp. Infect. 2015, 90, 248–252. DOI: 10.1016/j.jhin.2015.03.009.
  • Moopayak, W.; Tangboriboon, N. Mangosteen Peel and Seed as Antimicrobial and Drug Delivery in Rubber Products. J. Appl. Polym. Sci. 2020, 137, 49119.
  • Mourad, R. M.; Darwesh, O. M.; Abdel-Hakim, A. Enhancing physico-mechanical and Antibacterial Properties of Natural Rubber Using Synthesized Ag-SiO2 Nanoparticles. Int. J. Biol. Macromol. 2020, 164, 3243–3249. DOI: 10.1016/j.ijbiomac.2020.08.063.
  • Suk, J. W.; Piner, R. D.; An, J.; Ruoff, R. S. Mechanical Properties of Monolayer Graphene Oxide. ACS Nano. 2010, 4, 6557–6564. DOI: 10.1021/nn101781v.
  • Cheng, S.; Duan, X.; Zhang, Z.; An, D.; Zhao, G.; Liu, Y. Preparation of a Natural Rubber with High Thermal Conductivity, Low Heat Generation and Strong Interfacial Interaction by Using NS-modified Graphene Oxide. J. Mater. Sci. 2020, 56, 4034–4050. DOI: 10.1007/s10853-020-05503-8.
  • Liu, Y.; Wen, J.; Gao, Y.; Li, T.; Wang, H.; Yan, H.; Niu, B.; Guo, R. Antibacterial Graphene Oxide Coatings on Polymer Substrate. Appl. Surf. Sci. 2018, 436, 624–630. DOI: 10.1016/j.apsusc.2017.12.006.
  • Diez-Pascual, A. M. Antibacterial Action of Nanoparticle Loaded Nanocomposites Based on Graphene and Its Derivatives: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 3563. DOI: 10.3390/ijms21103563.
  • Kausar, A.; Ilyas, H.; Siddiq, M. J. P. Aptitude of Graphene oxide–silver in Advance Polymer Nanocomposite: A Review. Polym.-Plast. Technol. Eng. 2018, 57, 283–301. DOI: 10.1080/03602559.2017.1326135.
  • Tang, J.; Chen, Q.; Xu, L.; Zhang, S.; Feng, L.; Cheng, L.; Xu, H.; Liu, Z.; Peng, R. Graphene oxide-silver Nanocomposite as a Highly Effective Antibacterial Agent with species-specific Mechanisms. ACS Appl. Mater. Interfaces. 2013, 5, 3867–3874. DOI: 10.1021/am4005495.
  • Zhang, Z.; Chen, P.; Nie, W.; Xu, Y.; Zhou, Y. Enhanced Mechanical, Thermal and Solvent Resistance of Silicone Rubber Reinforced by Organosilica Nanoparticles Modified Graphene Oxide. Polymer. 2020, 203, 122772. DOI: 10.1016/j.polymer.2020.122772.
  • Joshi, D. J.; Koduru, J. R.; Malek, N. I.; Hussain, C. M.; Kailasa, S. K. Surface Modifications and Analytical Applications of Graphene Oxide: A Review. Trends Analyt. Chem. 2021, 144, 116448.
  • Wang, Y.; Li, S.; Yang, H.; Luo, J. Progress in the Functional Modification of graphene/graphene Oxide: A Review. RSC Adv. 2020, 10, 15328–15345. DOI: 10.1039/D0RA01068E.
  • Liu, C.; Huang, S.; Hou, J.; Zhang, W.; Wang, J.; Yang, H.; Zhang, J. Natural Rubber Latex Reinforced by Graphene Oxide/Zwitterionic Chitin Nanocrystal Hybrids for High-Performance Elastomers without Sulfur Vulcanization. ACS Sustain. Chem. Eng. 2021, 9, 6470–6478. DOI: 10.1021/acssuschemeng.1c01461.
  • Cao, J.; Zhang, X.; Wu, X.; Wang, S.; Lu, C. Cellulose Nanocrystals Mediated Assembly of Graphene in Rubber Composites for Chemical Sensing Applications. Carbohydr. Polym. 2016, 140, 88–95. DOI: 10.1016/j.carbpol.2015.12.042.
  • Huang, S.; Yu, Z.; Zhang, Y.; Qi, C.; Zhang, S. In Situ Green Synthesis of Antimicrobial Carboxymethyl chitosan-nanosilver Hybrids with Controlled Silver Release. Int. J. Nanomed. 2017, 12, 3181–3191. DOI: 10.2147/IJN.S130397.
  • Goda, E. S.; Abu Elella, M. H.; Hong, S. E.; Pandit, B.; Yoon, K. R.; Gamal, H. Smart Flame Retardant Coating Containing Carboxymethyl Chitosan Nanoparticles Decorated Graphene for Obtaining Multifunctional Textiles. Cellulose. 2021, 28, 5087–5105. DOI: 10.1007/s10570-021-03833-7.
  • Vo, D. T.; Sabrina, S.; Lee, C. K. Silver Deposited Carboxymethyl chitosan-grafted Magnetic Nanoparticles as Dual Action Deliverable Antimicrobial Materials. Mater. Sci. Eng. C. 2017, 73, 544–551. DOI: 10.1016/j.msec.2016.12.066.
  • Zahran, M.; Marei, A. H. Innovative Natural Polymer Metal Nanocomposites and Their Antimicrobial Activity. Int. J. Biol. Macromol. 2019, 136, 586–596. DOI: 10.1016/j.ijbiomac.2019.06.114.
  • Chen, S.; Ding, R.; Ma, X.; Xue, L.; Lin, X.; Fan, X.; Luo, Z. Preparation of Highly Dispersed Reduced Graphene Oxide Modified with Carboxymethyl Chitosan for Highly Sensitive Detection of Trace Cu(II) in Water. Polymers. 2016, 8, 78. DOI: 10.3390/polym8040078.
  • Boonrasri, S.; Sae-Oui, P.; Rachtanapun, P. Chitosan and Natural Rubber Latex Biocomposite Prepared by Incorporating Negatively Charged Chitosan Dispersion. Molecules. 2020, 25, 2777. DOI: 10.3390/molecules25122777.
  • Mohamed, R. R.; Sabaa, M. W. Synthesis and Characterization of Antimicrobial Crosslinked Carboxymethyl Chitosan Nanoparticles Loaded with Silver. Int. J. Biol. Macromol. 2014, 69, 95–99. DOI: 10.1016/j.ijbiomac.2014.05.025.
  • Wahid, F.; Wang, H. S.; Zhong, C.; Chu, L. Q. Facile Fabrication of Moldable Antibacterial Carboxymethyl Chitosan Supramolecular Hydrogels cross-linked by Metal Ions Complexation. Carbohydr. Polym. 2017, 165, 455–461. DOI: 10.1016/j.carbpol.2017.02.085.
  • Botas, C.; Álvarez, P.; Blanco, P.; Granda, M.; Blanco, C.; Santamaría, R.; Romasanta, L. J.; Verdejo, R.; López-Manchado, M. A.; Menéndez, R. Graphene Materials with Different Structures Prepared from the Same Graphite by the Hummers and Brodie Methods. Carbon. 2013, 65, 156–164. DOI: 10.1016/j.carbon.2013.08.009.
  • Liu, Y.; Li, F.; Guo, Z.; Xiao, Y.; Zhang, Y.; Sun, X.; Zhe, T.; Cao, Y.; Wang, L.; Lu, Q., et al. Silver nanoparticle-embedded Hydrogel as a Photothermal Platform for Combating Bacterial Infections. Chem. Eng. J. 2020, 382, 122990.
  • Huang, Q.; Wang, J.; Wei, W.; Yan, Q.; Wu, C.; Zhu, X. A Facile and Green Method for Synthesis of Reduced Graphene oxide/Ag Hybrids as Efficient Surface Enhanced Raman Scattering Platforms. J. Hazard. Mater. 2015, 283, 123–130. DOI: 10.1016/j.jhazmat.2014.09.021.
  • Cao, N.; Lyu, Q.; Li, J.; Wang, Y.; Yang, B.; Szunerits, S.; Boukherroub, R. Facile Synthesis of Fluorinated polydopamine/chitosan/reduced Graphene Oxide Composite Aerogel for Efficient oil/water Separation. Chem. Eng. J. 2017, 326, 17–28. DOI: 10.1016/j.cej.2017.05.117.
  • Shen, J.; Shi, M.; Li, N.; Yan, B.; Ma, H.; Hu, Y.; Ye, M. Facile Synthesis and Application of Ag-chemically Converted Graphene Nanocomposite. Nano Res. 2010, 3, 339–349. DOI: 10.1007/s12274-010-1037-x.
  • Ma, Y.; Liu, H.; Han, Z.; Yang, L.; Liu, J. Highly-reproducible Raman Scattering of NaYF4:Yb,Er@SiO2@Ag for Methylamphetamine Detection under near-infrared Laser Excitation. Analyst. 2015, 140, 5268–5275. DOI: 10.1039/C5AN00441A.
  • Fan, Z.; Liu, B.; Wang, J.; Zhang, S.; Lin, Q.; Gong, P.; Ma, L.; Yang, S. A Novel Wound Dressing Based on Ag/Graphene Polymer Hydrogel: Effectively Kill Bacteria and Accelerate Wound Healing. Adv. Funct. Mater. 2014, 24, 3933–3943. DOI: 10.1002/adfm.201304202.
  • Zheng, L.; Jerrams, S.; Xu, Z.; Zhang, L.; Liu, L.; Wen, S. Enhanced Gas Barrier Properties of Graphene oxide/rubber Composites with Strong Interfaces Constructed by Graphene Oxide and Sulfur. Chem. Eng. J. 2020, 383, 123100.
  • Palmieri, V.; Papi, M.; Conti, C.; Ciasca, G.; Maulucci, G.; De Spirito, M. The Future Development of Bacteria Fighting Medical Devices: The Role of Graphene Oxide. Expert Rev. Med. Devices. 2016, 13, 1013–1019. DOI: 10.1080/17434440.2016.1245612.
  • Noguchi, F.; Zhou, Y.; Kosugi, K.; Yamamoto, Y.; Nghia, P. T.; Fukuda, M.; Kawahara, S. Effect of strain-induced Crystallization on the Tear Strength of Natural rubber/styrene Butadiene Rubber Blend. Adv. Polym. Technol. 2018, 37, 1850–1858. DOI: 10.1002/adv.21843.
  • Zheng, L.; Wang, D.; Xu, Z.; Zhang, L.; Liu, L.; Wen, S. High Barrier Properties against Sulfur Mustard of Graphene oxide/butyl Rubber Composites. Compos. Sci. Technol. 2019, 170, 141–147. DOI: 10.1016/j.compscitech.2018.12.002.
  • Ge, L.; Zhang, M.; Wang, R.; Li, N.; Zhang, L.; Liu, S.; Jiao, T. Fabrication of CS/GA/RGO/Pd Composite Hydrogels for Highly Efficient Catalytic Reduction of Organic Pollutants. RSC Adv. 2020, 10, 15091–15097. DOI: 10.1039/D0RA01884H.
  • Guo, R.; Wen, J.; Gao, Y.; Li, T.; Yan, H.; Wang, H.; Niu, B.; Jiang, K. Effect of the Adhesion of Ag Coatings on the Effectiveness and Durability of Antibacterial Properties. J. Mater. Sci. 2018, 53, 4759–4767. DOI: 10.1007/s10853-017-1939-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.