265
Views
6
CrossRef citations to date
0
Altmetric
Review Article

Borophene polymeric nanoarchitecture and applications: a review

ORCID Icon
Pages 1560-1575 | Received 08 Mar 2023, Accepted 05 Jun 2023, Published online: 09 Jun 2023

References

  • Mannix, A. J.; Zhou, X.-F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X.; Fisher, B. L.; Santiago, U.; Guest, J. R., et al. Synthesis of Borophenes: Anisotropic, Two-Dimensional Boron Polymorphs. Science. 2015, 350(6267), 1513–1516. DOI: 10.1126/science.aad1080.
  • Liu, X.; Wei, Z.; Balla, I.; Mannix, A. J.; Guisinger, N. P.; Luijten, E.; Hersam, M. C. Self-Assembly of Electronically Abrupt Borophene/Organic Lateral Heterostructures. Sci. Adv. 2017, 3(2), e1602356. DOI: 10.1126/sciadv.1602356.
  • Mannix, A. J.; Zhang, Z.; Guisinger, N. P.; Yakobson, B. I.; Hersam, M. C. Borophene as a Prototype for Synthetic 2D Materials Development. Nat. Nanotechnol. 2018, 13(6), 444–450. DOI: 10.1038/s41565-018-0157-4.
  • Huang, Y.; Shirodkar, S. N.; Yakobson, B. I. Two-Dimensional Boron Polymorphs for Visible Range Plasmonics: A First-Principles Exploration. J. Am. Chem. Soc. 2017, 139(47), 17181–17185. DOI: 10.1021/jacs.7b10329.
  • Liu, X.; Zhang, Z.; Wang, L.; Yakobson, B. I.; Hersam, M. C. Intermixing and Periodic Self-Assembly of Borophene Line Defects. Nat. Mater. 2018, 17(9), 783–788. DOI: 10.1038/s41563-018-0134-1.
  • Chen, Y.; Zhang, Y.; Cai, K.; Jiang, J.; Zheng, J. C.; Zhao, J.; Wei, N. Interfacial Thermal Conductance in Graphene/Black Phosphorus Heterogeneous Structures. Carbon. 2017, 117, 399. DOI: 10.1016/j.carbon.2017.03.011.
  • Chaudhary, V.; Kaushik, A. K.; Furukawa, H.; Khosla, A. Towards 5th Generation Ai and Iot Driven Sustainable Intelligent Sensors Based on 2d Mxenes and Borophene; ECS Sensors Plus, 2022.
  • Nangare, S. N.; Khan, Z. G.; Patil, A. G.; Patil, P. O. Design of Monoelemental Based Two Dimensional Nanoarchitectures for Therapeutic, Chemical Sensing and in vitro Diagnosis Appli-Cations: A Case of Borophene. J. Mol. Struct. 2022, 1265, 133387. DOI: 10.1016/j.molstruc.2022.133387.
  • Wu, Z.; Yin, Y.; Hou, C.; Tai, G. Borophene Reinforcing Copper Matrix Composites: Preparation and Mechanical Properties. J. Alloys Compound. 2023, 930, 167370. DOI: 10.1016/j.jallcom.2022.167370.
  • Chaudhary, V. MXene–Polymer Nanocomposites for Gas-And Vapor-Sensing Applica-Tions. In MXene-Filled Polymer Nanocomposites; CRC Press: 2022; pp. 211–234. DOI: 10.1201/9781003164975-11.
  • Zhou, Y.; Wang, Q.; Zhang, X.; He, X.; Ning, R.; Rong, D.; Liao, T.; Wei, N.; Xiong, Y.; Wang, S. Piezoionic Transfer Effect in Topological Borophene-Bismuthene Derivative Micro-Leaves for Robust Superca-Pacitive Electronic Skins. Nano. Energy. 2022, 104, 107970. DOI: 10.1016/j.nanoen.2022.107970.
  • Sahoo, P.; Shubhadarshinee, L.; Mohapatra, P.; Mohanty, P.; Jali, B. R.; Mohapatra, P.; Barick, A. K. Processing, Morphology, Mechanical, and Electrical Properties, and Applications of Thermoplastic Polymer/MXenes Nanocomposites. In MXene-Filled Polymer Nanocomposites; CRC Press, 2022; pp. 43–69.
  • Liu, R.; Hou, C.; Liang, X.; Wu, Z.; Tai, G. Borophene-ZnO Heterostructures: Prepara-Tion and Application as Broadband Photonic Nonvolatile Memory. Nano Res. 2022, 16(4), 1–8. DOI: 10.1007/s12274-022-5185-6.
  • Bhavyashree, M.; Rondiya, S. R.; Hareesh, K. Exploring the Emerging Applications of the Advanced 2-Dimensional Material Borophene with Its Unique Properties. Rsc. Adv. 2022, 12(19), 12166–12192. DOI: 10.1039/D2RA00677D.
  • Arabieh, M.; Azar, Y. T.; Sepehrian, H.; Fasihi, J. DFT Exploration of Adsorptive Per-Formances of Borophene to Small Sulfur-Containing Gases. J. Mol. Model. 2022, 28(6), 1–10. DOI: 10.1007/s00894-022-05145-4.
  • Di Pierro, A.; Mortazavi, B.; Noori, H.; Rabczuk, T.; Fina, A. A Multiscale Investiga-Tion on the Thermal Transport in Polydimethylsiloxane Nanocomposites: Graphene Vs. Borophene. Nanomaterials. 2021, 11(5), 1252. DOI: 10.3390/nano11051252.
  • Folorunso, O.; Hamam, Y.; Sadiku, R.; Ray, S. S.; Adekoya, G. J. Synthesis Methods of Borophene, Graphene-Loaded Polypyrrole Nanocomposites and Their Benefits for Energy Storage Applications: A Brief Overview. FlatChem. 2021, 26, 100211. DOI: 10.1016/j.flatc.2020.100211.
  • Türkmen, T. A.; Taşaltın, N.; Taşaltın, C.; Baytemir, G.; Karakuş, S. PEDOT: PSS/β12 Borophene Nanocomposites as an Inorganic-Organic Hybrid Electrode for High Performance Super-Capacitors. Inorg. Chem. Commun. 2022, 139, 109329. DOI: 10.1016/j.inoche.2022.109329.
  • Baytemir, G.; Gürol, İ.; Karakuş, S.; Taşaltın, C.; Taşaltın, N. Nickel Phthalocyanine-Borophene Nanocomposite-Based Electrodes for Non-Enzymatic Electrochemical Detection of Glu-Cose. J. Mater. Sci. Mater. Electron. 2022, 33(20), 16586–16596. DOI: 10.1007/s10854-022-08551-9.
  • Güngör, S.; Taşaltın, C.; Gürol, İ.; Baytemir, G.; Karakuş, S.; Taşaltın, N. Copper Phthalocyanine-Borophene Nanocomposite-Based Non-Enzymatic Electrochemical Urea Biosensor. Appl. Phys. A. 2022, 128(1), 1–8. DOI: 10.1007/s00339-021-05228-8.
  • Tatullo, M.; Zavan, B.; Genovese, F.; Codispoti, B.; Makeeva, I.; Rengo, S.; Fortunato, L.; Spagnuolo, G. Borophene is a Promising 2D Allotropic Material for Biomedical Devices. Appl. Sci. 2019, 9(17), 3446. DOI: 10.3390/app9173446.
  • Shukla, V.; Grigoriev, A.; Jena, N. K.; Ahuja, R. Strain Controlled Electronic and Transport Ani-Sotropies in Two-Dimensional Borophene Sheets. Phys. Chem. Chem. Phys. 2018, 20(35), 22952–22960. DOI: 10.1039/C8CP03815E.
  • Adekoya, G. J.; Adekoya, O. C.; Sadiku, E. R.; Hamam, Y.; Ray, S. S. Effect of Borophene and Graphene on the Elastic Modulus of PEDOT: PSS Film—A Finite Element Study. Cond. Mat. 2022, 7(1), 22. DOI: 10.3390/condmat7010022.
  • Taşaltın, N.; Taşaltın, C.; Güngör, S.; Karakuş, S.; Gürol, İ.; Teker, M. Volatile Organic Compound Detection Performance of Borophene and PANI: β Borophene Nanocomposite-Based Sensors. J. Mater. Sci. Mater. Electron. 2022, 33(31), 24173–24181. DOI: 10.1007/s10854-022-09109-5.
  • Taşaltın, N.; Güllülü, S.; Karakuş, S. Dual-Role of β Borophene Nanosheets as Highly Effective Antibacterial and Antifungal Agent. Inorg. Chem. Commun. 2022, 136, 109150. DOI: 10.1016/j.inoche.2021.109150.
  • Chowdhury, M. A.; Uddin, M. K.; Shuvho, M. B. A.; Rana, M.; Hossain, N. A Novel Temperature Dependent Method for Borophene Synthesis. Appl. Sur. Sci. Adv. 2022, 11, 100308. DOI: 10.1016/j.apsadv.2022.100308.
  • Taşaltın, C. Glucose Sensing Performance of PAN: β-Rhombohedral Borophene Based Non-Enzymatic Electrochemical Biosensor. Inorg. Chem. Commun. 2021, 133, 108973. DOI: 10.1016/j.inoche.2021.108973.
  • Göktuna, S.; Taşaltın, N. Preparation and Characterization of PANI: α Borophene Electrode for Supercapacitors. Phys E: Low-Dimensional Syst Nanostruct. 2021, 134, 114833. DOI: 10.1016/j.physe.2021.114833.
  • Ding, J.; Zheng, H.; Wang, S.; Ji, X. Hydrogenated Borophene Nanosheets Based Multi-Functional Quasi-Solid-State Electrolytes for Lithium Metal Batteries. J. Coll. Interf. Sci. 2022, 615, 79–86. DOI: 10.1016/j.jcis.2022.01.163.
  • Plus, E. S. Towards 5th Generation AI and IoT Driven Sustainable Intelligent Sensors Based on 2D MXenes and Borophene; ECS Sensors Plus, 2022.
  • Shao, W.; Tai, G.; Hou, C.; Wu, Z.; Wu, Z.; Liang, X. Borophene-Functionalized Magnetic Nanoparticles: Synthesis and Memory Device Application. ACS Appl. Elec. Mater. 2021, 3(3), 1133–1141. DOI: 10.1021/acsaelm.0c01004.
  • Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A Roadmap for Graphene. Nature. 2012, 490(7419), 192–200. DOI: 10.1038/nature11458.
  • Ou, M.; Wang, X.; Yu, L.; Liu, C.; Tao, W.; Ji, X.; Me, L. The Emergence and Evolution of Borophene. Adv Sci. 2021, 8(12), 2001801. DOI: 10.1002/advs.202001801.
  • Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X.; Fisher, B. L.; Santiago, U.; Guest, J. R., et al. Synthesis of Borophenes: Anisotropic, Two-Dimensional Boron Polymorphs. Science. 2015, 350(6267), 1513–1516.
  • Sun, H.; Li, Q.; Wan, X. G. First-Principles Study of Thermal Properties of Borophene. Phys. Chem. Chem. Phys. 2016, 18(22), 14927–14932. DOI: 10.1039/C6CP02029A.
  • Peng, B.; Zhang, H.; Shao, H.; Xu, Y.; Zhang, R.; Zhu, H. The Electronic, Optical, and Thermodynamic Properties of Borophene from First-Principles Calculations. J. Mater. Chem. C. 2016, 4(16), 3592–3598. DOI: 10.1039/C6TC00115G.
  • Khanifaev, J.; Pekoz, R.; Konuk, M.; Durgun, E. The Interaction of Halogen Atoms and Molecules with Borophene. Phys. Chem. Chem. Phys. 2017, 19(42), 28963–28969. DOI: 10.1039/C7CP05793H.
  • Shukla, V.; Grigoriev, A.; Jena, N. K.; Ahuja, R. Strain Controlled Electronic and Transport Anisotropies in Two-Dimensional Borophene Sheets. Phys. Chem. Chem. Phys. 2018, 20(35), 22952–22960. DOI: 10.1039/C8CP03815E.
  • Li, D.; He, J.; Ding, G.; Tang, Q.; Ying, Y.; He, J.; Tang, Q.; Ying, Y.; He, J.; Zhong, C., et al. Stretch-Driven Increase in Ultrahigh Thermal Conductance of Hydrogenated Borophene and Dimensionality Crossover in Phonon Transmission. Adv. Funct. Mater. 2018, 28(31), 1801685.
  • Paduano, F.; Marrelli, M.; Amantea, M.; Rengo, C.; Rengo, S.; Goldberg, M.; Spagnuolo, G.; Tatullo, M.
  • Paduano, F.; Marrelli, M.; Amantea, M.; Rengo, C.; Rengo, S.; Goldberg, M.; Spagnuolo, G.; Tatullo, M. Adipose Tissue as a Strategic Source of Mesenchymal Stem Cells in Bone Regeneration: A Topical Review on the Most Promising Craniomaxillofacial Applications. Int. J. Mol. Sci. 2017, 18(10), 2140. DOI: 10.3390/ijms18102140.
  • Wang, Z.; Lu, T. Y.; Wang, H. Q.; Feng, Y. P.; Zheng, J. C. High Anisotropy of Fully Hydrogenated Borophene. Phys. Chem. Chem. Phys. 2016, 18(46), 31424–31430. DOI: 10.1039/C6CP06164H.
  • Pekoz, R.; Konuk, M.; Kilic, M. E.; Durgun, E. Two-Dimensional Fluorinated Boron Sheets: Mechanical, Electronic, and Thermal Properties. ACS Omega. 2018, 3(2), 1815–1822. DOI: 10.1021/acsomega.7b01730.
  • Kunstmann, J.; Quandt, A. Broad Boron Sheets and Boron Nanotubes: An Ab Initio Study of Structural, Electronic, and Mechanical Properties. Phys. Rev. B. 2006, 74(3), 035413. DOI: 10.1103/PhysRevB.74.035413.
  • Peng, B.; Zhang, H.; Shao, H.; Ning, Z.; Xu, Y.; Ni, G.; Lu, H.; Zhang, D. W.; Zhu, H. Stability and Strength of Atomically Thin Borophene from First Principles Calculations. Mater. Res. Lett. 2017, 5(6), 399–407. DOI: 10.1080/21663831.2017.1298539.
  • Gao, M.; Li, Q.-Z.; Yan, X.-W.; Wang, J. Prediction of Phonon-Mediated Superconductivity in Borophene. Phys. Rev. B. 2017, 95(2), 024505. DOI: 10.1103/PhysRevB.95.024505.
  • Zhang, Z.; Yang, Y.; Penev, E. S.; Yakobson, B. I. Elasticity, Flexibility, and Ideal Strength of Borophenes. Adv. Funct. Mater. 2017, 27(9), 1605059. DOI: 10.1002/adfm.201605059.
  • Arabha, S.; Akbarzadeh, A.; Rajabpour, A. Engineered Porous Borophene with Tunable Aniso-Tropic Properties. Compos. Part B Eng. 2020, 200, 108260. DOI: 10.1016/j.compositesb.2020.108260.
  • Penev, E. S.; Kutana, A.; Yakobson, B. I. Can Two-Dimensional Boron Superconduct? Nano Lett. 2016, 16(4), 2522–2526. DOI: 10.1021/acs.nanolett.6b00070.
  • Luo, Z.; Fan, X.; An, Y. First-Principles Study on the Stability and Stm Image of Borophene. Nanoscale Res. Lett. 2017, 12(1), 514. Appl. Sci. 2019, 9, 3446. DOI: 10.1186/s11671-017-2282-7.
  • Xu, L. C.; Du, A.; Kou, L. Hydrogenated Borophene as a Stable Two-Dimensional Dirac Material with an Ultrahigh Fermi Velocity. Phys. Chem. Chem. Phys. 2016, 18(39), 27284–27289. DOI: 10.1039/C6CP05405F.
  • Tian, Y.; Guo, Z.; Zhang, T.; Lin, H.; Li, Z.; Chen, J.; Deng, S.; Liu, F. Inorganic Boron-Based Nanostructures: Synthesis, Optoelectronic Properties, and Prospective Applications. Nanomater. (Basel). 2019, 9(4), 538. DOI: 10.3390/nano9040538.
  • Zhang, Z.; Yang, Y.; Gao, G.; Yakobson, B. I. Two-Dimensional Boron Monolayers Mediated by Metal Substrates. Angew. Chem. Int. Ed. Engl. 2015, 54(44), 13022–13026. DOI: 10.1002/anie.201505425.
  • Liao, J. H.; Zhao, Y. C.; Zhao, Y. J.; Xu, H.; Yang, X. B. Phonon-Mediated Superconductivity in Mg Intercalated Bilayer Borophenes. Phys. Chem. Chem. Phys. 2017, 19(43), 29237–29243. DOI: 10.1039/C7CP06180C.
  • Jiang, H. R.; Lu, Z.; Wu, M. C.; Ciucci, F.; Zhao, T. S. Borophene: A Promising Anode Material Offering High Specific Capacity and High Rate Capability for Lithium-Ion Batteries. Nano. Energy. 2016, 23, 97–104. DOI: 10.1016/j.nanoen.2016.03.013.
  • Jiang, H. R.; Shy, W.; Liu, M.; Ren, Y. X.; Zhao, T. S. Borophene and Defective Borophene as Potential Anchoring Materials for Lithium–Sulfur Batteries: A First-Principles Study. J. Mater. Chem. A. 2018, 6(5), 2107–2114. DOI: 10.1039/C7TA09244J.
  • Li, H.; Jing, L.; Liu, W.; Lin, J.; Tay, R. Y.; Tsang, S. H.; Teo, E. H. T. Scalable Production of Few-Layer Boron Sheets by Liquid-Phase Exfoliation and Their Superior Supercapacitive Performance. ACS Nano. 2018, 12(2), 1262–1272. DOI: 10.1021/acsnano.7b07444.
  • Kootenaei, A. S.; Ansari, G. B36 Borophene as an Electronic Sensor for Formaldehyde: Quantum Chemical Analysis. Phys. Lett. A. 2016, 380(34), 2664–2668. DOI: 10.1016/j.physleta.2016.06.016.
  • Kondo, T. Recent Progress in Boron Nanomaterials. Sci. Technol. Adv. Mater. 2017, 18(1), 780–804. DOI: 10.1080/14686996.2017.1379856.
  • Adekoya, G. J.; Adekoya, O. C.; Sadiku, R. E.; Hamam, Y.; Ray, S. S. Numerical Investigation and Response Surface Optimization of the Effective Modulus and Electrical and Thermal Conductivities of the Borophene Nanoplatelet-Reinforced; PSS Nanocomposite for Energy Storage Application. ACS Omega: PEDOT, 2022.
  • Rastgou, A.; Soleymanabadi, H.; Bodaghi, A. DNA Sequencing by Borophene Nanosheet via an Electronic Response: A Theoretical Study. Microelectron. Eng. 2017, 169, 9–15. DOI: 10.1016/j.mee.2016.11.012.
  • Adamska, L.; Sadasivam, S.; Foley, J. J., IV; Darancet, P.; Sharifzadeh, S. First-Principles Investigation of Borophene as a Monolayer Transparent Conductor. J. Phys. Chem. C. 2018, 122(7), 4037–4045. DOI: 10.1021/acs.jpcc.7b10197.
  • Mortazavi, B.; Le, M.-Q.; Rabczuk, T.; Pereira, L. F. C. Anomalous Strain Effect on the Thermal Conductivity of Borophene: A Reactive Molecular Dynamics Study. Phys. E Low Dimens. Syst. Nanostruct. 2017, 93, 202–207. DOI: 10.1016/j.physe.2017.06.012.
  • Noroozi, A.; Malih, N.; Davoodi, J. The Thermal Transport Characterization of Borophene: A Molecular Dynamics Study. Comput. Mater. Sci. 2021, 190, 110302. DOI: 10.1016/j.commatsci.2021.110302.
  • Wang, Z.-Q.; Lü, T.-Y.; Wang, H.-Q.; Feng, Y. P.; Zheng, J.-C. Review of Borophene and Its Potential Applications. Front. Phys. 2019, 14(3), 33403. DOI: 10.1007/s11467-019-0884-5.
  • Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X.; Tomanek, D.; Ye, P. D. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano. 2014, 8(4), 4033–4041. DOI: 10.1021/nn501226z.
  • Jain, A.; McGaughey, A. J. Strongly Anisotropic In-Plane Thermal Transport in Single-Layer Black Phosphorene. Sci. Rep. 2015, 5(1), 8501. DOI: 10.1038/srep08501.
  • Wei, Q.; Peng, X. Superior Mechanical Flexibility of Phosphorene and Few-Layer Black Phosphorus. Appl. Phys. Lett. 2014, 104(25), 251915. DOI: 10.1063/1.4885215.
  • Chandiramouli, R.; Nagarajan, V. Borospherene Nanostructure as CO and NO Sensor- a First Principles Study. Vacuum. 2017, 142, 13. DOI: 10.1016/j.vacuum.2017.04.040.
  • Aref, V.; Horri, A.; Tavakoli, M. B. CO/CO 2 Adsorption and Sensing on Borophene. Sn. Appl. Sci. 2020, 2(7), 1304. DOI: 10.1007/s42452-020-3114-4.
  • Huang, C.-S.; Murat, A.; Babar, V.; Montes, E.; Schwingenschlögl, U. Adsorption of the Gas Molecules NH 3, NO, NO 2, and CO on Borophene. J. Phys. Chem. C. 2018, 122(26), 14665–14670. DOI: 10.1021/acs.jpcc.8b03811.
  • Luong, T. T.; Lam, P. T.; An, D. V. Toxic Gases on β12 Borophene: The Selective Adsorption. MaP. 2020, 36(2), 2. DOI: 10.25073/2588-1124/vnumap.4463.
  • Feng, B.; Zhang, J.; Zhong, Q.; Li, W.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. Experimental Realization of Two-Dimensional Boron Sheets. Nat. Chem. 2016, 8(6), 563–568. DOI: 10.1038/nchem.2491.
  • Kong, L.; Wu, K.; Chen, L. Recent Progress on Borophene. Front. Phys. 2018, 13(3), 138105. DOI: 10.1007/s11467-018-0752-8.
  • Nagarajan, V.; Chandiramouli, R. Interaction Studies of Ammonia Gas Molecules on Borophene Nanosheet and Nanotubes: A Density Functional Study. J. Inorg. Organomet. Polym. 2018, 28(3), 920–931. DOI: 10.1007/s10904-017-0761-z.
  • Ma, D.; Wang, R.; Zhao, J.; Chen, Q.; Wu, L.; Li, D.; Su, L.; Jiang, X.; Luo, Z.; Ge, Y., et al. A Self-Powered Photodetector Based on Two- Dimensional Boron Nanosheets. Nanoscale. 2020, 12(9), 5313. DOI: 10.1039/D0NR00005A.
  • Idumah, C. I.; Nwuzor, I. C.; Odera, R. S. Recent Advances in Polymer Hydrogel Nanoarchitec-Tures and Applications. Cur. Res. Green Sust. Chem. 2021, 4, 100143. DOI: 10.1016/j.crgsc.2021.100143.
  • Idumah, C. I.; Ezika, A.; Okpechi, V. Emerging Trends in Polymer Aerogel Nanoarchi-Tectures, Surfaces, Interfaces and Applications. Surf. Interf. 2021, 25, 101258. DOI: 10.1016/j.surfin.2021.101258.
  • Idumah, C. I. Progress in Polymer Nanocomposites for Bone Regeneration and Engineering. Polym. Polym. Compos. 2021, 29(5), 509–527. DOI: 10.1177/0967391120913658.
  • Idumah, C. I. Novel Trends in Self-Healable Polymer Nanocomposites. J. Thermoplast. Compos. Mater. 2021, 34(6), 834–858. DOI: 10.1177/0892705719847247.
  • Idumah, C. I.; Ezeani, E. O.; Nwuzor, I. C. A Review: Advancements in Conductive Pol-Ymers Nanocomposites. Polym-Plast Techno. Mater. 2021, 60(7), 756–783. DOI: 10.1080/25740881.2020.1850783.
  • Idumah, C. I. Recent Advancements in Self-Healing Polymers, Polymer Blends, and Nanocomposites. Polym. Polym. Compos. 2021, 29(4), 246–258. DOI: 10.1177/0967391120910882.
  • Idumah, C. I. Recent Advancements in Thermolysis of Plastic Solid Wastes to Liquid Fuel. J. Therm. Anal. Calorim. 2021, 147(5), 3495–3508. DOI: 10.1007/s10973-021-10776-5.
  • Idumah, C. I.; Obele, C. M.; Enwerem, U. E. On Interfacial and Surface Behavior of Pol-Ymeric MXenes Nanoarchitectures and Applications. Curr. Res. Green Sust. Chem. 2021, 4, 100104. DOI: 10.1016/j.crgsc.2021.100104.
  • Idumah, C. I.; Ezeani, E. O.; Nwuzor, I. C. A Review: Advancements in Conductive Pol-Ymers Nanocomposites. Polym. Plast. Technol. Mater. 2021, 60(7), 756–783. DOI: 10.1080/25740881.2020.1850783.
  • Idumah, C. I. Novel Trends in Polymer Aerogel Nanocomposites. Polym-Plast. Tech-Nol. Mater. 2021, 1–13. doi: 10.1080/25740881.2021.1912092.
  • Nwuzor, I. C.; Idumah, C. I.; Nwanonenyi, S. C.; Ezeani, O. E. Emerging Trends in Self-Polishing Anti-Fouling Coatings for Marine Environment. Saf. Extreme Environ. 2021, 3(1), 9–25. DOI: 10.1007/s42797-021-00031-3.
  • Idumah, C. I. Novel Trends in Conductive Polymeric Nanocomposites, and Bionano-Composites. Syn. Met. 2021, 273, 116674. DOI: 10.1016/j.synthmet.2020.116674.
  • Idumah, C. I.; Ogbu, J.; Ndem, J.; Obiana, V. Influence of Chemical Modification of Kenaf Fiber on Xgnp-PP- Nano-Biocomposites. SN App. Sci. 2019, 1(10), 1261. DOI: 10.1007/s42452-019-1319-1.
  • Idumah, C. I.; Hassan, A.; Affam, A. A Review of Recent Developments in Flammabil-Ity of Polymer Nanocomposites. Rev. Chem. Eng. 2015, 31(2), 149–177. DOI: 10.1515/revce-2014-0038.
  • Idumah, C.; Hassan, A. Characterization and Preparation of Conductive Exfoliated Graphene Nanoplatelets Kenaf Fibre Hybrid Polypropylene Composites. Syn. Met. 2016, 212, 91–104. DOI: 10.1016/j.synthmet.2015.12.011.
  • Idumah, C.; Hassan, A. Recently Emerging Trends in Thermal Conductivity of Poly-Mer Nanocomposites. Rev. Chem. Eng. 2016, 32(4), 413–457. DOI: 10.1515/revce-2016-0004.
  • Idumah, C.; Hassan, A. Emerging Trends in Flame Retardancy of Biofibers, Biopoly-Mers, Biocomposites, and Bionanocomposites. Rev. Chem. Eng. 2015, 32(1), 115–148. DOI: 10.1515/revce-2015-0017.
  • Idumah, C.; Hassan, A. Emerging Trends in Graphene Carbon Based Polymer Nano-Composites and Applications. Rev. Chem. Eng. 2016, 32(2), 223–226. DOI: 10.1515/revce-2015-0038.
  • Idumah, C.; Hassan, A. Effect of Exfoliated Graphite Nanoplatelets on Thermal and Heat Deflection Properties of Kenaf Polypropylene Hybrid Nanocomposites. J. Polym. Eng. 2016, 36(9), 877–889. DOI: 10.1515/polyeng-2015-0445.
  • Idumah, C.; Hassan, A. Emerging Trends in Eco-Compliant, Synergistic, and Hybrid Assembling of Multifunctional Polymeric Bionanocomposites. Rev. Chem. Eng. 2016, 32, 305–361. DOI: 10.1515/revce-2015-0046.
  • Idumah, C.; Hassan, A.; Bourbigot, S. Influence of Exfoliated Graphene Nanoplatelets on Flame Retardancy of Kenaf Flour Polypropylene Hybrid Nanocomposites. J. Anal. Appl. Pyrolysis. 2017, 123, 65–72. DOI: 10.1016/j.jaap.2017.01.006.
  • Idumah, C.; Hassan, A. Hibiscus Cannabinus Fiber/PP Based Nano-Biocomposites Re-Inforced with Graphene Nanoplatelets. J. Nat. Fibers. 2017, 14(5), 691–706. DOI: 10.1080/15440478.2016.1277817.
  • Idumah, C.; Hassan, A.; Ogbu, J.; Ndem, J.; Nwuzor, I. Recently Emerging Advance-Ments in Halloysite Nanotubes Polymer Nanocomposites. Compos. Interface. 2018, 26(9), 751–824. DOI: 10.1080/09276440.2018.1534475.
  • Idumah, C.; Hassan, A.; Bourbigot, S. Synergistic Effect of Exfoliated Graphene Na-Noplatelets and Non-Halogen Flame Retardants on Flame Retardancy and Thermal Properties of Ke-Naf Flour-PP Nanocomposites. J. Therm. Anal. Calorim. 2018, 134(3), 1681–1703. DOI: 10.1007/s10973-018-7833-3.
  • Idumah, C.; Hassan, A.; Ihuoma, D. Recently Emerging Trends in Polymer Nanocom-Posites Packaging Materials. Polym. Plast. Technol. Eng. 2019, 58(10), 1054–1109. DOI: 10.1080/03602559.2018.1542718.
  • Idumah, C. I.; Hassan, A.; Ogbu, J. E.; Ndem, J.; Oti, W.; Obiana, V. Electrical, Thermal and Flammability Properties of Conductive Filler Kenaf–Reinforced Polymer Nanocomposites. J. Therm. Compos. Mater. 2020, 33(4), 516–540. DOI: 10.1177/0892705718807957.
  • Idumah, C. I.; Obere, C. M. Understanding Interfacial Influence on Properties of Pol-Ymer Nanocomposites. Surf. Interf. 2021, 22, 100879. DOI: 10.1016/j.surfin.2020.100879.
  • Idumah, C. I.; Obele, M. C.; Ezeani, E. O. Understanding Interfacial Dispersions in Eco-Benign Polymer Nano-Biocomposites. Polym.-Plast. Technol. Mater. 2021, 60(3), 233–252. DOI: 10.1080/25740881.2020.1811312.
  • Idumah, C. I.; Obele, C. M.; Ezeani, E. O.; Hassan, A. Recently Emerging Nanotechnolog-Ical Advancements in Polymer Nanocomposite Coatings for Anti-Corrosion, Anti-Fouling and Self-Healing. Surf. Interf. 2020, 21, 100734. DOI: 10.1016/j.surfin.2020.100734.
  • Idumah, C. I. Novel Trends in Selfhealable Polymer Nanocomposites. J. Thermoplast. Compos. Mater. 2019, 0892705719847247.
  • Idumah, C. I.; Zurina, M.; Hassan, A.; Norhayani, O.; Shuhadah, I. Recently Emerging Trends in Bone Replacement Polymer Nanocomposites. Nano. Poly. Comp. Biomed. Appl. 2019, 139–166.
  • Idumah, C. I. Advancements in Conducting Polymer Bionanocomposites, and Hy-Drogels for Biomedical Applications. Int. J. Polym. Mater. Polym. Biomater. 2020, 71(7), 513–530. DOI: 10.1080/00914037.2020.1857384.
  • Idumah, C. I.; Ezeani, E. O.; Nwuzor, I. C. A Review: Advancements in Conductive Pol-Ymers Nanocomposites. Polym. Plast. Technol. Mater. 2020, 60(7), 756–783. DOI: 10.1080/25740881.2020.1850783.
  • Idumah, C. I. Influence of NT in Polymeric Textiles, Applications, and Fight Against COVID-19. J. Text. Inst. 2020, 112(12), 2056–2076. DOI: 10.1080/00405000.2020.1858600.
  • Idumah, C. I.; Nwabanne, J. T.; Tanjung, F. A. Novel Trends in Poly (Lactic) Acid Hybrid Bionanocomposites. Cleaner. Mater. 2021, 2, 100022. DOI: 10.1016/j.clema.2021.100022.
  • Idumah, C. I.; Ezeani, O. E.; Okonkwo, U. C.; Nwuzor, I. C.; Odera, S. R. Novel Trends in MXene/Conducting Polymeric Hybrid Nanoclusters. J. Clust. Sci. 2022, 34(1), 1–32. DOI: 10.1007/s10876-022-02243-4.
  • Idumah, C. I. Recently Emerging Trends in Magnetic Polymer Hydrogel Nanoarchi-Tectures. Polym.-Plast. Technol. Mater. 1–32.
  • Okafor, C. E.; Kebidi, L. C.; Ihueze, C. C.; Rangappa, S. M.; Siengchin, S.; Okonkwo, U. C. Development of Dioscorea Alata Stem Fibers as Eco-Friendly Reinforcement for Composite Materials. J. King Saud Uni. - Eng. Sci. 2022. DOI: 10.1016/j.jksues.2022.02.003.
  • Okafor, C. E.; Okonkwo, U. C.; Okokpujie, I. P. Trends in Reinforced Composite Design for Ionizing Radiation Shielding Applications: A Review. J. Mater. Sci. 2021, 56(20), 11631–11655. DOI: 10.1007/s10853-021-06037-3.
  • Idumah, C. I.; Okonkwo, U. C.; Obele, C. M. Recently Emerging Advancements in Montmorillonite Polymeric Nanoarchitectures and Applications. Cleaner. Mater. 2022. DOI: 10.1016/j.clema.2022.100071.
  • Tanjung, F. A.; Kuswardani, R. A.; Idumah, C. I.; Siregar, J. P.; Karim, A. Characterization of Mechanical and Thermal Properties of Esterified Lignin Modified Poly-Propylene Composites Filled with Chitosan Fibers. Polym. Polym. Composites. 2022, 30, 096739112. DOI: 10.1177/09673911221082482.
  • Idumah, C. I. Recent Trends in MXene Polymeric Hydrogel Bionanoar-Chitectures and Applications. Cleaner. Mater. 2022, 5, 100103. DOI: 10.1016/j.clema.2022.100103.
  • Idumah, C. I. Emerging Trends in Poly (Lactic-Co-Glycolic) Acid Bionano-Architectures and Applications. Cleaner. Mater. 2022, 5, 100102. DOI: 10.1016/j.clema.2022.100102.
  • Idumah, C. I. A Review on Polyaniline and Graphene Nanocomposites for Supercapacitors. Polym. Plast. Technol. Eng. 2022, 61(17), 1871–1907. DOI: 10.1080/25740881.2022.2086810.
  • Idumah, C. I. Recent Advancements in Electromagnetic Interference Shield-Ing of Polymer and Mxene Nanocomposites. Polym. Plast. Technol. Eng. 2022, 62(1), 19–53. DOI: 10.1080/25740881.2022.2089581.
  • Idumah, C. I. Influence of Surfaces and Interfaces on MXene and MXene Hybrid Polymeric Nanoarchitectures, Properties, and Applications. J. Mater. Sci. 2022, 57(31), 14579–14619. DOI: 10.1007/s10853-022-07526-9.
  • Okonkwo, U. C.; Idumah, C. I.; Okafor, C. E.; Ohagwu, C. C.; Aronu, M. E.; Okokpujie, I. P.; Chukwu, N. N.; Chukwunyelu, C. E. Development, Characterization, and Properties of Polymeric Nanoarchitectures for Radiation Attenuation. J. Inorg. Organomet. Polym. 2022, 32(11), 4093–4113. DOI: 10.1007/s10904-022-02420-y.
  • Idumah, C. I. Characterization and Fabrication of Xerogel Polymeric Nanocomposites and Multifunctional Applications. 2022.
  • Idumah, C. I. Influence of Morphology and Architecture on Properties and Applications of MXene Polymeric Nanocomposites. J. Therm. Com. Mat. 2022, 08927057221122096. doi: 10.1177/08927057221122096.
  • Idumah, C. I.; Nwuzor, I. C.; Odera, S. R.; Timothy, U. J.; Ngenegbo, U.; Tanjung, F. A. Recent Advances in Polymeric Hydrogel Nanoarchitectures for Drug Delivery Applications. Int. J. Polym. Mater. Polym. Biomater. 2022, 1–32. doi: 10.1080/00914037.2022.2120875.
  • Idumah, C. I. Recently Emerging Advancements in Thermal Conductivity and Flame Retardancy of MXene Polymeric Nanoarchitectures. Polym.-Plast. Technol. Mater. 2022, 62(4), 510–546. DOI: 10.1080/25740881.2022.2121220.
  • Idumah, C. I. Recently Emerging Advancements in Polymeric Nanogel Nano-Architectures for Drug Delivery Applications. Int. J. Polym. Mater. Polym. Biomater. 2022, 1–13. doi: 10.1080/00914037.2022.2124256.
  • Idumah, C. I. Design, Development, and Drug Delivery Applications of Graphene Polymeric Nanocomposites and Bionanocomposites. Emer. Mat. 2023, 1–31. doi: 10.1007/s42247-023-00465-4.
  • Idumah, C. I. Recently Emerging Trends in Flame Retardancy of Phosphorene Polymeric Nanocomposites and Applications. J. Anal. Appl. Pyrolysis. 2023, 169, 105855. DOI: 10.1016/j.jaap.2022.105855.
  • Idumah, C. I. Recent Advancements in Electromagnetic Interference Shielding of Polymer and Mxene Nanocomposites. Polym. Plast. Technol. Eng. 2023, 62(1), 19–53. DOI: 10.1080/25740881.2022.2089581.
  • Idumah, C. I. Phosphorene Polymeric Nanocomposites for Biomedical Applications: A Review. Int. J. Polym. Mater. Polym. Biomater. 2022, 1–18. DOI: 10.1080/00914037.2022.2158333.
  • Idumah, C. I. Emerging Advancements in Xerogel Polymeric Bionanoarchitectures and Applications. JCIS Open. 2022, 9, 100073. DOI: 10.1016/j.jciso.2022.100073.
  • Idumah, C. I.; Low, J. H.; Emmanuel, E. O. Recently Emerging Trends in Xerogel Polymeric Nanoarchitectures and Multifunctional Applications. Polym. Bull. 2022, 1–31. DOI: 10.1007/s00289-022-04625-0.
  • Idumah, C. I. Recent Advances on Graphene Polymeric Bionanoarchitectures for Biomedicals. JCIS Open. 2022, 9, 100070. DOI: 10.1016/j.jciso.2022.100070.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.