464
Views
0
CrossRef citations to date
0
Altmetric
Review Article

3D-printing of Continuous Fiber: A review of processes, materials and properties

&
Pages 1525-1559 | Received 01 May 2023, Accepted 05 Jun 2023, Published online: 09 Jun 2023

References

  • Srivastava, M.; Rathee, S. Additive Manufacturing: Recent Trends, Applications and Future Outlooks. Prog. Addit. Manuf. 2022, 7(2), 261–287. DOI: 10.1007/s40964-021-00229-8.
  • Kawalkar, R.; Dubey, H. K.; Lokhande, S. P. A Review for Advancements in Standardization for Additive Manufacturing. Mater. Today Proc. 2022, 50, 1983–1990. DOI: 10.1016/j.matpr.2021.09.333.
  • Yaragatti, N.; Patnaik, A. A Review on Additive Manufacturing of Polymers Composites. Mater. Today. Proc. 2021, 44, 4150–4157. DOI: 10.1016/j.matpr.2020.10.490.
  • Safari, F.; Kami, A.; Abedini, V. 3D Printing of Continuous Fiber Reinforced Composites: A Review of the Processing, Pre-And Post-Processing Effects on Mechanical Properties. Polym. Polym. Composites. 2022, 30, 09673911221098734. DOI: 10.1177/09673911221098734.
  • Fan, C.; Shan, Z.; Zou, G.; Zhan, L.; Yan, D. Interfacial Bonding Mechanism and Mechanical Performance of Continuous Fiber Reinforced Composites in Additive Manufacturing. Chin. J. Mech. Eng. 2021, 34(1), 1–11. DOI: 10.1186/s10033-021-00538-7.
  • Blakey-Milner, B.; Gradl, P.; Snedden, G.; Brooks, M.; Pitot, J.; Lopez, E.; Leary, M., Berto, F., du Plessis, A. Metal Additive Manufacturing in Aerospace: A Review. Mater. Des. 2021, 209, 110008. DOI: 10.1016/j.matdes.2021.110008.
  • Vasco, J. C. Additive Manufacturing for the Automotive Industry. In Additive Manufacturing; Elsevier: 2021; pp. 505–530. DOI: 10.1016/B978-0-12-818411-0.00010-0.
  • Wiese, M.; Thiede, S.; Herrmann, C. Rapid Manufacturing of Automotive Polymer Series Parts: A Systematic Review of Processes, Materials and Challenges. Additive Manuf. 2020, 36, 101582. DOI: 10.1016/j.addma.2020.101582.
  • Caba, S. Aluminum Alloy for Additive Manufacturing in Automotive Production. ATZ Worldwide. 2020, 122(11), 58–61. DOI: 10.1007/s38311-020-0285-y.
  • Puppi, D.; Chiellini, F. Biodegradable Polymers for Biomedical Additive Manufacturing. Appl. Mater. Today. 2020, 20, 100700. DOI: 10.1016/j.apmt.2020.100700.
  • Kumar, R.; Kumar, M.; Chohan, J. S. The Role of Additive Manufacturing for Biomedical Applications: A Critical Review. J. Manuf. Processes. 2021, 64, 828–850. DOI: 10.1016/j.jmapro.2021.02.022.
  • Pajonk, A.; Prieto, A.; Blum, U.; Knaack, U. Multi-Material Additive Manufacturing in Architecture and Construction: A Review. J. Build. Eng. 2022, 45, 103603. DOI: 10.1016/j.jobe.2021.103603.
  • Le-Bail, A.; Maniglia, B. C.; Le-Bail, P. Recent Advances and Future Perspective in Additive Manufacturing of Foods Based on 3D Printing. Curr. Opin. Food Sci. 2020, 35, 54–64. DOI: 10.1016/j.cofs.2020.01.009.
  • Hohn, M. M.; Durach, C. F. Additive Manufacturing in the Apparel Supply Chain—Impact on Supply Chain Governance and Social Sustainability. Int. J. Oper. Prod. Manage. 2021, 41(7), 1035–1059. DOI: 10.1108/IJOPM-09-2020-0654.
  • Keefe, E. M.; Thomas, J. A.; Buller, G. A.; Banks, C. E.; Dinh Duc, N. Textile Additive Manufacturing: An Overview. Cogent Eng. 2022, 9(1), 2048439. DOI: 10.1080/23311916.2022.2048439.
  • Espalin, D.; Ramirez, J. A.; Medina, F.; Wicker, R. Multi-Material, Multi-Technology FDM: Exploring Build Process Variations. Rapid Prototyp. J. 2014, 20(3), 236–244. DOI: 10.1108/RPJ-12-2012-0112.
  • Ning, F.; Cong, W.; Qiu, J.; Wei, J.; Wang, S. Additive Manufacturing of Carbon Fiber Reinforced Thermoplastic Composites Using Fused Deposition Modeling. Compos. B Eng. 2015, 80, 369–378. DOI: 10.1016/j.compositesb.2015.06.013.
  • Wang, J.; Xie, H.; Weng, Z.; Senthil, T.; Wu, L. A Novel Approach to Improve Mechanical Properties of Parts Fabricated by Fused Deposition Modeling. Mater. Des. 2016, 105, 152–159. DOI: 10.1016/j.matdes.2016.05.078.
  • Tian, X.; Liu, T.; Yang, C.; Wang, Q.; Li, D. Interface and Performance of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites. Compos. Part A Appl. Sci. Manuf. 2016, 88, 198–205. DOI: 10.1016/j.compositesa.2016.05.032.
  • Mori, K. I.; Maeno, T.; Nakagawa, Y. Dieless Forming of Carbon Fibre Reinforced Plastic Parts Using 3D Printer. Procedia Engineering. 2014, 81, 1595–1600. DOI: 10.1016/j.proeng.2014.10.196.
  • Fischer, A.; Rommel, S.; Bauernhansl, T. (2013, October). New Fiber Matrix Process with 3D Fiber Printer–A Strategic In-Process Integration of Endless Fibers Using Fused Deposition Modeling (FDM). In IFIP International Conference on Digital Product and Process Development Systems (pp. 167–175). Springer, Berlin, Heidelberg.
  • Zhao, H.; Liu, X.; Zhao, W.; Wang, G.; Liu, B. An Overview of Research on FDM 3D Printing Process of Continuous Fiber Reinforced Composites. J. Phys.: Conf. Ser. June, 2019, 1213(5), 052037. IOP Publishing. doi:10.1088/1742-6596/1213/5/052037.
  • Mashayekhi, F.; Bardon, J.; Berthé, V.; Perrin, H.; Westermann, S.; Addiego, F. Fused Filament Fabrication of Polymers and Continuous Fiber-Reinforced Polymer Composites: Advances in Structure Optimization and Health Monitoring. Polymers. 2021, 13(5), 789. DOI: 10.3390/polym13050789.
  • Aburaia, M.; Bucher, C.; Lackner, M.; Gonzalez-Gutierrez, J.; Zhang, H.; Lammer, H. A Production Method for Standardized Continuous Fiber Reinforced FFF Filament. Biomater. Med. Appl. 2020, 4. DOI: 10.37532/bma.2020.
  • Luo, H.; Tan, Y.; Zhang, F.; Zhang, J.; Tu, Y.; Cui, K. Selectively Enhanced 3D Printing Process and Performance Analysis of Continuous Carbon Fiber Composite Material. Materials. 2019, 12(21), 3529. DOI: 10.3390/ma12213529.
  • Tey, J. Y.; Yeo, W. H.; King, Y. J.; Ding, W. O. 3D Printing of Polylactic Acid Bioplastic–Carbon Fibres and Twisted Kevlar Composites Through Coextrusion Using Fused Deposition Modeling. J. Renewable Mater. 2020, 8(12), 1671–1680. DOI: 10.32604/jrm.2020.011870.
  • Rijckaert, S.; Daelemans, L.; Cardon, L.; Boone, M.; Van Paepegem, W.; De Clerck, K. Continuous Fiber-Reinforced Aramid/PETG 3D-Printed Composites with High Fiber Loading Through Fused Filament Fabrication. Polymers. 2022, 14(2), 298. DOI: 10.3390/polym14020298.
  • Thakur, A.; Dong, X. Additive Manufacturing of 3D Structural Battery Composites with Coextrusion Deposition of Continuous Carbon Fibers. Manuf. Lett. 2020, 26, 42–47. DOI: 10.1016/j.mfglet.2020.09.007.
  • Struzziero, G.; Barbezat, M.; Skordos, A. A. Consolidation of Continuous Fibre Reinforced Composites in Additive Processes: A Review. Additive Manuf. 2021, 48, 102458. DOI: 10.1016/j.addma.2021.102458.
  • Ueda, M.; Kishimoto, S.; Yamawaki, M.; Matsuzaki, R.; Todoroki, A.; Hirano, Y.; Le Duigou, A. 3D Compaction Printing of a Continuous Carbon Fiber Reinforced Thermoplastic. Compos. Part A Appl. Sci. Manuf. 2020, 137, 105985. DOI: 10.1016/j.compositesa.2020.105985.
  • Kishore, V.; Ajinjeru, C.; Nycz, A.; Post, B.; Lindahl, J.; Kunc, V.; Duty, C. Infrared Preheating to Improve Interlayer Strength of Big Area Additive Manufacturing (BAAM) Components. Additive Manuf. 2017, 14, 7–12. DOI: 10.1016/j.addma.2016.11.008.
  • Partain, S. C. (2007). Fused deposition modeling with localized pre-deposition heating using forced air (Doctoral dissertation, Montana State University-Bozeman, College of Engineering).
  • Shaffer, S.; Yang, K.; Vargas, J.; Di Prima, M. A.; Voit, W. On Reducing Anisotropy in 3D Printed Polymers via Ionizing Radiation. Polym. 2014, 55(23), 5969–5979. DOI: 10.1016/j.polymer.2014.07.054.
  • Luo, M.; Tian, X.; Shang, J.; Zhu, W.; Li, D.; Qin, Y. Impregnation and Interlayer Bonding Behaviours of 3D-Printed Continuous Carbon-Fiber-Reinforced Poly-Ether-Ether-Ketone Composites. Compos. Part A Appl. Sci. Manuf. 2019, 121, 130–138. DOI: 10.1016/j.compositesa.2019.03.020.
  • O’Connor, H. J.; Dowling, D. P. Low‐Pressure Additive Manufacturing of Continuous Fiber‐Reinforced Polymer Composites. Polym. Compos. 2019, 40(11), 4329–4339. DOI: 10.1002/pc.25294.
  • Rahman, M. A.; Islam, M. Z.; Gibbon, L.; Ulven, C. A.; La Scala, J. J. 3D Printing of Continuous Carbon Fiber Reinforced Thermoset Composites Using UV Curable Resin. Polym. Compos. 2021, 42(11), 5859–5868. DOI: 10.1002/pc.26266.
  • Ming, Y.; Duan, Y.; Wang, B.; Xiao, H.; Zhang, X. A Novel Route to Fabricate High-Performance 3D Printed Continuous Fiber-Reinforced Thermosetting Polymer Composites. Materials. 2019, 12(9), 1369. DOI: 10.3390/ma12091369.
  • Abel, J.; Kunz, W.; Michaelis, A.; Singh, M.; Klemm, H. Non‐Oxide CMC Fabricated by Fused Filament Fabrication (FFF). Int. J. Appl. Ceramic Tech. 2022, 19(2), 1148–1155. DOI: 10.1111/ijac.13944.
  • Prajapati, A. R.; Dave, H. K.; Raval, H. K. Impact Energy Absorption and Fracture Mechanism of FFF Made Fiberglass Reinforced Polymer Composites. Rapid Prototyp. J. 2022, 29(2), 275–287. DOI: 10.1108/RPJ-04-2022-0135.
  • Terekhina, S.; Egorov, S.; Tarasova, T.; Skornyakov, I.; Guillaumat, L.; Hattali, M. L. In-Nozzle Impregnation of Continuous Textile Flax Fiber/Polyamide 6 Composite During FFF Process. Compos. Part A Appl. Sci. Manuf. 2022, 153, 106725. DOI: 10.1016/j.compositesa.2021.106725.
  • Khosravani, M. R.; Reinicke, T. Effects of Fiber on the Fracture Behavior of 3D-Printed Fiber Reinforced Nylon. Procedia Struct. Integr. 2022, 35, 59–65. DOI: 10.1016/j.prostr.2021.12.048.
  • Wang, P.; Zou, B. Improvement of Heat Treatment Process on Mechanical Properties of FDM 3D-Printed Short-And Continuous-Fiber-Reinforced PEEK Composites. Coatings. 2022, 12(6), 827. DOI: 10.3390/coatings12060827.
  • Zhuo, P.; Li, S.; Ashcroft, I. A.; Jones, I. A. Continuous Fibre Composite 3D Printing with Pultruded Carbon/PA6 Commingled Fibres: Processing and Mechanical Properties. Compos. Sci. Technol. 2022, 221, 109341. DOI: 10.1016/j.compscitech.2022.109341.
  • Papa, I.; Manco, E.; Epasto, G.; Lopresto, V.; Squillace, A. Impact Behaviour and Non Destructive Evaluation of 3D Printed Reinforced Composites. Compos. Struct. 2022, 281, 115112. DOI: 10.1016/j.compstruct.2021.115112.
  • Liu, F.; Ferraris, E.; Ivens, J. Mechanical Investigation and Microstructure Performance of a Two-Matrix Continuous Carbon Fibre Composite Fabricated by 3D Printing. J. Manuf. Processes. 2022, 79, 383–393. DOI: 10.1016/j.jmapro.2022.04.050.
  • Zhang, H.; Zhou, Z.; Gao, X.; Fan, T.; Chen, Y.; Wang, H. Enhanced Mechanical Performance of Fused Filament Fabrication Copolyester by Continuous Carbon Fiber In‐Situ Reinforcement. J. Appl. Polymer Sci. 2022, 140(2), e53296. DOI: 10.1002/app.53296.
  • Kong, X.; Luo, J.; Luo, Q.; Li, Q.; Sun, G. Experimental Study on Interface Failure Behavior of 3D Printed Continuous Fiber Reinforced Composites. Additive Manuf. 2022, 59, 103077. DOI: 10.1016/j.addma.2022.103077.
  • Dou, H.; Ye, W.; Zhang, D.; Cheng, Y.; Wu, C. Comparative Study on In-Plane Compression Properties of 3D Printed Continuous Carbon Fiber Reinforced Composite Honeycomb and Aluminum Alloy Honeycomb. Thin-Walled Struct. 2022, 176, 109335. DOI: 10.1016/j.tws.2022.109335.
  • Wang, K.; Long, H.; Chen, Y.; Baniassadi, M.; Rao, Y.; Peng, Y. Heat-Treatment Effects on Dimensional Stability and Mechanical Properties of 3D Printed Continuous Carbon Fiber-Reinforced Composites. Compos. Part A Appl. Sci. Manuf. 2021, 147, 106460. DOI: 10.1016/j.compositesa.2021.106460.
  • Zeng, C.; Liu, L.; Bian, W.; Leng, J.; Liu, Y. Bending Performance and Failure Behavior of 3D Printed Continuous Fiber Reinforced Composite Corrugated Sandwich Structures with Shape Memory Capability. Compos. Struct. 2021, 262, 113626. DOI: 10.1016/j.compstruct.2021.113626.
  • Pandelidi, C.; Bateman, S.; Maghe, M.; Piegert, S.; Brandt, M. Fabrication of Continuous Carbon Fibre-Reinforced Polyetherimide Through Fused Filament Fabrication. Prog. Addit. Manuf. 2022, 7(5), 1093–1109. DOI: 10.1007/s40964-022-00284-9.
  • Zhang, H.; Zhang, K.; Li, A.; Wan, L.; Robert, C.; Brádaigh, C. M. Ó.; Yang, D. 3D Printing of Continuous Carbon Fibre Reinforced Powder-Based Epoxy Composites. Compos. Commun. 2022, 33, 101239. DOI: 10.1016/j.coco.2022.101239.
  • Zhang, Y.; Qiao, J.; Zhang, G.; Li, Y.; Li, L. Prediction of Deformation and Failure Behavior of Continuous Fiber Reinforced Composite Fabricated by Additive Manufacturing. Compos. Struct. 2021, 265, 113738. DOI: 10.1016/j.compstruct.2021.113738.
  • Khosravani, M. R.; Frohn-Sörensen, P.; Reuter, J.; Engel, B.; Reinicke, T. Fracture Studies of 3D-Printed Continuous Glass Fiber Reinforced Composites. Theor. Appl. Fract. Mech. 2022, 119, 103317. DOI: 10.1016/j.tafmec.2022.103317.
  • Hou, Z.; Tian, X.; Zheng, Z.; Zhang, J.; Zhe, L.; Li, D.; Malakhov, A. V.; Polilov, A. N. A Constitutive Model for 3D Printed Continuous Fiber Reinforced Composite Structures with Variable Fiber Content. Compos. B Eng. 2020, 189, 107893. DOI: 10.1016/j.compositesb.2020.107893.
  • Yan, R.; Wang, Y.; Luo, P.; Li, Y.; Lu, X. Fused Filament Fabrication of Continuous Optic Fiber Reinforced Polylactic Acid Composites. Rapid Prototyp. J. 2021, 28(4), 766–776. DOI: 10.1108/RPJ-06-2021-0145.
  • Schmitz, A. American Society of Mechanical Engineers, Fatigue Properties of 3D Printed Carbon Fiber. Proceedings of the ASME 2021, International Mechanical Engineering Congress and Exposition IMECE, November 1-5, 2021.
  • Ekoi, E. J.; Dickson, A. N.; Dowling, D. P. Investigating the Fatigue and Mechanical Behaviour of 3D Printed Woven and Nonwoven Continuous Carbon Fibre Reinforced Polymer (CFRP) Composites. Compos. B Eng. 2021, 212, 108704. DOI: 10.1016/j.compositesb.2021.108704.
  • Cheng, P.; Wang, K.; Chen, X.; Le Duigou, A.; Peng, Y.; Wen, W. Compressive Property and Shape Memory Effect of 3D Printed Continuous Ramie Fiber Reinforced Biocomposite Corrugated Structures. Smart Mater. Struct. 2022, 31(12), 124003. DOI: 10.1088/1361-665X/ac95e4.
  • Papa, I.; Manco, E.; Lopresto, V.; Cigliano, C.; Manzo, A.; Silvestri, A. T.; Squillace, A. Penetration Impact Behaviour of Innovative 3d Printing Onyx/Glass Composite Samples. In 2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI), September 6 – 9 (pp. 41–46). IEEE, 2021.
  • Swart, R.; Korkees, F.; Dorrington, P.; Thurman, J. Evaluation of the Impact Performance and Energy Absorption Capabilities of 3D Printed Composites. Rapid Prototyp. J. 2022, 28(9), 1636–1654. DOI: 10.1108/RPJ-10-2021-0287.
  • Chen, W.; Zhang, Q.; Cao, H.; Yuan, Y. Effect of Fibre Arrangements on Tensile Properties of 3D Printed Continuous Fibre-Reinforced Thermoplastic Composites. Plast. Rubber Compos. 2022, 51(2), 85–97. DOI: 10.1080/14658011.2021.1939588.
  • Luke, S. S.; Soares, D.; Marshall, J. V.; Sheddden, J.; Keleş, Ö. Effect of Fiber Content and Fiber Orientation on Mechanical Behavior of Fused Filament Fabricated Continuous-Glass-Fiber-Reinforced Nylon. Rapid Prototyp. J. 2021, 27(7), 1346–1354. DOI: 10.1108/RPJ-01-2021-0003.
  • Long, Y.; Zhang, Z.; Fu, K.; Li, Y. Efficient Plant Fibre Yarn Pre-Treatment for 3D Printed Continuous Flax Fibre/Poly (Lactic) Acid Composites. Compos. B Eng. 2021, 227, 109389. DOI: 10.1016/j.compositesb.2021.109389.
  • Yu, L.; Chen, K.; Xue, P.; Cui, Y.; Jia, M. Impregnation Modeling and Preparation Optimization of Continuous Glass Fiber Reinforced Polylactic Acid Filament for 3D Printing. Polym. Compos. 2021, 42(11), 5731–5742. DOI: 10.1002/pc.26255.
  • Mosleh, N.; Rezadoust, A. M.; Dariushi, S. Determining Process-Window for Manufacturing of Continuous Carbon Fiber-Reinforced Composite Using 3D-Printing. Mater. Manuf. Processes. 2021, 36(4), 409–418. DOI: 10.1080/10426914.2020.1843664.
  • Isobe, T.; Tanaka, T.; Nomura, T.; Yuasa, R. Comparison of Strength of 3D Printing Objects Using Short Fiber and Continuous Long Fiber. IOP Conf. Ser Mater. Sci. Eng. August, 2018, 406(), 012042. IOP Publishing. doi:10.1088/1757-899X/406/1/012042.
  • Qiao, J.; Li, Y.; Li, L. Ultrasound-Assisted 3D Printing of Continuous Fiber-Reinforced Thermoplastic (FRTP) Composites. Additive Manuf. 2019, 30, 100926. DOI: 10.1016/j.addma.2019.100926.
  • Wang, F.; Wang, G.; Ning, F.; Zhang, Z. Fiber–Matrix Impregnation Behavior During Additive Manufacturing of Continuous Carbon Fiber Reinforced Polylactic Acid Composites. Additive Manuf. 2021, 37, 101661. DOI: 10.1016/j.addma.2020.101661.
  • Chen, K.; Yu, L.; Cui, Y.; Jia, M.; Pan, K. Optimization of Printing Parameters of 3D-Printed Continuous Glass Fiber Reinforced Polylactic Acid Composites. Thin-Walled Struct. 2021, 164, 107717. DOI: 10.1016/j.tws.2021.107717.
  • Mohammadizadeh, M.; Fidan, I. Tensile Performance of 3d-Printed Continuous Fiber-Reinforced Nylon Composites. J. Manuf. Mater. Process. 2021, 5(3), 68. DOI: 10.3390/jmmp5030068.
  • Zhang, H.; Liu, D.; Huang, T.; Hu, Q.; Lammer, H. Three-Dimensional Printing of Continuous Flax Fiber-Reinforced Thermoplastic Composites by Five-Axis Machine. Mater. 2020, 13(7), 1678. DOI: 10.3390/ma13071678.
  • Van Der Klift, F.; Koga, Y.; Todoroki, A.; Ueda, M.; Hirano, Y.; Matsuzaki, R. 3D Printing of Continuous Carbon Fibre Reinforced Thermo-Plastic (CFRTP) Tensile Test Specimens. Open J. Compos. Mater. 2016, 6(1), 18. DOI: 10.4236/ojcm.2016.61003.
  • Papa, I.; Silvestri, A. T.; Ricciardi, M. R.; Lopresto, V.; Squillace, A. Effect of Fibre Orientation on Novel Continuous 3D-Printed Fibre-Reinforced Composites. Polym. 2021, 13(15), 2524. DOI: 10.3390/polym13152524.
  • Ghimire, R.; Liou, F. Quasi-Static Multifunctional Characterization of 3D-Printed Carbon Fiber Composites for Compressive-Electrical Properties. Polym. 2022, 14(2), 328. DOI: 10.3390/polym14020328.
  • Lupone, F.; Padovano, E.; Venezia, C.; Badini, C. Experimental Characterization and Modeling of 3D Printed Continuous Carbon Fibers Composites with Different Fiber Orientation Produced by FFF Process. Polym. 2022, 14(3), 426. DOI: 10.3390/polym14030426.
  • Santos, J. D.; Fernández, A.; Ripoll, L.; Blanco, N. Experimental Characterization and Analysis of the In-Plane Elastic Properties and Interlaminar Fracture Toughness of a 3D-Printed Continuous Carbon Fiber-Reinforced Composite. Polym. 2022, 14(3), 506. DOI: 10.3390/polym14030506.
  • Pertuz-Comas, A. D.; Díaz, J. G.; Meneses-Duran, O. J.; Niño-Álvarez, N. Y.; León-Becerra, J. Flexural Fatigue in a Polymer Matrix Composite Material Reinforced with Continuous Kevlar Fibers Fabricated by Additive Manufacturing. Polym. 2022, 14(17), 3586. DOI: 10.3390/polym14173586.
  • Goh, G. D.; Dikshit, V.; An, J.; Yeong, W. Y. Process-Structure-Property of Additively Manufactured Continuous Carbon Fiber Reinforced Thermoplastic: An Investigation of Mode I Interlaminar Fracture Toughness. Mech. Adv. Mat. Struct. 2022, 29(10), 1418–1430. DOI: 10.1080/15376494.2020.1821266.
  • Parmiggiani, A.; Prato, M.; Pizzorni, M. Effect of the Fiber Orientation on the Tensile and Flexural Behavior of Continuous Carbon Fiber Composites Made via Fused Filament Fabrication. Int. J. Adv. Manuf. Technol. 2021, 114(7–8), 2085–2101. DOI: 10.1007/s00170-021-06997-5.
  • Heidari-Rarani, M.; Rafiee-Afarani, M.; Zahedi, A. M. Mechanical Characterization of FDM 3D Printing of Continuous Carbon Fiber Reinforced PLA Composites. Compos. B Eng. 2019, 175, 107147. DOI: 10.1016/j.compositesb.2019.107147.
  • Huang, J.; Qin, Q.; Wang, J. A Review of Stereolithography: Processes and Systems. Processes. 2020, 8(9), 1138. DOI: 10.3390/pr8091138.
  • Simpson P, Holthaus M, Gibbon L, Ulven C. Perspective Chapter: Composites Manufactured by Stereolithography [Internet]. Advanced Additive Manufacturing. IntechOpen; 2022. Available from: http://dx.doi.org/10.5772/intechopen.101441
  • Sano, Y.; Matsuzaki, R.; Ueda, M.; Todoroki, A.; Hirano, Y. 3D Printing of Discontinuous and Continuous Fibre Composites Using Stereolithography. Additive Manuf. 2018, 24, 521–527. DOI: 10.1016/j.addma.2018.10.033.
  • Lu, Y.; Han, X. X.; Gleadall, A.; Zhao, L. G. Fracture Toughness of Three-Dimensional Stereolithography Printed Polymer Reinforced with Continuous Carbon Fibers. 3D Print. Addit. Manuf. 2022, 9(4), 278–287. DOI: 10.1089/3dp.2020.0310.
  • Ratna, D. Recent Advances and Applications of Thermoset Resins, 2022.
  • Samanta, A.; Wang, Q.; Ding, H. A Novel Selective Laser Melting Process for Glass Fiber-Reinforced Metal Matrix Composites. Manuf. Lett. 2018, 18, 27–30. DOI: 10.1016/j.mfglet.2018.09.006.
  • Zhang, Y.; Jarosinski, W.; Jung, Y. G.; Zhang, J. Additive Manufacturing Processes and Equipment. In Additive Manufacturing; Butterworth-Heinemann: 2018; pp. 39–51. DOI: 10.1016/B978-0-12-812155-9.00002-5.
  • Chang, B.; Li, X.; Parandoush, P.; Ruan, S.; Shen, C.; Lin, D. Additive Manufacturing of Continuous Carbon Fiber Reinforced Poly-Ether-Ether-Ketone with Ultrahigh Mechanical Properties. Polym. Test. 2020, 88, 106563. DOI: 10.1016/j.polymertesting.2020.106563.
  • Chang, B.; Parandoush, P.; Li, X.; Ruan, S.; Shen, C.; Behnagh, R. A.; Liu, Y., Lin, D. Ultrafast Printing of Continuous Fiber‐Reinforced Thermoplastic Composites with Ultrahigh Mechanical Performance by Ultrasonic‐Assisted Laminated Object Manufacturing. Polym. Compos. 2020, 41(11), 4706–4715. DOI: 10.1002/pc.25744.
  • Parandoush, P.; Li, X.; Chang, B.; Sorensen, C. M.; Shi, J.; Liu, Y.; Lin, D. Additive Manufacturing of Continuous Carbon Fiber Reinforced Epoxy Composite with Graphene Enhanced Interlayer Bond Toward Ultra‐High Mechanical Properties. Polym. Compos. 2022, 43(2), 934–945. DOI: 10.1002/pc.26423.
  • Brenken, B.; Barocio, E.; Favaloro, A.; Kunc, V.; Pipes, R. B. Development and Validation of Extrusion Deposition Additive Manufacturing Process Simulations. Additive Manuf. 2019, 25, 218–226. DOI: 10.1016/j.addma.2018.10.041.
  • Zouaoui, M.; Gardan, J.; Lafon, P.; Makke, A.; Labergere, C.; Recho, N. A Finite Element Method to Predict the Mechanical Behavior of a Pre-Structured Material Manufactured by Fused Filament Fabrication in 3D Printing. Appl. Sci. 2021, 11(11), 5075. DOI: 10.3390/app11115075.
  • Tronvoll, S. A.; Vedvik, N. P.; Elverum, C. W.; Welo, T. A New Method for Assessing Anisotropy in Fused Deposition Modeled Parts Using Computed Tomography Data. Int. J. Adv. Manuf. Technol. 2019, 105(1–4), 47–65. DOI: 10.1007/s00170-019-04081-7.
  • Wang, Y.; Wang, Q.; Kong, D.; Liu, J. Research on Heating Zone Length of Continuous Fiber Reinforced Composites 3D Printing Nozzle. Chem. Select. 2021, 6(41), 11293–11298. DOI: 10.1002/slct.202103230.
  • Fu, Y.; Yao, X. Multi-Scale Analysis for 3D Printed Continuous Fiber Reinforced Thermoplastic Composites. Compos. Sci. Technol. 2021, 216, 109065. DOI: 10.1016/j.compscitech.2021.109065.
  • Zhang, H.; Chen, J.; Yang, D. Fibre Misalignment and Breakage in 3D Printing of Continuous Carbon Fibre Reinforced Thermoplastic Composites. Additive Manuf. 2021, 38, 101775. DOI: 10.1016/j.addma.2020.101775.
  • Heller, B. P.; Smith, D. E.; Jack, D. A. Effects of Extrudate Swell and Nozzle Geometry on Fiber Orientation in Fused Filament Fabrication Nozzle Flow. Additive Manuf. 2016, 12, 252–264. DOI: 10.1016/j.addma.2016.06.005.
  • Yang, D.; Wu, K.; Wan, L.; Sheng, Y. A Particle Element Approach for Modelling the 3D Printing Process of Fibre Reinforced Polymer Composites. J. Manuf. Mater. Process. 2017, 1(1), 10. DOI: 10.3390/jmmp1010010.
  • Ghnatios, C.; Fayazbakhsh, K. Warping Estimation of Continuous Fiber-Reinforced Composites Made by Robotic 3D Printing. Additive Manuf. 2022, 55, 102796. DOI: 10.1016/j.addma.2022.102796.
  • Sangaletti, S.; García, I. G. Fracture Tailoring in 3D Printed Continuous Fibre Composite Materials Using the Phase Field Approach for Fracture. Compos. Struct. 2022, 300, 116127. DOI: 10.1016/j.compstruct.2022.116127.
  • Mosleh, N.; Dariushi, S.; Esfandeh, M. An Experimental and Numerical Investigation on Mechanical Properties of 3D Printed Continuous Glass Tow Preg-Reinforced Composites. Rapid Prototyp. J. 2022, 28(7), 1284–1296. DOI: 10.1108/RPJ-08-2021-0200.
  • Polyzos, E.; Van Hemelrijck, D.; Pyl, L. Numerical Modelling of the Elastic Properties of 3D-Printed Specimens of Thermoplastic Matrix Reinforced with Continuous Fibres. Compos. B Eng. 2021, 211, 108671. DOI: 10.1016/j.compositesb.2021.108671.
  • Hou, Z.; Tian, X.; Zhang, J.; Zhe, L.; Zheng, Z.; Li, D.; Malakhov, A. V., Polilov, A. N. Design and 3D Printing of Continuous Fiber Reinforced Heterogeneous Composites. Compos. Struct. 2020, 237, 111945. DOI: 10.1016/j.compstruct.2020.111945.
  • Milenkovic, S.; Slavkovic, V.; Fragassa, C.; Grujovic, N.; Palic, N.; Zivic, F. Effect of the Raster Orientation on Strength of the Continuous Fiber Reinforced PVDF/PLA Composites, Fabricated by Hand-Layup and Fused Deposition Modeling. Compos. Struct. 2021, 270, 114063. DOI: 10.1016/j.compstruct.2021.114063.
  • Zobacheva, A. U.; Nemov, A. S.; Borovkov, A. I. Multiscale Simulations of Novel Additive Manufactured Continuous Fiber-Reinforced Three-Component Composite Material. Mater. Phys. Mech. 2017, 32(1), 74–82.
  • Malakhov, A. V.; Polilov, A. N.; Zhang, J.; Hou, Z.; Tian, X. A Modeling Method of Continuous Fiber Paths for Additive Manufacturing (3D Printing) of Variable Stiffness Composite Structures. Appl. Compos. Mater. 2020, 27(3), 185–208. DOI: 10.1007/s10443-020-09804-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.