290
Views
0
CrossRef citations to date
0
Altmetric
Review

3D printing of plant fiber reinforced polymer composites (PFRC’s): an insight into methods, challenges and opportunities

, ORCID Icon, , &
Pages 816-838 | Received 07 Dec 2021, Accepted 04 Oct 2022, Published online: 20 Nov 2022

References

  • Rusinko, C. Green Manufacturing: An Evaluation of Environmentally Sustainable Manufacturing Practices and Their Impact on Competitive Outcomes. IEEE Trans Eng Manage. 2007, 54(3), 445–454. DOI: 10.1109/TEM.2007.900806.
  • Kumar, K.; Zindani, D.; Davim, J. P. Sustainable Engineering Products and Manufacturing Technologies; United Kingdom: Academic Press, 2019.
  • Posinasetti, N. Malaviya, National Institute of Technology Jaipur. Sustainable manufacturing-principles, Applications and Directions. In 28th National Convention of Production Engineers, Institution of Engineers India; At. MNIT: Jaipur, 2013.
  • Chandgude, S.; Salunkhe, S. Biofiber‐reinforced Polymeric Hybrid Composites: An Overview on Mechanical and Tribological Performance. Polym. Compos. 2020, 41(10), 3908–3939. DOI: 10.1002/pc.25801.
  • Saheb, D. N.; Jog, J. P. Natural Fiber Polymer Composites: A Review. Advances in Polymer Technology. J. Poly Process Inst. 1999, 18(4), 351–363.
  • Faruk, O.; Andrzej, K. B.; Hans-Peter, F.; Mohini, S. Biocomposites Reinforced with Natural Fibers: 2000–2010. Prog. Polym. Sci. 2012, 37(11), 1552–1596.
  • Al-Oqla, F. M.; Sapuan, S. Materials Selection for Natural Fiber Composites; United Kingdom: Woodhead Publishing, 2017.
  • Shah, D. U. Developing Plant Fibre Composites for Structural Applications by Optimising Composite Parameters: A Critical Review. J. Mater. Sci. 2013, 48(18), 6083–6107. DOI: 10.1007/s10853-013-7458-7.
  • Lau, K.-T.; Hung, P.-Y.; Zhu, M.-H.; Hui, D. Properties of Natural Fibre Composites for Structural Engineering Applications. Compos. B Eng. 2018, 136, 222–233. DOI: 10.1016/j.compositesb.2017.10.038.
  • Qin, Y. Medical Textile Materials; United Kingdom: Woodhead Publishing, 2015.
  • Bledzki, A.; Reihmane, S.; Gassan, J. Properties and Modification Methods for Vegetable Fibers for Natural Fiber Composites. J. Appl. Polym. Sci. 1996, 59(8), 1329–1336. DOI: 10.1002/(SICI)1097-4628(19960222)59:8<1329::AID-APP17>3.0.CO;2-0.
  • Komuraiah, A.; Kumar, N. S.; Prasad, B. D. Chemical Composition of Natural Fibers and Its Influence on Their Mechanical Properties. Mech. Compos. Mater. Struct. 2014, 50(3), 359–376. DOI: 10.1007/s11029-014-9422-2.
  • Jones, D.; Ormondroyd, G.O.; Curling, S.F.; Popescu, C.M. and Popescu, M.C. Chemical Compositions of Natural Fibres, in Advanced High Strength Natural Fibre Composites in Construction; 2017; United Kingdom: Elsevier, pp 23–58.
  • Goda, K.; Cao, Y. Research and Development of Fully Green Composites Reinforced with Natural Fibers. J Soc Mech Mater Eng. 2007, 1(9), 1073–1084. DOI: 10.1299/jmmp.1.1073.
  • Sathishkumar, T.; Navaneethakrishnan, P.; Shankar, S.; Rajasekar, R.; Rajini, N. Characterization of Natural Fiber and composites–A Review. J. Reinf. Plast. Compos. 2013, 32(19), 1457–1476.
  • Vigneshwaran, S.; Sundarakannan, R.; John, K. M.; Deepak Joel Johnson, R.; Arun Prasath, K.; Ajith, S.; Arumugaprabu, V.; Uthayakumar, M. Recent Advancement in the Natural Fiber Polymer Composites: A Comprehensive Review. J. Cleaner Prod. 2020, 277, 124109.
  • Petroudy, S. D. Physical and Mechanical Properties of Natural Fibers, in Advanced High Strength Natural Fibre Composites in Construction; United Kingdom: Elsevier, 2017; pp 59–83.
  • İşmal, Ö. E.; Paul, R. Composite Textiles in high-performance Apparel. In High-Performance Apparel; United Kingdom: Elsevier, 2018; pp 377–420.
  • Wang, R.-M.; Zheng, S.-R.; Zheng, Y.-P. G. Polymer Matrix Composites and Technology; Beijing: Elsevier, 2011.
  • Komal, U. K.; Manish, K. L.; Saurabh, C.; Inderdeep, S. Fabrication of Short Fiber Reinforced Polymer Composites. Reinforced Polymer Composites: Processing. Charact Post Life Cycle Assess. 2019, 21–38.
  • Mayer, R. M. Design with Reinforced Plastics: A Guide for Engineers and Designers; United Kingdom: Springer Science & Business Media, 2012.
  • Noryani, M.; Sapuan, S. M.; Mastura, M. T.; Zuhri, M. Y. M.; Zainudin, E. S. Material Selection of Natural Fibre Using a Stepwise Regression Model with Error Analysis. J. Mater. Res. Technol. 2019, 8(3), 2865–2879.
  • Chohan, J. S.; Boparai, K. S.; Singh, R.; Hashmi, M. S. J. Manufacturing Techniques and Applications of Polymer Matrix Composites: A Brief Review. Adv. Mater. Process. Technol. 2020, 1–11. DOI:10.1080/2374068X.2020.1835012.
  • Advani, S. G.; Hsiao, K.-T. Manufacturing Techniques for Polymer Matrix Composites (Pmcs); United Kingdom: Elsevier, 2012.
  • Fong, T.; Saba, N.; Liew, C.K.; Silva, R.D.; Hoque, M.E. and Goh, K.L. Yarn Flax Fibres for polymer-coated Sutures and Hand Layup Polymer Composite Laminates, in Manufacturing of Natural Fibre Reinforced Polymer Composites; 2015; Switzerland: Springer, pp 155–175.
  • Xiao, B.; Yang, Y.; Wu, X.; Liao, M.; Nishida, R.; Hamada, H. Hybrid Laminated Composites Molded by Spray lay-up Process. Fibers Polym. 2015, 16(8), 1759–1765.
  • Wulfsberg, J.; Herrmann, A.; Ziegmann, G.; Lonsdorfer, G.; Stöß, N. and Fette, M. Combination of Carbon Fibre Sheet Moulding Compound and Prepreg Compression Moulding in Aerospace Industry, 2014; Vol. 81. Nagoya, Japan: Procedia Engineering, pp 1601–1607.
  • Sahoo, S.; Misra, M.; Mohanty, A. K. Enhanced Properties of lignin-based Biodegradable Polymer Composites Using Injection Moulding Process. Compos. Part A Appl. Sci. Manuf. 2011, 42(11), 1710–1718. DOI: 10.1016/j.compositesa.2011.07.025.
  • Torres, M. Parameters’ Monitoring and in-situ Instrumentation for Resin Transfer Moulding: A Review. Composites Part A: Applied Science and Manufacturing. 2019, 124, 105500. DOI: 10.1016/j.compositesa.2019.105500.
  • Bodea, S.; Zechmeister, C.; Dambrosio, N.; Dörstelmann, M.; Menges, A. Robotic Coreless Filament Winding for Hyperboloid Tubular Composite Components in Construction. Autom Constr. 2021, 126, 103649. DOI: 10.1016/j.autcon.2021.103649.
  • Minchenkov, K.; Vedernikov, A.; Safonov, A.; Akhatov, I. Thermoplastic Pultrusion: A Review. Polymers. 2021, 13, 180. s Note: MDPI stays neu-tral with regard to jurisdictional clai-ms in . DOI: 10.3390/polym13020180.
  • Shesan, O. J.; Stephen, A.C.; Chioma, A.G.; Neerish, R. and Rotimi, S.E. Fiber-matrix Relationship for Composites Preparation. Renewable and Sustainable Compos. 2019, 1–30.
  • Ho, M.-P.; Wang, H.; Lee, J.-H.; Ho, C.-K.; Lau, K.-T.; Leng, J.; Hui, D. Critical Factors on Manufacturing Processes of Natural Fibre Composites. Compos. B Eng. 2012, 43(8), 3549–3562.
  • Faruk, O.; Ain, M. Biofiber Reinforced Polymer Composites for Structural Applications. In Developments in fiber-reinforced Polymer (FRP) Composites for Civil Engineering; United Kingdom: Elsevier, 2013; pp 18–53.
  • Komal, U. K.; Verma, V.; Ashwani, T.; Verma, N. and Singh, I. Effect of Chemical Treatment on Thermal, Mechanical and Degradation Behavior of Banana Fiber Reinforced Polymer Composites. J. Nat. Fibers. 2018, 17, 1026–1038.
  • Abu Bakar, A.; Hassan, A.; Mohd Yusof, A. F. Mechanical Properties of Silane and Zirconate Coupling agent-treated Oil Palm Empty Fruit Bunch fiber-filled acrylic-impact Modified Poly (Vinyl Chloride) Composites. Polym.-Plast. Technol. Eng. 2010, 49(15), 1563–1570. DOI: 10.1080/03602559.2010.512336.
  • Azwa, Z.; Yousif, B. Physical and Mechanical Properties of Bamboo fibre/polyester Composites Subjected to Moisture and Hygrothermal Conditions. Proc. Inst. Mech. Eng. Part L. 2019, 233(6), 1065–1079. DOI: 10.1177/1464420717704221.
  • Jappes, J. T. W.; Siva, I. Studies on the Influence of Silane Treatment on Mechanical Properties of Coconut sheath-reinforced Polyester Composite. Polym.-Plast. Technol. Eng. 2011, 50(15), 1600–1605. DOI: 10.1080/03602559.2011.593089.
  • Bledzki, A.; Mamun, A. A.; Lucka-Gabor, M.; Gutowski, V. S. The Effects of Acetylation on Properties of Flax Fibre and Its Polypropylene Composites. Express Polym. Lett. 2008, 2(6), 413–422.
  • Rayung, M.; Ibrahim, N.; Zainuddin, N.; Saad, W.; Razak, N.; Chieng, B. The Effect of Fiber Bleaching Treatment on the Properties of Poly (Lactic Acid)/oil Palm Empty Fruit Bunch Fiber Composites. Int. J. Mol. Sci. 2014, 15(8), 14728–14742.
  • Abdul Razak, N. I.; Ibrahim, N.; Zainuddin, N.; Rayung, M.; Saad, W. The Influence of Chemical Surface Modification of Kenaf Fiber Using Hydrogen Peroxide on the Mechanical Properties of Biodegradable Kenaf fiber/poly (Lactic Acid) Composites. Molecules. 2014, 19(3), 2957–2968.
  • Singha, A.; Rana, R. K. Natural Fiber Reinforced Polystyrene Composites: Effect of Fiber Loading, Fiber Dimensions and Surface Modification on Mechanical Properties, Vol. 41. Materials & Design: 2012; pp 289–297.
  • Sreekumar, P.; Thomas, S. P.; Saiter, J. M.; Joseph, K.; Unnikrishnan, G.; Thomas, S. Effect of Fiber Surface Modification on the Mechanical and Water Absorption Characteristics of sisal/polyester Composites Fabricated by Resin Transfer Molding. Compos. Part A Appl. Sci. Manuf. 2009, 40(11), 1777–1784.
  • Goriparthi, B. K.; Suman, K.; Rao, N. M. Effect of Fiber Surface Treatments on Mechanical and Abrasive Wear Performance of polylactide/jute Composites. Compos. Part A Appl. Sci. Manuf. 2012, 43(10), 1800–1808. DOI: 10.1016/j.compositesa.2012.05.007.
  • Hristov, V.; Vasileva, S. T.; Krumova, M.; Lach, R.; Michler, G. H. Deformation Mechanisms and Mechanical Properties of Modified polypropylene/wood Fiber Composites. Polym. Compos. 2004, 25(5), 521–526.
  • Joseph, K.; Thomas, S.; Pavithran, C. Effect of Chemical Treatment on the Tensile Properties of Short Sisal fibre-reinforced Polyethylene Composites. Polymer. 1996, 37(23), 5139–5149. DOI: 10.1016/0032-3861(96)00144-9.
  • Kiattipanich, N.; Kreua-ongarjnukool, N.; Pongpayoon, T.; Phalakornkule, C. Properties of Polypropylene Composites Reinforced with Stearic Acid Treated Sugarcane Fiber. J. Polymer Eng. 2007, 27(6–7), 411–428.
  • Basu, B.; Kalin, M.; Kumar, B. M. Friction and Wear of Ceramics: Principles and Case Studies; New Jersey: John Wiley & Sons, 2020.
  • Shahrubudin, N.; Lee, T. C.; Ramlan, R. An Overview on 3D Printing Technology: Technological, Materials, and Applications, Vol. 35. Procedia Manufacturing: 2019; pp 1286–1296.
  • Lee, D.; Kim, H.; Sim, J.; Lee, D.; Cho, H.; Hong, D. Trends in 3D Printing Technology for Construction Automation Using Text Mining. Int. J. Precis. Eng. Manuf. 2019, 20(5), 871–882.
  • Sharma, S.; Goel, S. A. 3D Printing and Its Future in Medical World. J. Med Res Innovation. 2019, 3(1), e000141–e000141.
  • Velu, R.; Raspall, F.; Singamneni, S. 3D Printing Technologies and Composite Materials for Structural Applications. In Green Composites for Automotive Applications; Singapore: Elsevier, 2019; pp 171–196.
  • Schubert, C.; Van Langeveld, M. C.; Donoso, L. A. Innovations in 3D Printing: A 3D Overview from Optics to Organs. British J Ophthalmol. 2014, 98(2), 159–161. DOI: 10.1136/bjophthalmol-2013-304446.
  • Martínez-García, A.; Monzón, M.; Paz, R. Standards for Additive Manufacturing Technologies: Structure and Impact. In Additive Manufacturing; Spain: Elsevier, 2021; pp 395–408.
  • Stansbury, J. W.; Idacavage, M. J. 3D Printing with Polymers: Challenges among Expanding Options and Opportunities. Dent. Mater. 2016, 32(1), 54–64. DOI: 10.1016/j.dental.2015.09.018.
  • Balletti, C.; Ballarin, M.; Guerra, F. 3D Printing: State of the Art and Future Perspectives. J Cult Heritage. 2017, 26, 172–182. DOI: 10.1016/j.culher.2017.02.010.
  • Pereira, T.; Kennedy, J. V.; Potgieter, J. A Comparison of Traditional Manufacturing Vs Additive Manufacturing, the Best Method for the Job. 2019, 30, 11–18.
  • Madla, C. M.; Trenfield, S.J.; Goyanes, A.; Gaisford, S. and Basit, A.W. 3D Printing Technologies, Implementation and Regulation: An Overview. 3D Printing of Pharmaceuticals. 2018, 31, 21–40.
  • Tofail, S. A.; Koumoulos, E. P.; Bandyopadhyay, A.; Bose, S.; O’Donoghue, L.; Charitidis, C. Additive Manufacturing: Scientific and Technological Challenges, Market Uptake and Opportunities. Mater. Today. 2018, 21(1), 22–37.
  • Evans, S. E.; Harrington, T.; Rodriguez Rivero, M. C.; Rognin, E.; Tuladhar, T.; Daly, R. 2D and 3D Inkjet Printing of biopharmaceuticals–A Review of Trends and Future Perspectives in Research and Manufacturing. Int. J. Pharmaceutics. 2021, 599, 120443. DOI: 10.1016/j.ijpharm.2021.120443.
  • Attaran, M. The Rise of 3-D Printing: The Advantages of Additive Manufacturing over Traditional Manufacturing. Business Horizons. 2017, 60(5), 677–688. DOI: 10.1016/j.bushor.2017.05.011.
  • Hager, I.; Golonka, A.; Putanowicz, R. 3D Printing of Buildings and Building Components as the Future of Sustainable Construction? Procedia Engineering. 2016, 151, 292–299. DOI: 10.1016/j.proeng.2016.07.357.
  • Valino, A. D.; Dizon, J. R. C.; Espera, A. H.; Chen, Q.; Messman, J.; Advincula, R. C. Advances in 3D Printing of Thermoplastic Polymer Composites and Nanocomposites. Prog. Polym. Sci. 2019, 98, 101162. DOI: 10.1016/j.progpolymsci.2019.101162.
  • Hinczewski, C.; Corbel, S.; Chartier, T. Stereolithography for the Fabrication of Ceramic Three‐dimensional Parts. Rapid Prototyp. J. 1998, 4, 104–111. DOI: 10.1108/13552549810222867.
  • Koroleva, A.; Gill, A. A.; Ortega, I.; Haycock, J. W.; Schlie, S.; Gittard, S. D.; Chichkov, B. N.; Claeyssens, F. Two-photon polymerization-generated and micromolding-replicated 3D Scaffolds for Peripheral Neural Tissue Engineering Applications. Biofabrication. 2012, 4(2), 025005.
  • Wang, M. O.; Vorwald, C. E.; Dreher, M. L.; Mott, E. J.; Cheng, M.-H.; Cinar, A.; Mehdizadeh, H.; Somo, S.; Dean, D.; Brey, E. M.; et al. Evaluating 3D‐Printed Biomaterials as Scaffolds for Vascularized Bone Tissue Engineering. Adv.Mate. 2015, 27(1), 138–144.
  • Lewis, J. A.; Ahn, B. Y. Three-dimensional Printed Electronics. Nature. 2015, 518(7537), 42–43. DOI: 10.1038/518042a.
  • Pei, E.; Shen, J.; Watling, J.; Eujin Pei, D. Direct 3D Printing of Polymers onto Textiles: Experimental Studies and Applications. Rapid Prototyp. J. 2015, 21, 556–571. DOI: 10.1108/RPJ-09-2014-0126.
  • Groover, M. P. Fundamentals of Modern Manufacturing: Materials, Processes, and Systems; Pensylvania: John Wiley & Sons, 2020.
  • Azad, M. A.; Olawuni, D.; Kimbell, G.; Badruddoza, A. Z. M.; Hossain, M. S.; Sultana, T. Polymers for extrusion-based 3D Printing of Pharmaceuticals: A Holistic materials–process Perspective. Pharmaceutics. 2020, 12(2), 124.
  • Zhang, X.; Liou, F. Introduction to Additive Manufacturing. In Additive Manufacturing; United Kingdom: Elsevier, 2021, pp 1–31.
  • Bentzen, N.; Laussen, E. Using Recycled and Bio-Based Plastics for Additive Manufacturing. 2018.
  • Masood, S. H. Advances in Fused Deposition Modeling. Compr. Mater. Process. 2014, 69–91.
  • Dudek, P. FDM 3D Printing Technology in Manufacturing Composite Elements. Archives of Metallurgy and Materials, Archives of metallurgy and materials. 2013, 58(4), 1415–1418.
  • Wickramasinghe, S.; Do, T.; Tran, P. FDM-based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments. Polymers. 2020, 12(7), 1529. DOI: 10.3390/polym12071529.
  • Goh, G. D.; Yap, Y. L.; Agarwala, S.; Yeong, W. Y. Recent Progress in Additive Manufacturing of Fiber Reinforced Polymer Composite. Adv. Mater. Technol. 2019, 4(1), 1800271.
  • Singh, S.; Ramakrishna, S.; Berto, F. 3D Printing of Polymer Composites: A Short Review. Mater Des Process Commun. 2020, 2(2), e97. DOI: 10.1002/mdp2.97.
  • Muzaffar, A., Ahamed, M.B., Deshmukh, K., Kovářík, T., Křenek, T. and Pasha, S.K. 3D and 4D Printing of pH-responsive and Functional Polymers and Their Composites. In 3D and 4D Printing of Polymer Nanocomposite Materials; Czech Republic: Elsevier, 2020, pp 85–117.
  • Hashmi, S. Comprehensive Materials Processing; United States of America: Newnes, 2014.
  • Gueche, Y. A.; Sanchez-Ballester, N. M.; Cailleaux, S.; Bataille, B.; Soulairol, I. Selective Laser Sintering (SLS), a New Chapter in the Production of Solid Oral Forms (Sofs) by 3D Printing. Pharmaceutics. 2021, 13(8), 1212.
  • Deshmukh, K., Muzaffar, A., Kovářík, T., Křenek, T., Ahamed, M.B. and Pasha, S.K. Fundamentals and Applications of 3D and 4D Printing of Polymers: Challenges in Polymer Processing and Prospects of Future Research. In 3D and 4D Printing of Polymer Nanocomposite Materials; Czech Republic: Elsevier, 2020, pp 527–560.
  • Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D. 3D Printing of Polymer Matrix Composites: A Review and Prospective. Composites Part B: Engineering. 2017, 110, 442–458. DOI: 10.1016/j.compositesb.2016.11.034.
  • Le Duigou, A.; Barbé, A.; Guillou, E. and Castro, M. 3D Printing of Continuous Flax Fibre Reinforced Biocomposites for Structural Applications. 2019, 180, pp. 107884.
  • Kearns, A. J. Cotton Cellul Fibers in 3D Print Mater. 2017.
  • Osman, M. A.; Atia, M. R. Investigation of ABS-rice Straw Composite Feedstock Filament for FDM. Rapid Prototyp. J. 2018, 24, 1067–1075. DOI: 10.1108/RPJ-11-2017-0242.
  • Balla, V. K.; Tadimeti, J. G. D.; Kate, K. H.; Satyavolu, J. 3D Printing of Modified Soybean Hull fiber/polymer Composites. Mater. Chem. Phys. 2020, 254, 123452. DOI: 10.1016/j.matchemphys.2020.123452.
  • Le Duigou, A.; Castro, M.; Bevan, R.; Martin, N. 3D Printing of Wood Fibre Biocomposites: From Mechanical to Actuation Functionality. Mater. Des. 2016, 96, 106–114. DOI: 10.1016/j.matdes.2016.02.018.
  • Depuydt, D.; Balthazar, M.; Hendrickx, K.; Six, W.; Ferraris, E.; Desplentere, F.; Ivens, J.; Van Vuure, A. W. Production and Characterization of Bamboo and Flax Fiber Reinforced Polylactic Acid Filaments for Fused Deposition Modeling (FDM). Polym. Compos. 2019, 40(5), 1951–1963.
  • Daver, F.; Lee, K.P.M.; Brandt, M. and Shanks, R. Cork–PLA Composite Filaments for Fused Deposition Modelling. 2018, 168, pp 230–237.
  • Hinchcliffe, S. A.; Hess, K. M.; Srubar, W. V., III. Experimental and Theoretical Investigation of Prestressed Natural fiber-reinforced Polylactic Acid (PLA) Composite Materials. Compos. B Eng. 2016, 95, 346–354. DOI: 10.1016/j.compositesb.2016.03.089.
  • Coppola, B., Garofalo, E., Di Maio, L., Scarfato, P. and Incarnato, L. Investigation on the Use of PLA/hemp Composites for the Fused Deposition Modelling (FDM) 3D Printing. In AIP Conference Proceedings; AIP Publishing LLC, 2018, 020086.
  • Montalvo Navarrete, J. I.; Hidalgo-Salazar, M. A.; Escobar Nunez, E.; Rojas Arciniegas, A. J. Thermal and Mechanical Behavior of Biocomposites Using Additive Manufacturing. Int J. Interact Des Manuf (Ijidem). 2018, 12(2), 449–458.
  • Ayrilmis, N.; Kariz, M.; Kwon, J. H.; Kitek Kuzman, M. Effect of Printing Layer Thickness on Water Absorption and Mechanical Properties of 3D-printed wood/PLA Composite Materials. Int. J. Adv. Manuf. Technol. 2019, 102(5), 2195–2200.
  • Liu, H.; He, H.; Peng, X.; Huang, B.; Li, J. Three‐dimensional Printing of Poly (Lactic Acid) Bio‐based Composites with Sugarcane Bagasse Fiber: Effect of Printing Orientation on Tensile Performance. Polym. Adv. Technol. 2019, 30(4), 910–922.
  • Suteja, J.; Firmanto, H.; Soesanti, A. and Christian, C. Properties Investigation of 3D Printed Continuous Pineapple Leaf fiber-reinforced PLA Composite. J. Thermoplast. Compos. Mater. 2020, 35(11), 0892705720945371.
  • Yang, T.-C. Effect of Extrusion Temperature on the physico-mechanical Properties of Unidirectional Wood fiber-reinforced Polylactic Acid Composite (WFRPC) Components Using Fused Deposition Modeling. Polymers. 2018, 10(9), 976. DOI: 10.3390/polym10090976.
  • Guessasma, S.; Belhabib, S.; Nouri, H. Understanding the Microstructural Role of bio-sourced 3D Printed Structures on the Tensile Performance, Vol. 77. Polymer Testing: 2019; pp 105924.
  • Bajpai, P. K.; Singh, I.; Madaan, J. Development and Characterization of PLA-based Green Composites: A Review. J. Thermoplast. Compos. Mater. 2014, 27(1), 52–81. DOI: 10.1177/0892705712439571.
  • Prabhakar, M. M.; Rajini, N.; Ayrilmis, N.; Mayandi, K.; Siengchin, S.; Senthilkumar, K.; Karthikeyan, S. and Ismail, S.O. An Overview of Burst, Buckling, Durability and Corrosion Analysis of Lightweight FRP Composite Pipes and Their Applicability. 2019, 230, pp 111419.
  • Le Duigou, A.; Correa, D.; Ueda, M.; Matsuzaki, R. and Castro, M. A Review of 3D and 4D Printing of Natural Fibre Biocomposites. 2020, 194, 108911.
  • Mayandi, K.; Rajini, N.; Ayrilmis, N.; Indira Devi, M. P.; Siengchin, S.; Mohammad, F.; Al-Lohedan, H. A. An Overview of Endurance and Ageing Performance under Various Environmental Conditions of Hybrid Polymer Composites. J. Mater. Res. Technol. 2020, 9(6), 15962–15988.
  • Herlinasari, N.; Suteja, S. Pineapple Leaf Fiber Reinforced Polyester Composite Modified with Particles from Horse Dung Waste: Characterization of Mechanical Properties and Morphology. J Fibers Polym Compos. 2022, 1(1), 20–33. DOI: 10.55043/jfpc.v1i1.38.
  • Guessasma, S.; Belhabib, S.; Nouri, H. Effect of Printing Temperature on Microstructure, Thermal Behavior and Tensile Properties of 3D Printed Nylon Using Fused Deposition Modeling. J. Appl. Polym. Sci. 2021, 138(14), 50162. DOI: 10.1002/app.50162.
  • Yang, T.-C.; Yeh, C.-H. Morphology and Mechanical Properties of 3D Printed Wood fiber/polylactic Acid Composite Parts Using Fused Deposition Modeling (FDM): The Effects of Printing Speed. Polymers. 2020, 12(6), 1334. DOI: 10.3390/polym12061334.
  • Filgueira, D.; Holmen, S.; Melbø, J. K.; Moldes, D.; Echtermeyer, A. T.; Chinga-Carrasco, G. Enzymatic-assisted Modification of Thermomechanical Pulp Fibers to Improve the Interfacial Adhesion with Poly (Lactic Acid) for 3D Printing. ACS Sustainable Chem. Eng. 2017, 5(10), 9338–9346.
  • Ayrilmis, N. Effect of Layer Thickness on Surface Properties of 3D Printed Materials Produced from Wood flour/PLA Filament. 2018, 71, 163–166.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.