338
Views
0
CrossRef citations to date
0
Altmetric
Review

Epitome of Fullerene in Conducting Polymeric Nanocomposite—Fundamentals and Beyond

Pages 618-631 | Received 01 Jul 2022, Accepted 01 Sep 2022, Published online: 05 Sep 2022

References

  • Kausar, A. Fullerene Nanowhisker nanocomposite—current Stance and high-tech Opportunities. Polym.-Plast. Technol. Mater. 2022, 1–16.
  • Kausar, A. Poly (Methyl methacrylate)/Fullerene nanocomposite—Factors and Applications. Polym.-Plast. Technol. Mater. 2022, 61, 593–608.
  • Kausar, A. Advances in Condensation Polymer Containing zero-dimensional Nanocarbon reinforcement—fullerene, Carbon nano-onion, and Nanodiamond. Polym.-Plast. Technol. Mater. 2021, 60, 695–713.
  • Kausar, A. Advances in polymer/fullerene Nanocomposite: A Review on Essential Features and Applications. Polym.-Plast. Technol. Mater. 2017, 56, 594–605. DOI: 10.1080/03602559.2016.1233278.
  • Bhattacharya, S.; Samanta, S. K. Soft-nanocomposites of Nanoparticles and Nanocarbons with Supramolecular and Polymer Gels and Their Applications. Chem. Rev. 2016, 116, 11967–12028. DOI: 10.1021/acs.chemrev.6b00221.
  • Khokhar, D.; Jadoun, S.; Arif, R.; Jabin, S. Functionalization of Conducting Polymers and Their Applications in Optoelectronics. Polym.-Plast. Technol. Mater. 2021, 60, 465–487.
  • Kausar, A. Reinforced Polyaniline Nanocomposite Nanofibers: Cutting-edge Potential. Polym.-Plast. Technol. Mater2022, 61, 1–14.
  • Taban, N.; Sharif, M.; Taghvaei, M. Study on the Structure and Properties of Poly (methylmethacrylate)/Polypyrrole-Graphene Oxide Nanocomposites. Polym.-Plast. Technol. Mater. 2019, 58, 1157–1169.
  • Ito, R.; Yonehara, T.; Goto, H. Synthesis of a Series of Optically Active Polythiophene Derivatives Bearing Myrtanoxy Group. Polym.-Plast. Technol. Mater. 2021, 60, 1308–1316.
  • Baskar, A. V.; Benzigar, M. R.; Talapaneni, S. N.; Singh, G.; Karakoti, A. S.; Yi, J.; Al‐Muhtaseb, A. A. H.; Ariga, K.; Ajayan, P. M.; Vinu, A. Self‐Assembled Fullerene Nanostructures: Synthesis and Applications. Adv. Funct. Mater. 2022, 32, 2106924. DOI: 10.1002/adfm.202106924.
  • Xu, S.; Shi, X. L.; Dargusch, M.; Di, C.; Zou, J.; Chen, Z. G. Conducting polymer-based Flexible Thermoelectric Materials and Devices: From Mechanisms to Applications. Prog. Mater. Sci. 2021, 121, 100840.
  • Idumah, C. I. Recent Advancements in Conducting Polymer Bionanocomposites and Hydrogels for Biomedical Applications. Int. J. Polym. Mater. Polymer. Biomater 2022, 71, 513–530. DOI: 10.1080/00914037.2020.1857384.
  • Zhu, B.; Bryant, D. T.; Akbarinejad, A.; Travas-Sejdic, J.; Pilkington, L. I. A Novel Electrochemical Conducting Polymer Sensor for the Rapid, Selective and Sensitive Detection of Biothiols. Polym. Chem. 2022, 13, 508–516. DOI: 10.1039/D1PY01394G.
  • Karki, A.; Cincotti, G.; Chen, S.; Stanishev, V.; Darakchieva, V.; Wang, C.; Fahlman, M.; Jonsson, M. P. Electrical Tuning of Plasmonic Conducting Polymer Nanoantennas. Adv. Mater. 2022, 34, 2107172. DOI: 10.1002/adma.202107172.
  • Zare, E. N.; Makvandi, P.; Ashtari, B.; Rossi, F.; Motahari, A.; Perale, G. Progress in Conductive polyaniline-based Nanocomposites for Biomedical Applications: A Review. J. Medicin. Chem 2019, 63, 1–22. DOI: 10.1021/acs.jmedchem.9b00803.
  • Stejskal, J.; Trchová, M. Conducting Polypyrrole Nanotubes: A Review. Chem. Pap. 2018, 72, 1563–1595.
  • Ye, L.; Ke, H.; Liu, Y. The Renaissance of Polythiophene Organic Solar Cells. Trend. Chem 2021, 3, 1074–1087. DOI: 10.1016/j.trechm.2021.09.008.
  • Mazrouaa, A. M.; Mansour, N. A.; Abed, M. Y.; Youssif, M. A.; Shenashen, M. A.; Awual, M. R. Nano-composite multi-wall Carbon Nanotubes Using Poly (p-phenylene Terephthalamide) for Enhanced Electric Conductivity. J. Environ. Chem. Engineer. 2019, 7(2), 103002. DOI: 10.1016/j.jece.2019.103002.
  • Şenocak, A.; Tümay, S. O.; Ömeroğlu, İ.; Şanko, V. Crosslinker Polycarbazole Supported Magnetite MOF@ CNT Hybrid Material for Synergetic and Selective Voltammetric Determination of Adenine and Guanine. J. Electroanal. Chem. 2022, 905, 115963. DOI: 10.1016/j.jelechem.2021.115963.
  • Sharma, S.; Sudhakara, P.; Omran, A. A. B.; Singh, J.; Ilyas, R. A. Recent Trends and Developments in Conducting Polymer Nanocomposites for Multifunctional Applications. Polymers. 2021, 13, 2898. DOI: 10.3390/polym13172898.
  • Kazemi, F.; Naghib, S. M.; Zare, Y.; Rhee, K. Y. Biosensing Applications of Polyaniline (Pani)-based Nanocomposites: A Review. Polym. Rev. 2021, 61, 553–597. DOI: 10.1080/15583724.2020.1858871.
  • Bishop, A.; Gouma, P. Leuco-emeraldine Based Polyaniline poly-vinyl-pyrrolidone Electrospun Composites and bio-composites. Rev. Adv. Mater. Sci. 2005, 10, 209–214.
  • Chen, X.; Yuan, C. A.; Wong, C. K.; Zhang, G. K. Forcefields Based Molecular Modeling on the Mechanical and Physical Properties of Emeraldine Base Polyaniline. Procedia Eng. 2010, 5, 1268–1271. DOI: 10.1016/j.proeng.2010.09.344.
  • Jamadade, V.; Dhawale, D.; Lokhande, C. Studies on Electrosynthesized Leucoemeraldine, Emeraldine and Pernigraniline Forms of Polyaniline Films and Their Supercapacitive Behavior. Synth. Met. 2010, 160, 955–960. DOI: 10.1016/j.synthmet.2010.02.007.
  • Dwivedi, G.; Munjal, G.; Bhaskarwar, A. N.; Chaudhary, A. Dye-sensitized Solar Cells with Polyaniline: A Review. Inorg. Chem. Comm. 2022, 135, 109087. DOI: 10.1016/j.inoche.2021.109087.
  • Lu, Y.; Lam, S. H.; Lu, W.; Shao, L.; Chow, T. H.; Wang, J. All-State Switching of the Mie Resonance of Conductive Polyaniline Nanospheres. Nano Lett. 2022, 22, 1406–1414. DOI: 10.1021/acs.nanolett.1c04969.
  • Han, C.; Zhu, J.; Fu, K.; Deng, D.; Luo, W.; Mai, L. A high-capacity polyaniline-intercalated Layered Vanadium Oxide for Aqueous ammonium-ion Batteries. Chem. Commun. 2022, 58, 791–794. DOI: 10.1039/D1CC05677H.
  • Veloso, V. A.; Silva, D. L.; Gastelois, P. L.; Furtado, C. A.; Santos, A. P. Polyaniline/graphene Nanocomposite: Effect of the Graphene Functionalization with a long-chain Fatty Acid. Mater. Chem. Phys. 2022, 285, 126162. DOI: 10.1016/j.matchemphys.2022.126162.
  • Zhang, Y.; Liu, J.; Zhang, Y.; Liu, J.; Duan, Y. Facile Synthesis of Hierarchical Nanocomposites of Aligned Polyaniline Nanorods on Reduced Graphene Oxide Nanosheets for Microwave Absorbing Materials. RSC Adv. 2017, 7, 54031–54038. DOI: 10.1039/C7RA08794B.
  • Luo, J.; Chen, Y.; Zheng, Y.; Wang, C.; Wei, W.; Liu, X. Hollow graphene-polyaniline Hybrid Spheres Using Sulfonated Graphene as Pickering Stabilizer for High Performance Supercapacitors. Electrochim. Acta. 2018, 272, 221–232. DOI: 10.1016/j.electacta.2018.04.011.
  • Kroutil, J.; Laposa, A.; Ahmad, A.; Voves, J.; Povolny, V.; Klimsa, L.; Davydova, M.; Husak, M. A Chemiresistive Sensor Array Based on Polyaniline Nanocomposites and Machine Learning Classification. Beilstein J. Nanotechnol. 2022, 13, 411–423. DOI: 10.3762/bjnano.13.34.
  • Kandpal, R.; Shahadat, M.; Adnan, R.; Ali, S. W.; Ahammad, S. Z. Polyaniline-Based Flexible Nanocomposite Materials. ACS Publ. 2022, 1, 367–395.
  • Suresh, L.; Bondili, J. S.; Brahman, P. K. Fabrication of Immunosensor Based on Polyaniline, Fullerene‐C60 and Palladium Nanoparticles Nanocomposite: An Electrochemical Detection Tool for Prostate Cancer. Electroanalysis. 2020, 32, 1439–1448. DOI: 10.1002/elan.201900659.
  • Zubtsova, Y. A.; Kamanina, N. The Effect of Fullerene on the Temporal Characteristics of a Nematic Liquid crystal-polyaniline-fullerene C60 System. Tech. Phys. Lett. 2006, 32, 582–585. DOI: 10.1134/S1063785006070108.
  • Zubtsova, Y. A.; Vasilyev, P. Y.; Murashov, S.; Kamanina, N. Study of Dynamic and Nonlinear Optical Properties of Polyaniline–Fullerene–Liquid Crystal Structures. Molecul. Cryst. Liq. Cryst 2007, 467, 171–180. DOI: 10.1080/15421400701221419.
  • Cheng, X.; Yokozeki, T.; Yamamoto, M.; Wang, H.; Wu, L.; Koyanagi, J.; Sun, Q. The Decoupling Electrical and Thermal Conductivity of fullerene/polyaniline Hybrids Reinforced Polymer Composites. Compos. Sci. Technol. 2017, 144, 160–168. DOI: 10.1016/j.compscitech.2017.03.030.
  • Gizdavic-Nikolaidis, M.; Vella, J.; Bowmaker, G. A.; Zujovic, Z. D. Rapid Microwave Synthesis of polyaniline–C60 Nanocomposites. Synth. Met. 2016, 217, 14–18. DOI: 10.1016/j.synthmet.2016.03.009.
  • Xiong, S.; Yang, F.; Jiang, H.; Ma, J.; Lu, X. Covalently Bonded polyaniline/fullerene Hybrids with coral-like Morphology for high-performance Supercapacitor. Electrochim. Acta. 2012, 85, 235–242. DOI: 10.1016/j.electacta.2012.08.056.
  • Wang, H.; Yan, X.; Piao, G. A high-performance Supercapacitor Based on Fullerene C60 Whisker and Polyaniline Emeraldine Base Composite. Electrochim. Acta. 2017, 231, 264–271. DOI: 10.1016/j.electacta.2017.02.057.
  • Ramadan, A.; Anas, M.; Ebrahim, S.; Soliman, M.; Abou-Aly, A. Polyaniline/fullerene Derivative Nanocomposite for Highly Efficient Supercapacitor Electrode. Int. J. Hydrog. Ener. 2020, 45, 16254–16265. DOI: 10.1016/j.ijhydene.2020.04.093.
  • Halium, E. M.; Mansour, H.; Alrasheedi, N.; Al-Hossainy, A. F. High-performance One and two-dimensional Doped Polypyrrole Nanostructure for Polymer Solar Cells Applications. J. Mater. Sci. Mater. Electron. 2022, 33, 10165–10182.
  • Dai, Y.-L.; Zhang, X.-J.; Wen, B.-Y.; Du, Q.-Y. Facile Synthesis of Polypyrrole Nanoparticles with Tunable Conductivity for Efficient Electromagnetic Wave Absorption and Shielding Performance. Cryst.Eng.Comm. 2022, 24, 3287–3296. DOI: 10.1039/D2CE00206J.
  • Ding, J.; Li, Z.; Cui, K.; Boyer, S.; Karpuzov, D.; Mitlin, D. Heteroatom Enhanced Sodium Ion Capacity and Rate Capability in a Hydrogel Derived Carbon Give Record Performance in a Hybrid Ion Capacitor. Nano Ener. 2016, 23, 129–137. DOI: 10.1016/j.nanoen.2016.03.014.
  • González, M.; Saidman, S. Electrodeposition of Polypyrrole on 316L Stainless Steel for Corrosion Prevention. Corros. Sci. 2011, 53, 276–282. DOI: 10.1016/j.corsci.2010.09.021.
  • Mrad, M.; Dhouibi, L.; Montemor, M.; Triki, E. Effect of Doping by Corrosion Inhibitors on the Morphological Properties and the Performance against Corrosion of Polypyrrole Electrodeposited on AA6061-T6. Prog. Org. Coat. 2011, 72, 511–516. DOI: 10.1016/j.porgcoat.2011.06.010.
  • Seike, M.; Asaumi, Y.; Kawashima, H.; Hirai, T.; Nakamura, Y.; Fujii, S. Morphological and Chemical Stabilities of Polypyrrole in Aqueous Media for 1 Year. Polym. J. 2022, 54, 169–178. DOI: 10.1038/s41428-021-00572-1.
  • Singla, P.; Goel, N.; Singhal, S. Boron Nitride Nanomaterials with Different Morphologies: Synthesis, Characterization and Efficient Application in Dye Adsorption. Ceram. Int. 2015, 41, 10565–10577. DOI: 10.1016/j.ceramint.2015.04.151.
  • Lu, J.; Stair, P. C. Nano/subnanometer Pd Nanoparticles on Oxide Supports Synthesized by AB-type and low-temperature ABC-type Atomic Layer Deposition: Growth and Morphology. Langmuir. 2010, 26, 16486–16495. DOI: 10.1021/la101378s.
  • Deori, K.; Deka, S. Morphology Oriented Surfactant Dependent CoO and Reaction Time Dependent Co 3 O 4 Nanocrystals from Single Synthesis Method and Their Optical and Magnetic Properties. Cryst.Eng.Comm. 2013, 15, 8465–8474. DOI: 10.1039/c3ce41502c.
  • Goclon, J.; Winkler, K. Band Gap Tuning in Composites of Polypyrrole Derivatives and C60Pd3 Polymer as Models for p–n Junction: A First Principle Computational Study. Chem. Sel. 2018, 3, 373–383.
  • Thummarungsan, N.; Pattavarakorn, D.; Sirivat, A. Electrically Responsive Materials Based on Dibutyl Phathalate Plasticized Poly (Lactic Acid) and Spherical Fullerene. Smart Mater. Structur 2022, 31, 035029. DOI: 10.1088/1361-665X/ac5013.
  • Zhou, F. F.; Ma, Q. L.; Huang, Y. M.; She, Z. R., and Pan, C. X. Effects of Phosphoric Acid on the Photovoltaic Properties of Photovoltaic Cells with Laminated Polypyrrole-Fullerene Layers. Trans. Tech. Publ. 2011, 31, 861–864.
  • Wysocka-Zolopa, M.; Goclon, J.; Basa, A.; Winkler, K. Polypyrrole Nanoparticles Doped with Fullerene Uniformly Distributed in the Polymeric Phase: Synthesis, Morphology, and Electrochemical Properties. J. Phys. Chem. C. 2018, 122, 25539–25554. DOI: 10.1021/acs.jpcc.8b07681.
  • Ozkazanc, H.; Ozkazanc, E. Novel Nanocomposites of Polypyrrole Doped with Fullerene C60. J. Macromolecul. Sci. B 2017, 56, 83–96. DOI: 10.1080/00222348.2016.1270904.
  • Bouchtalla, S.; Auret, L.; Janot, J.-M.; Deronzier, A.; Moutet, J.; Seta, P. Fullerene Immobilized in a Thin Functionalized Polypyrrole Film. Basic Principles for the Elaboration of an Oxygen Sensor. Mater. Sci. Engineer.: C. 2002, 21, 125–129. DOI: 10.1016/S0928-4931(02)00070-X.
  • Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H. Graphene‐based Materials: Synthesis, Characterization, Properties, and Applications. Small. 2011, 7, 1876–1902. DOI: 10.1002/smll.201002009.
  • Xian, K.; Geng, Y.; Ye, L. The Rise of Polythiophene Photovoltaics. Joule. 2022, 6, 941–944. DOI: 10.1016/j.joule.2022.04.006.
  • Salzner, U.; Lagowski, J.; Pickup, P.; Poirier, R. Comparison of Geometries and Electronic Structures of Polyacetylene, Polyborole, Polycyclopentadiene, Polypyrrole, Polyfuran, Polysilole, Polyphosphole, Polythiophene, Polyselenophene and Polytellurophene. Synth. Met. 1998, 96, 177–189. DOI: 10.1016/S0379-6779(98)00084-8.
  • Koßmehl, G.; Chatzitheodorou, G. Electrical Conductivity of Poly (2,5‐thiophenediyl)‐AsF5‐complexes. Die Makromolekul. Chem., Rap. Communicat 1981, 2, 551–555. DOI: 10.1002/marc.1981.030020903.
  • Urbánek, P.; Di Martino, A.; Gladyš, S.; Kuřitka, I.; Minařík, A.; Pavlova, E.; Bondarev, D. Polythiophene-based Conjugated Polyelectrolyte: Optical Properties and Association Behavior in Solution. Synth. Met. 2015, 202, 16–24. DOI: 10.1016/j.synthmet.2015.01.015.
  • Lim, S. P.; Pandikumar, A.; Lim, Y. S.; Huang, N. M.; Lim, H. N. In-situ Electrochemically Deposited Polypyrrole Nanoparticles Incorporated Reduced Graphene Oxide as an Efficient Counter Electrode for platinum-free dye-sensitized Solar Cells. Scientif. Rep. 2014, 4, 5305. DOI: 10.1038/srep05305.
  • Kalagi, S. S.; Patil, P. S. Secondary Electrochemical Doping Level Effects on Polaron and Bipolaron Bands Evolution and Interband Transition Energy from Absorbance Spectra of PEDOT: PSS Thin Films. Synth. Met. 2016, 220, 661–666. DOI: 10.1016/j.synthmet.2016.08.009.
  • Causin, V.; Marega, C.; Marigo, A.; Valentini, L.; Kenny, J. M. Crystallization and Melting Behavior of Poly (3-butylthiophene), Poly (3-octylthiophene), and Poly (3-dodecylthiophene). Macromolecules. 2005, 38, 409–415.
  • Qiao, X.; Wang, X.; Zhao, X.; Mo, Z.; Zhang, H. Nonisothermal Crystallization of Poly (3-dodecylthiophene) and Poly (3-octadecylthiophene). Synth. Met. 2000, 113, 1–6. DOI: 10.1016/S0379-6779(99)00131-9.
  • Tarcan, E. Structural and Dielectric Properties of Polythiophene/Chrom (III) Acetylacetonate Composites. J. Macromolecul. Sci. B 2015, 54, 897–906. DOI: 10.1080/00222348.2015.1051932.
  • Ozkazanc, H. Novel Nanocomposites Based on Polythiophene and Zirconium Dioxide. Mater. Res. Bull. 2016, 73, 226–232. DOI: 10.1016/j.materresbull.2015.09.009.
  • Chunder, A.; Liu, J.; Zhai, L. Reduced Graphene Oxide/Poly (3‐hexylthiophene) Supramolecular Composites. Macromolecul. Rap. Communicat. 2010, 31, 380–384. DOI: 10.1002/marc.200900626.
  • Iguchi, H.; Higashi, C.; Funasaki, Y.; Fujita, K.; Mori, A.; Nakasuga, A.; Maruyama, T. Rational and Practical Exfoliation of Graphite Using well-defined Poly (3-hexylthiophene) for the Preparation of Conductive polymer/graphene Composite. Scientif. Rep. 2017, 7, 1–8.
  • Singh, V.; Kumar, T. Study of Modified PEDOT: PSS for Tuning the Optical Properties of Its Conductive Thin Films. J. Sci. Adv. Mater. Dev. 2019, 4, 538–543.
  • Yang, Z.; Fu, K.; Yu, J.; Shi, X.; Zhou, P.; Cheng, Z. Facile Preparation of Nanoporous C60/P3HT Thin Films from PLA-b-C60-b-P3HT Triblock Copolymers. Appl. Surf. Sci. 2018, 458, 70–76. DOI: 10.1016/j.apsusc.2018.07.076.
  • Voroshazi, E.; Uytterhoeven, G.; Cnops, K.; Conard, T.; Favia, P.; Bender, H.; Muller, R.; Cheyns, D. Root-cause Failure Analysis of Photocurrent Loss in Polythiophene: Fullerene-based Inverted Solar Cells. ACS Appl. Mater. Interface. 2015, 7, 618–623. DOI: 10.1021/am506771e.
  • Kakogianni, S.; Andreopoulou, A. K.; Kallitsis, J. K. Synthesis of Polythiophene–Fullerene Hybrid Additives as Potential Compatibilizers of BHJ Active Layers. Polymers. 2016, 8, 440. DOI: 10.3390/polym8120440.
  • Kitao, T.; Sasaki, Y.; Kitagawa, S.; Imamura, Y.; Tsujimoto, M.; Seki, S.; Uemura, T. Selective Formation of End-on Orientation between Polythiophene and Fullerene Mediated by Coordination Nanospaces. J. Phys. Chem. C. 2018, 122, 24182–24189. DOI: 10.1021/acs.jpcc.8b08120.
  • Huang, D. M.; Moule, A. J.; Faller, R. Characterization of polymer–fullerene Mixtures for Organic Photovoltaics by Systematically coarse-grained Molecular Simulations. Fluid Phase Equilibr. 2011, 302, 21–25. DOI: 10.1016/j.fluid.2010.07.025.
  • Chirvase, D.; Parisi, J.; Hummelen, J. C.; Dyakonov, V. Influence of Nanomorphology on the Photovoltaic Action of polymer–fullerene Composites. Nanotechnology. 2004, 15, 1317. DOI: 10.1088/0957-4484/15/9/035.
  • Tumbleston, J. R.; Yang, L.; You, W.; Ade, H. Morphology Linked to Miscibility in Highly Amorphous semi-conducting polymer/fullerene Blends. Polymer. 2014, 55, 4884–4889. DOI: 10.1016/j.polymer.2014.07.051.
  • Pierini, F.; Lanzi, M.; Nakielski, P.; Pawłowska, S.; Urbanek, O.; Zembrzycki, K.; Kowalewski, T. A. Single-material Organic Solar Cells Based on Electrospun fullerene-grafted Polythiophene Nanofibers. Macromolecules. 2017, 50, 4972–4981. DOI: 10.1021/acs.macromol.7b00857.
  • Zabihi, F.; Chen, Q.; Xie, Y.; Eslamian, M. Fabrication of Efficient graphene-doped polymer/fullerene Bilayer Organic Solar Cells in Air Using Spin Coating Followed by Ultrasonic Vibration Post Treatment. Superlattic. Microstructur 2016, 100, 1177–1192. DOI: 10.1016/j.spmi.2016.10.087.
  • Grądzka, E.; Wysocka‐Żołopa, M.; Winkler, K. Fullerene‐Based Conducting Polymers: N‐Dopable Materials for Charge Storage Application. Adv. Ener. Mater. 2020, 10, 2001443. DOI: 10.1002/aenm.202001443.
  • Kanbur, Y.; Tayfun, U. Development of Multifunctional Polyurethane Elastomer Composites Containing Fullerene: Mechanical, Damping, Thermal, and Flammability Behaviors. J. Elast. Plast 2019, 51, 262–279. DOI: 10.1177/0095244318796616.
  • Jiang, Y.; Dong, X.; Sun, L.; Liu, T.; Qin, F.; Xie, C.; Jiang, P.; Hu, L.; Lu, X.; Zhou, X. An alcohol-dispersed Conducting Polymer Complex for Fully Printable Organic Solar Cells with Improved Stability. Nature Ener 2022, 7, 352–359. DOI: 10.1038/s41560-022-00997-9.
  • Jiang, H.; Yang, J.; Di, M.; Xiong, R.; Wang, T.; Qiao, S. Fabrication of three-dimensional Nanocomposite with Open Cage Fullerene Polymer and MoS2 for Enhanced Electrochemical Hydrogen Evolution Activity. Int. J. Hydrog. Ener. 2022, 47, 18261–18271. DOI: 10.1016/j.ijhydene.2022.04.013.
  • Loganathan, N. N.; Perumal, V.; Pandian, B. R.; Atchudan, R.; Edison, T. N. J. I.; Ovinis, M. Recent Studies on Polymeric Materials for Supercapacitor Development. J. Ener. Storag. 2022, 49, 104149. DOI: 10.1016/j.est.2022.104149.
  • Dhilip Kumar, R.; Nagarani, S.; Sethuraman, V.; Andra, S.; Dhinakaran, V. Investigations of Conducting Polymers, Carbon Materials, Oxide and Sulfide Materials for Supercapacitor Applications: A Review. Chem. Pap. 2022, 76, 3371–3385. DOI: 10.1007/s11696-022-02124-0.
  • Amoura, D.; Sánchez-Jiménez, M.; Estrany, F.; Makhloufi, L.; Alemán, C. Clay Incorporation at the Dielectric Layer of Multilayer Polymer Films for Electrochemical Activation. Eur. Polym. J. 2015, 69, 296–307. DOI: 10.1016/j.eurpolymj.2015.05.030.
  • Duran, B.; Unver, I. C.; Bereket, G. Investigation of Supporting Electrolyte Effect on Supercapacitor Properties of Poly (Carbazole) Films. J. Electrochem. Sci. Technol 2020, 11, 41–49. DOI: 10.33961/jecst.2019.00129.
  • Wang, Z.; Zhu, M.; Pei, Z.; Xue, Q.; Li, H.; Huang, Y.; Zhi, C. Polymers for Supercapacitors: Boosting the Development of the Flexible and Wearable Energy Storage. Mater. Sci. Engr.: R: Rep. 2020, 139, 100520. DOI: 10.1016/j.mser.2019.100520.
  • Choudhary, R. B.; Ansari, S.; Purty, B. Robust Electrochemical Performance of Polypyrrole (Ppy) and Polyindole (Pin) Based Hybrid Electrode Materials for Supercapacitor Application: A Review. J. Ener. Storag. 2020, 29, 101302. DOI: 10.1016/j.est.2020.101302.
  • Villers, D.; Jobin, D.; Soucy, C.; Cossement, D.; Chahine, R.; Breau, L.; Bélanger, D. The Influence of the Range of Electroactivity and Capacitance of Conducting Polymers on the Performance of Carbon Conducting Polymer Hybrid Supercapacitor. J. Electrochem. Soc. 2003, 150, A747–A752. DOI: 10.1149/1.1571530.
  • Cericola, D.; Kötz, R. Hybridization of Rechargeable Batteries and Electrochemical Capacitors: Principles and Limits. Electrochim. Acta. 2012, 72, 1–17. DOI: 10.1016/j.electacta.2012.03.151.
  • Abdelhamid, M. E.; OMullane, A. P.; Snook, G. A. Storing Energy in Plastics: A Review on Conducting Polymers & Their Role in Electrochemical Energy Storage. RSC Adv. 2015, 5, 11611–11626. DOI: 10.1039/C4RA15947K.
  • Luo, D.; Ma, D.; Tan, Q.; Li, W.; Lu, J.; Chi, Z.; Liang, H. Hyperbranched Conjugated Polymers Based on 4, 7-di (Thiophen-2-yl) Benzo [C][1, 2, 5] Thiadiazole for Ternary Organic Solar Cells. Dyes Pig 2020, 181, 108524. DOI: 10.1016/j.dyepig.2020.108524.
  • Hsieh, C.-H.; Chen, W.-C.; Yang, S.-H.; Chao, Y.-C.; Lee, H.-C.; Chiang, C.-L.; Lin, C.-Y. A Simple Route to Linear and Hyperbranched Polythiophenes Containing Diketopyrrolopyrrole Linking Groups with Improved Conversion Efficiency. AIMS Mater. Sci. 2017, 4, 878–893. DOI: 10.3934/matersci.2017.4.878.
  • Boumeftah, A.; Belmokhtar, A.; Benyoucef, A. Polymer/Carbon Nanocomposites: Synthesis, Properties and Application in Solar Energy. In Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications. Ahmed Esmail Shalan; Makhlouf, A. S. H., Lanceros‐Méndez, S., Eds.; Springer: Cham, Switzerland, 2022; pp 795–816.
  • Zeng, K.; Zhang, D. Recent Progress in Alkaline Water Electrolysis for Hydrogen Production and Applications. Prog. Ener. Combust. Sci. 2010, 36, 307–326. DOI: 10.1016/j.pecs.2009.11.002.
  • Hill, C. M.; Zhu, Y.; Pan, S. Fluorescence and Electroluminescence Quenching Evidence of Interfacial Charge Transfer in Poly (3-hexylthiophene): Graphene Oxide Bulk Heterojunction Photovoltaic Devices. Acs Nano. 2011, 5, 942–951. DOI: 10.1021/nn1022457.
  • Gupta, V.; Chaudhary, N.; Srivastava, R.; Sharma, G. D.; Bhardwaj, R.; Chand, S. Luminscent Graphene Quantum Dots for Organic Photovoltaic Devices. J. Am. Chem. Soc. 2011, 133, 9960–9963. DOI: 10.1021/ja2036749.
  • Parlak, E. A. The Blend Ratio Effect on the Photovoltaic Performance and Stability of Poly (3-hexylthiophene):[6,6]-phenyl-C61 Butyric Acid Methyl Ester (PCBM) and Poly (3-octylthiophene): PCBM Solar Cells. Solar Ener. Mater. Sol. Cel 2012, 100, 174–184. DOI: 10.1016/j.solmat.2012.01.011.
  • Li, Z.; Wang, W.; Greenham, N. C.; McNeill, C. R. Influence of Nanoparticle Shape on Charge Transport and Recombination in polymer/nanocrystal Solar Cells. Phys. Chem. Chem. Phys. 2014, 16, 25684–25693. DOI: 10.1039/C4CP01111B.
  • Wang, J.; Wang, J.; Kong, Z.; Lv, K.; Teng, C.; Zhu, Y. Conducting‐polymer‐based Materials for Electrochemical Energy Conversion and Storage. Adv. Mater. 2017, 29, 1703044. DOI: 10.1002/adma.201703044.
  • Zhang, X.; Wang, J.; Liu, J.; Wu, J.; Chen, H.; Bi, H. Design and Preparation of a Ternary Composite of Graphene oxide/carbon dots/polypyrrole for Supercapacitor Application: Importance and Unique Role of Carbon Dots. Carbon. 2017, 115, 134–146. DOI: 10.1016/j.carbon.2017.01.005.
  • Pavel, I.-A.; Lakard, S.; Lakard, B. Flexible Sensors Based on Conductive Polymers. Chemosensors. 2022, 10, 97. DOI: 10.3390/chemosensors10030097.
  • Mooss, V.; Kesari, Y.; Athawale, A. Conducting Polymer and metal-based Sensors for the Detection of Vapours and Toxic Gases: A Concise Review. J. Mater. NanoSci. 2022, 9, 37–46.
  • Wang, -C.-C.; Wei, S.-C.; Luo, S.-C. Recent Advances and Biomedical Applications of peptide-integrated Conducting Polymers. ACS Appl. Bio Mater. 2022, 5, 1916–1933. DOI: 10.1021/acsabm.1c01194.
  • Sangamithirai, D.; Munusamy, S.; Narayanan, V.; Stephen, A. Fabrication of Neurotransmitter Dopamine Electrochemical Sensor Based on poly(o-anisidine)/CNTs Nanocomposite. Surf. Interfac 2016, 4, 27–34. DOI: 10.1016/j.surfin.2016.09.003.
  • Liu, X.; Zheng, W.; Kumar, R.; Kumar, M.; Zhang, J. Conducting polymer-based Nanostructures for Gas Sensors. Coordinat. Chem. Rev 2022, 462, 214517. DOI: 10.1016/j.ccr.2022.214517.
  • Kang, I.; Schulz, M. J.; Kim, J. H.; Shanov, V.; Shi, D. A Carbon Nanotube Strain Sensor for Structural Health Monitoring. Smart Mater. Structur 2006, 15, 737. DOI: 10.1088/0964-1726/15/3/009.
  • Spinks, G. M.; Shin, S. R.; Wallace, G. G.; Whitten, P. G.; Kim, I. Y.; Kim, S. I.; Kim, S. J. A Novel “Dual Mode” Actuation in chitosan/polyaniline/carbon Nanotube Fibers. Sens. Actuat. B Chem. 2007, 121, 616–621. DOI: 10.1016/j.snb.2006.04.103.
  • Mandal, D.; Banerjee, S. Surface Acoustic Wave (SAW) Sensors: Physics, Materials, and Applications. Sensors. 2022, 22, 820. DOI: 10.3390/s22030820.
  • García-Gallegos, J. C.; Martín-Gullón, I.; Conesa, J. A.; Vega-Cantú, Y. I.; Rodríguez-Macías, F. J. The Effect of Carbon Nanofillers on the Performance of Electromechanical polyaniline-based Composite Actuators. Nanotechnology. 2015, 27, 015501. DOI: 10.1088/0957-4484/27/1/015501.
  • Iqbal, S.; Ahmad, S. Recent Development in Hybrid Conducting Polymers: Synthesis, Applications and Future Prospects. J Indus. Engineer. Chem. 2018, 60, 53–84.
  • Wichmann, M. H.; Sumfleth, J.; Gojny, F. H.; Quaresimin, M.; Fiedler, B.; Schulte, K. Glass-fibre-reinforced Composites with Enhanced Mechanical and Electrical properties–benefits and Limitations of a Nanoparticle Modified Matrix. Engineer. Fract. Mech 2006, 73, 2346–2359. DOI: 10.1016/j.engfracmech.2006.05.015.
  • Liu, X.; Wu, Z.; Hong, D.; Wu, W.; Xue, C.; Cai, X.; Ding, S.; Yao, F.; Jin, C.; Wang, S. Hf-Contacted High-Performance Air-Stable n-Type Carbon Nanotube Transistors. ACS Appl. Electron. Mater 2021, 3, 4623–4629. DOI: 10.1021/acsaelm.1c00767.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.