124
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Construction of radiation attenuating polymeric nanocomposites and multifaceted applications: a review

, ORCID Icon, &
Pages 1639-1661 | Received 06 Mar 2023, Accepted 15 Jun 2023, Published online: 25 Jun 2023

References

  • Gad, Y. H.; Ali, H. E.; Hegazy, E. S. A. Radiation-Induced Improving Mechanical and Thermal Properties of Carboxymethyl Cellulose/Clay Composite for Application in Removal of Copper (II) Ions from Wastewater. J. Inorg. Organomet. Polym. 2021, 31(5), 2083–2094. DOI: 10.1007/s10904-020-01850-w.
  • Eid, M. Gamma Radiation Synthesis and Characterization of Starch Based Polyelectrolyte Hydrogels Loaded Silver Nanoparticles. J. Inorg. Organomet. Polym. 2011, 21(2), 297–305. DOI: 10.1007/s10904-010-9448-4.
  • Ghobashy, M. M., & Mohamed, T. M. Radiation Preparation of Conducting Nanocomposite Membrane Based on (Copper/Polyacrylic Acid/Poly Vinyl Alcohol) for Rapid Colorimetric Sensor of Mercury and Silver Ions. J. Inorg. Organomet. Polym. 2018, 28(6), 2297–2305. DOI: 10.1007/s10904-018-0882-z.
  • Khozemy, E. E.; Nasef, S. M.; Mohamed, T. M. Radiation Synthesis of Superabsorbent Hydrogel (Wheat Flour/Acrylamide) for Removal of Mercury and Lead Ions from Waste Solutions. J. Inorg. Organomet. Polym. 2020, 30(5), 1669–1685. DOI: 10.1007/s10904-019-01350-6.
  • Elbarbary, A. M.; Gad, Y. H. Radiation Synthesis and Characterization of Poly (Vinyl Alcohol)/Acrylamide/TiO2/SiO2 Nanocomposite for Removal of Metal Ion and Dye from Wastewater. J. Inorg. Organomet. Polym. 2021, 31(10), 4103–4125. DOI: 10.1007/s10904-021-02029-7.
  • Rwei, S. P.; Shiu, J. W.; Way, T. F.; Liao, C. Y.; Yau, E. Z. A Self‐Healing and Thermal Radiation Shielding Magnetic Polyurethane of Reducing Retro Diels–Alder Reaction Temperature. J. Inorg. Organomet. Polym. 2021, 31(7), 3077–3088. DOI: 10.1007/s10904-021-01970-x.
  • Raafat, A. I.; Kamal, H.; Sharada, H. M.; Abd Elhalim, S. A.; Mohamed, R. D. Radiation Synthesis of Magnesium Doped Nano Hydroxyapatite/(acacia-Gelatin) Scaffold for Bone Tissue Regeneration: In Vitro Drug Release Study. J. Inorg. Organomet. Polym. 2020, 30(8), 2890–2906. DOI: 10.1007/s10904-019-01418-3.
  • Okamura, K.; Seguchi, T. Application of Radiation Curing in the Preparation of Polycarbosilane-Derived SiC Fibers. J. Inorganic Organomet. Polym. 1992, 2(1), 171–179. DOI: 10.1007/BF00696544.
  • El-Arnaouty, M. B.; Eid, M.; Mansour, H. H. In vivo Study of Silver Nanoparticles Entrapped Poly (N-Vinyl Pyrrolidone/Dextran) Hydrogel Synthesized by Gamma Radiation on the Antitumor Activity of Doxorubicin. J. Inorg. Organomet. Polym. 2021, 31(6), 2700–2710. DOI: 10.1007/s10904-021-01882-w.
  • Fayad, A. M.; Shaaban, K. S.; Abd-Allah, W. M.; Ouis, M. Structural and Optical Study of CoO Doping in Borophosphate Host Glass and Effect of Gamma Irradiation. J. Inorg. Organomet. Polym. 2020, 30(12), 5042–5052. DOI: 10.1007/s10904-020-01641-3.
  • El-Bayoumi, A. S. Influence of the Gamma Radiation on the Structure of PVDF/PANI Blend. J. Inorg. Organomet. Polym. 2020, 30(3), 613–621. DOI: 10.1007/s10904-019-01311-z.
  • Mabrouk, T. M.; Khozemy, E. E.; Ali, A. E. H. Investigating the Electrical and Thermal Characteristics of Bismuth/(Polyvinyl Alcohol/Acrylic Acid) Nanocomposites Membranes Prepared by Ionizing Radiation. J. Inorg. Organomet. Polym. 2017, 27(2), 399–405. DOI: 10.1007/s10904-016-0476-6.
  • Eid, M.; Mansour, A. Preparation and Magnetic Investigation of Magnetic Nanoparticles Entrapped Hydrogels and Its Possible Use as Radiation Shield. J. Inorg. Organomet. Polym. 2013, 23(6), 1255–1265. DOI: 10.1007/s10904-013-9917-7.
  • Verma, S.; Sanghi, S. K.; Amritphale, S. S. Development of Advanced, Non-Toxic, X-Ray Radiation Shielding Glass Possessing Barium, Boron Substituted Kornerupine Crystallites in the Glassy Matrix. J. Inorg. Organomet. Polym. 2018, 28(1), 35–49. DOI: 10.1007/s10904-017-0697-3.
  • Alhodaib, A.; El All, S. A.; Ibrahim, O.; Ezzeldin, F. Preparation of Bioglasses Developed from Bypass Cement Dust for Bone Regeneration and Comparing Their Radiation Damage Prediction with Natural Bone. J. Inorg. Organomet. Polym. Mater. 2022, 1–13.
  • Kim, S.; Ahn, Y.; Song, S. H.; Lee, D. Tungsten Nanoparticle Anchoring on Boron Nitride Nanosheet-Based Polymer Nanocomposites for Complex Radiation Shielding. Compos. Sci. Technol. 2022, 221, 109353. DOI: 10.1016/j.compscitech.2022.109353.
  • Zarei, M.; Sina, S.; Hashemi, S. A. Superior X-Ray Radiation Shielding of Biocompatible Platform Based on Reinforced Polyaniline by Decorated Graphene Oxide with Interconnected Tungsten–Bismuth–Tin Complex. Radiat. Phys. Chem. 2021, 188, 109588. DOI: 10.1016/j.radphyschem.2021.109588.
  • Anum, R.; Zahid, M.; Siddique, S.; Shakir, H. F.; Rehan, Z. A. PVC Based Flexible Nanocomposites with the Incorporation of Polyaniline and Barium Hexa-Ferrite Nanoparticles for the Shielding Against EMI, NIR, and Thermal Imaging Cameras. Synth. Met. 2021, 277, 116773. DOI: 10.1016/j.synthmet.2021.116773.
  • Shukla, V.; Srivastava, S. K. Reduced Graphene Oxide/PdNi/Poly (Ethylene-Co-Vinyl Acetate) Nanocomposites for Electromagnetic Interference Shielding. Mater. Chem. Phys. 2022, 276, 125418. DOI: 10.1016/j.matchemphys.2021.125418.
  • Chu, Q.; Lin, H.; Ma, M.; Chen, S.; Shi, Y.; He, H.; Wang, X. Cellulose Nanofiber/Graphene Nanoplatelet/MXene Nanocomposites for Enhanced Electromagnetic Shielding and High In-Plane Thermal Conductivity. Acs Appl. Nano Mater. 2022, 5(5), 7217–7227. DOI: 10.1021/acsanm.2c01126.
  • Aldulaimi, N. R.; Al-Bermany, E. Tuning the Bandgap and Absorption Behaviour of the Newly-Fabricated Ultrahigh Molecular Weight Polyethylene Oxide-Polyvinyl Alcohol/Graphene Oxide Hybrid Nanocomposites. Polym. Polym. Composites. 2022, 30, 09673911221112196. DOI: 10.1177/09673911221112196.
  • Vadivel, M.; Jayakumar, S.; Lahiri, B. B.; Philip, J. Effect of X-Ray Exposure on Nano-Mechanical Properties of Multi-Walled Carbon Nanotube Incorporated Silicone Polymer Nanocomposites: An AFM-Based Study. J. Elastomers Plast. 2022, 54(7), 1172–1201. DOI: 10.1177/00952443221133237.
  • Al-Buriahi, M. S.; Hessien, M.; Alresheedi, F.; Al-Baradi, A. M.; Alrowaili, Z. A.; Kebaili, I.; Olarinoye, I. O. ZnO–Bi2O3 Nanopowders: Fabrication, Structural, Optical, and Radiation Shielding Properties. Ceram. Int. 2022, 48(3), 3464–3472. DOI: 10.1016/j.ceramint.2021.10.124.
  • Hager, I. Z.; Othman, H. A.; Ibrahim, E. M.; Ahmed, Z.; Ibrahim, E.; Hassan, S.; Ahmed, Z. Evaluation of Gamma Rays Shielding Competence for Bentonite Clay/PVA Polymer Matrix Using MCNPX Code. Arab J. Nucl. Sci. Appl. 2020, 53(2), 177–188. DOI: 10.21608/ajnsa.2020.18914.1292.
  • El-Sayed, A. A.; Fathy, I. N.; Tayeh, B. A.; Almeshal, I. Using Artificial Neural Networks for Predicting Mechanical and Radiation Shielding Properties of Different Nano-Concretes Exposed to Elevated Temperature. Constr. Build. Mater. 2022, 324, 126663. DOI: 10.1016/j.conbuildmat.2022.126663.
  • Sayyed, M. I.; Hannachi, E.; Slimani, Y.; Khandaker, M. U.; Elsafi, M. Radiation Shielding Properties of Bi-Ferroic Ceramics Added with CNTs. Radiat. Phys. Chem. 2022, 200, 110096. DOI: 10.1016/j.radphyschem.2022.110096.
  • Cinan, Z. M.; Erol, B.; Baskan, T.; Mutlu, S.; Savaskan Yilmaz, S.; Yilmaz, A. H. Gamma Irradiation and the Radiation Shielding Characteristics: For the Lead Oxide Doped the Crosslinked Polystyrene-B-Polyethyleneglycol Block Copolymers and the Polystyrene-B-Polyethyleneglycol. Boron Nitride Nanocomposites Polym. 2021, 13(19), 3246. DOI: 10.3390/polym13193246.
  • Al-Buriahi, M. S.; Eke, C.; Alomairy, S.; Yildirim, A.; Alsaeedy, H. I.; Sriwunkum, C. Radiation Attenuation Properties of Some Commercial Polymers for Advanced Shielding Applications at Low Energies. Polym. Adv. Technol. 2021, 32(6), 2386–2396. DOI: 10.1002/pat.5267.
  • Sukesh Babu, M.; Sarathi, R.; Imai, T.; Tanaka, T. Influence of Gamma Irradiation and Water Aging on the Space Charge Characteristics of Epoxy Micro-Nano Composites. Polymers. 2021, 13(6), 964. DOI: 10.3390/polym13060964.
  • Poltabtim, W.; Toyen, D.; Saenboonruang, K. Theoretical Determination of High-Energy Photon Attenuation and Recommended Protective Filler Contents for Flexible and Enhanced Dimensionally Stable Wood/NR and NR Composites. Polymers. 2021, 13(6), 869. DOI: 10.3390/polym13060869.
  • Abdolahzadeh, T.; Morshedian, J.; Ahmadi, S. Preparation and Characterization of Nano WO3/Bi2O3/GO and BaSO4/GO Dispersed HDPE Composites for X-Ray Shielding Application. Polyolefins J. 2022, 9(2).
  • Ghaseminejad, M.; Gholamzadeh, L.; Ostovari, F. Investigation of X-Ray Attenuation Property of Modi?cation PbO with Graphene in Epoxy Polymer. Mater. Res. Express. 2021, 8(3), 035008. DOI: 10.1088/2053-1591/abecea.
  • Saenboonruang, K.; Poltabtim, W.; Thumwong, A.; Pianpanit, T.; Rattanapongs, C. Rare-Earth Oxides as Alternative High-Energy Photon Protective Fillers in HDPE Composites: Theoretical Aspects. Polymers. 2021, 13(12), 13. 1930. DOI: 10.3390/polym13121930.
  • Joseph, B. B.; George, S. The Road to Radiation Safety and ALARA: A Review. Int. J. Maxillofac Imaging. 2020, 6(4), 89–92. DOI: 10.18231/j.ijmi.2020.022.
  • Bryant, P. A. Communicating Radiation Risk: The Role of Public Engagement in Reaching ALARA. J. Radiol. Prot. 2021, 41(2), S1–S8. DOI: 10.1088/1361-6498/abd348.
  • Oakley, P. E.; Harrison, D. E. Death of the ALARA Radiation Protection Principle as Used in the Medical Sector. Dose-Response. 2020, 18(2), 1559325820921641. DOI: 10.1177/1559325820921641.
  • Jones, C. G. The US Nuclear Regulatory Commission Radiation Protection Policy and Opportunities for the Future. J. Radiol. Prot. 2019, 39(4), R51–R62. DOI: 10.1088/1361-6498/ab1d75.
  • Lakshminarayana, G.; Elmahroug, Y.; Kumar, A.; Tekin, H. O.; Rekik, N.; Dong, M.; Lee, D.-E.; Yoon, J.; Park, T. Detailed Inspection of γ-Ray, Fast and Thermal Neutrons Shielding Competence of Calcium Oxide or Strontium Oxide Comprising Bismuth Borate Glasses. Materials. 2021, 14(9), 2265. DOI: 10.3390/ma14092265.
  • Wu, Y.; Cao, Y.; Wu, Y.; Li, D. Mechanical Properties and Gamma-Ray Shielding Performance of 3D-Printed Poly-Ether-Ether-Ketone/tungsten Composites. Materials. 2020, 13(20), 4475. DOI: 10.3390/ma13204475.
  • Sayyed, M. I.; Mohammed, F. Q.; Mahmoud, K. A.; Lacomme, E.; Kaky, K. M.; Khandaker, M. U.; Faruque, M. R. I. Evaluation of Radiation Shielding Features of Co and Ni-Based Superalloys Using MCNP-5 Code: Potential Use in Nuclear Safety. Appl. Sci. 2020, 10(21), 7680. DOI: 10.3390/app10217680.
  • Srinivasan, K.; Jabaseelan, S. Evaluation of Radiation Shielding Properties of the Polyvinyl Alcohol/Iron Oxide Polymer Composite. J. Med. Phys. 2017, 42(4), 273–278. DOI: 10.4103/jmp.JMP_54_17.
  • Sayyed, M. I.; Mahmoud, K. A.; Tashlykov, O. L.; Khandaker, M. U.; Faruque, M. R. I. Enhancement of the Shielding Capability of Soda–Lime Glasses with Sb2O3 Dopant: A Potential Material for Radiation Safety in Nuclear Installations. Appl. Sci. 2020, 11(1), 326. DOI: 10.3390/app11010326.
  • Tekin, H. O.; Issa, S. A. M.; Kilic, G.; Zakaly, H. M. H.; Tarhan, N.; Sidek, H. A. A.; Matori, K. A.; Zaid, M. H. M. A Systematical Characterization of TeO2–V2O5 Glass System Using Boron (III) Oxide and Neodymium (III) Oxide Substitution: Resistance Behaviors Against Ionizing Radiation. Appl. Sci. 2021, 11(7), 3035. DOI: 10.3390/app11073035.
  • Wei, H.; Lou, L.; Yang, Z.; He, R.; Fan, J.; Zhang, K.; Yang, W. Multifunctional Composites Silicone Rubber/Paraffin@lead Tungstate with Different Core/Shell Ratio for Thermal Regulation and Gamma Shielding. J. Energy Storage. 2021, 36, 102363. DOI: 10.1016/j.est.2021.102363.
  • Temir, A.; Sh Zhumadilov, K.; Zdorovets, M. V.; Korolkov, I. V.; Kozlovskiy, A.; Trukhanov, A. V. Synthesis, Phase Transformations, Optical Properties and Efficiency of Gamma Radiation Shielding by Bi2O3-TeO2-WO3 Ceramics. Opt. Mater. 2021, 113, 110846. DOI: 10.1016/j.optmat.2021.110846.
  • Abdalsalam, A.; Abu Mhareb, M.; Taki, M.; Alım, B.; Ali, B.; Şakar, E.; Şakar, E. MoO3 Reinforced Ultra High Molecular Weight PE for Neutrons Shielding Applications. Radiat. Phys. Chem. 2020, 172, 108852. ysche m.2020.10885 2 DOI: https://doi.org/10.1016/j.radphyschem.2020.108852.
  • Belgin, E. E.; Aycik, G. A. Preparation and Radiation Attenuation Performances of Metal Oxide F Lled Polyethylene Based Composites for Ionizing Electromagnetic Radiation Shield-Ing Applications. J. Radioanal. Nucl. Chem. 2015, 306(1), 107–117. DOI: 10.1007/s10967-015-4052-2.
  • Abdel-Gawwad, H.; Mohammed, M.; Zakey, S. Preparation, Performance, and Stability of Alkali-Activated Concrete Waste-Lead Bearing Sludge Composites. J. Clean. Prod. 2020, 259, 120924. DOI: 10.1016/j.jclepro.2020.120924.
  • Abdel-Haseiba, A.; Ahmeda, Z.; Hassanb, M. M. Investigation of the Gamma Rays Attenuation Coefficients by Experimental and MCNP Simulation for Polyamide 6/acrylonitrile-Butadiene–styrene Blends. J. Nucl. Radiat. Phys. 2018, 13(1), 81–89.
  • Bel, T.; Arslan, C.; Baydogan, N.; Stromberg, A.; Dziubla, T. D.; Hilt, J. Z. Radiation shielding properties of poly(methyl methacrylate)/colemanite composite for the use in mixed irradiation fields of neutrons and gamma rays. Mater. Chem. Phys. 2018, 223, 68–74. DOI: https://doi.org/10.1016/j.matchemphys.2018.09.014.
  • Agool, I. R.; Kadhim, K. J.; Hashim, A. Synthesis of (PVA–PEG– PVP–ZrO 2) Nanocomposites for Energy Release and Gamma Shielding Applications. Int. J. Plast. Technol. 2017, 21(2), 444–453. 10.1007/s12588-017-9196-1.
  • Al-Ghamdi, H.; Hemily, H. M.; Saleh, I. H.; Ghataas, Z. F.; Abdel-Halim, A. A.; Sayyed, M. I.; Yasmin, S.; Almuqrin, A. H.; Elsafi, M. Impact of WO3 -Nanoparticles on Silicone Rubber for Radiation Protection Efficiency. Materials. 2022, 15(16), 5706. DOI: 10.3390/ma15165706.
  • Chen, X.; Shi, T.; Zhong, K.; Wu, G.; Lu, Y. Capacitive Behavior of MoS2 Decorated with FeS2@ Carbon Nanospheres. Chem. Eng. J. 2020, 379, 122240. DOI: 10.1016/j.cej.2019.122240.
  • Wu, H.; Wu, G.; Wang, L. Peculiar Porous α-Fe2O3, γ-Fe2O3 and Fe3O4 Nanospheres: Facile Synthesis and Electromagnetic Properties. Powder Technol. 2015, 269, 443–451. DOI: 10.1016/j.powtec.2014.09.045.
  • Huang, X.; Liu, X.; Jia, Z.; Wang, B.; Wu, X.; Wu, G. Synthesis of 3D Cerium Oxide/Porous Carbon for Enhanced Electromagnetic Wave Absorption Performance. Adv. Compos. Hybrid Mater. 2021, 4(4), 1398–1412. Journal of Colloid and Interface Science, 2019, 536: 548-555. DOI: 10.1007/s42114-021-00304-2.
  • Wu, G.; Zhang, H.; Luo, X.; Yang, L.; Lv, H. Investigation and Optimization of Fe/ZnFe2o4 as a Wide-Band Electromagnetic Absorber. In Journal of Colloid and Interface Science; Compos. Part B-Eng, 2019; Vol. 536, pp. 548–555. 2020 199, 108261
  • Zhang, H.; Jia, Z.; Feng, A.; Zhou, Z.; Chen, L.; Zhang, C.; Liu, X.; Wu, G. In situ Deposition of Pitaya-Like Fe3O4@ C Magnetic Microspheres on Reduced Graphene Oxide Nanosheets for Electromagnetic Wave Absorber. Compos. B Eng. 2020, 199, 108261. DOI: 10.1016/j.compositesb.2020.108261.
  • Lv, H.; Zhou, X.; Wu, G.; Kara, U. I.; Wang, X. Engineering Defects in 2D gC 3 N 4 for Wideband, Efficient Electromagnetic Absorption at Elevated Temperature. J. Mater. Chem. A. 2021, 9(35), 19710–19718. DOI: 10.1039/D1TA02785A.
  • Jia, Z.; Zhang, X.; Gu, Z.; Wu, G. MOF-Derived Ni-Co Bimetal/Porous Carbon Composites as Electromagnetic Wave Absorber. Adv. Compos. Hybrid Mater. 2023, 6(1), 28. DOI: 10.1007/s42114-022-00615-y.
  • Cha, J. H.; Jang, W. H.; Kumar, S. K. S.; Noh, J. E.; Choi, J. S.; Kim, C. G. Functionalized Multi-Walled Carbon Nanotubes/hydrogen-Rich Benzoxazine Nanocomposites for Cosmic Radiation Shielding with Enhanced Mechanical Properties and Space Environment Resistance. Compos. Sci. Technol. 2022, 228, 109634. DOI: 10.1016/j.compscitech.2022.109634.
  • Karabul, Y.; İ̇̇çelli, O. The Assessment of Usage of Epoxy Based Micro and Nano-Structured Composites Enriched with Bi2O3 and WO3 Particles for Radiation Shielding. Results Phys. 2021, 26, 104423. DOI: 10.1016/j.rinp.2021.104423.
  • Lai, M. F.; Huang, C. H.; Lou, C. W., et al. Multi-Walled Carbon Nanotubes/polypropylene-Based Coating Layer on the Composite Metal Filaments: Characteristic Evaluations and Radiation-Shielded Fabric. Fibers Polym. 2022, 23(3), 768–774.
  • Basgoz, O.; Guler, O.; Evin, E.; Yavuz, C.; ALMisned, G.; Issa, S. A.; Tekin, H. O.; Tekin, H. O. Synthesis and Structural, Electrical, Optical, and Gamma-Ray Attenuation Properties of ZnO-Multi-Walled Carbon Nanotubes (MWCNT) Composite Separately Incorporated with CdO, TiO2, and Fe2O3. Ceram. Int. 2022, 48(11), 16251–16262. DOI: 10.1016/j.ceramint.2022.02.174.
  • Zakaly, H. M.; Ashry, A.; El-Taher, A.; Abbady, A. G.; Allam, E. A.; El-Sharkawy, R. M.; Mahmoud, M. E. Role of Novel Ternary Nanocomposites Polypropylene in Nuclear Radiation Attenuation Properties: In-Depth Simulation Study. Radiat. Phys. Chem. 2021, 188, 109667. DOI: 10.1016/j.radphyschem.2021.109667.
  • Elsad, R. A.; Mahmoud, K. A.; Rammah, Y. S.; Abouhaswa, A. S. Fabrication, Structural, Optical, and Dielectric Properties of PVC-Pbo Nanocomposites, as Well as Their Gamma-Ray Shielding Capability. Radiat. Phys. Chem. 2021, 189, 109753. DOI: 10.1016/j.radphyschem.2021.109753.
  • Chang, L.; Zhang, Y.; Liu, Y.; Fang, J.; Luan, W.; Yang, X.; Zhang, W. Preparation and Characterization of Tungsten/Epoxy Composites for γ-Rays Radiation Shielding. Nucl. Instrum. Methods Phys. Res. B. 2015, 356, 88–93. DOI: 10.1016/j.nimb.2015.04.062.
  • Bel, T.; Arslan, C.; Baydogan, N. Radiation Shielding Properties of Poly (Methyl Methacrylate)/Colemanite Composite for the Use in Mixed Irradiation Fields of Neutrons and Gamma Rays. Mater. Chem. Phys. 2019, 221(2019), 58–67. DOI: 10.1016/j.matchemphys.2018.09.014.
  • Abulyazied, D. E.; Saudi, H. A.; Zakaly, H. M.; Issa, S. A.; Henaish, A. M. A. Novel Nanocomposites Based on Polyvinyl Alcohol and Molybdenum Nanoparticles for Gamma Irradiation Shielding. Opt. Laser Technol. 2022, 156, 108560. DOI: 10.1016/j.optlastec.2022.108560.
  • Özkalaycı, F.; Kaçal, M. R.; Agar, O.; Polat, H.; Sharma, A.; Akman, F. Lead(ii) Chloride Effects on Nuclear Shielding Capabilities of Polymer Composites. J. Phys. Chem. Solids. 2020, 145, 109543. DOI: 10.1016/j.jpcs.2020.109543.
  • Eren Belgin, E.; Aycik, G. A. Preparation and Radiation Attenuation Performances of Metal Oxide Filled Polyethylene Based Composites for Ionizing Electromagnetic Radiation Shielding Applications. J. Radioanal. Nucl. Chem. 2015, 306(1), 107–117. DOI: 10.1007/s10967-015-4052-2.
  • El-Toony, M. M.; Eid, G.; Algarni, H. M.; Alhuwaymel, T. F.; Abel-Hady, E. E. Synthesis and Characterisation of Smart Poly Vinyl ester/Pb2O3 Nanocomposite for Gamma Radiation Shielding. Radiat. Phys. Chem. 2020, 168, 108536. DOI: 10.1016/j.radphyschem.2019.108536.
  • Waly, S. A.; Abdelreheem, A. M.; Shehata, M. M.; Ghazy, O. A.; Ali, Z. I. Thermal Stability, Mechanical Properties, and Gamma Radiation Shielding Performance of Polyvinyl Chloride/Pb(no3)2 Composites. J. Polymer Eng. 2021, 41(9), 737–745. DOI: 10.1515/polyeng-2021-0067.
  • Mahmoud, M. E.; El-Khatib, A. M.; Badawi, M. S.; Rashad, A. R.; El-Sharkawy, R. M.; Thabet, A. A. Fabrication, Characterization and Gamma Rays Shielding Properties of Nano and Micro Lead Oxide-Dispersed-High Density Polyethylene Composites. Radiat. Phys. Chem. 2018, 145, 160–173. DOI: 10.1016/j.radphyschem.2017.10.017.
  • Ekinci, N.; Mahmoud, K. A.; Sarıtaş, S.; Aygün, B.; Hessien, M. M.; Bilici, I.; Rammah, Y. S. Development of Tincal Based Polypropylene Polymeric Materials for Radiation Shielding Applications: Experimental, Theoretical, and Monte Carlo Investigations. Mater. Sci. Semicond. Process. 2022, 146, 106696. DOI: 10.1016/j.mssp.2022.106696.
  • Yilmaz, M.; Pekdemir, M. E.; Öner, E. Ö. Evaluation of Pb Doped Poly (Lactic Acid)(pla)/Poly (Ethylene Glycol)(peg) Blend Composites Regarding Physicochemical and Radiation Shielding Properties. Radiat. Phys. Chem. 2023, 202, 110509. DOI: 10.1016/j.radphyschem.2022.110509.
  • Srilakshmi Prabhu, S. G. B.; Shivappa, B. G. X-Ray and γ-Ray Shielding Efficiency of Polymer Composites: Choice of Fillers, Effect of Loading and Filler Size. Photon Energy And Multifunctionality, Polym. Rev. 2022. DOI: 10.1080/15583724.2022.2067867.
  • Avcioğlu, S. LDPE Matrix Composites Reinforced with Dysprosium-Boron Containing Compounds for Radiation Shielding Applications. J. Alloys Compound. 2022, 927, 166900. DOI: 10.1016/j.jallcom.2022.166900.
  • Körpınar, B.; Saltan, F. Preparation of Poly (Styrene-Co-Acrylic Acid)-Zinc Oxide Composites: Experimental and Theoretical Investigation of Gamma Radiation Shielding Properties. Appl. Radiat. Isot. 2022, 181, 110114. DOI: 10.1016/j.apradiso.2022.110114.
  • Bozkurt, M.; Şahin, N.; Karabul, Y.; Kılıç, M.; Özdemir, Z. G. Radiation Shielding Performances of Na2SiO3 Based Low-Cost Micro and Nano Composites for Diagnostic Imaging. Prog. Nucl. Energy. 2022, 143, 104058. DOI: 10.1016/j.pnucene.2021.104058.
  • Sayyed, M. I.; Taki, M. M.; Abdalsalam, A. H.; Mhareb, M. H. A.; Alajerami, Y. S.; Şakar, E.; KaKy, K. M.; KaKy, K. M. Fabrication, Characterization of Neutron and Proton Shielding Investigation of Tungsten Oxide Dispersed-Ultra High Mw Polyethylene. Chem. Phys. 2021, 548, 111227. DOI: 10.1016/j.chemphys.2021.111227.
  • Badawi, A.; Alsufyani, S. J.; Alharthi, S. S.; Althobaiti, M. G.; Alkathiri, A. A.; Almurayshid, M.; Alharbi, A. N. Impact of Gamma Irradiation on the Structural, Linear and Nonlinear Optical Properties of Lead Oxide Incorporated PVA/Graphene Blend for Shielding Applications. Opt. Mater. 2022, 127, 112244. DOI: 10.1016/j.optmat.2022.112244.
  • Yu, L.; Yap, P. L.; Santos, A.; Tran, D.; Hassan, K.; Ma, J.; Losic, D. Graphene and Hexagonal Boron Nitride in Molybdenum Disulfide/Epoxy Composites for Significant X-Ray Shielding Enhancement. Acs Appl. Nano Mater. 2022, 5(9), 12196–12208. DOI: 10.1021/acsanm.2c03292.
  • Soni, G.; Gouttam, N.; Joshi, V. Synthesis and Comparisons of Optical and Gamma Radiation Shielding Properties for ZnO and SiO2 Nanoparticles in PMMA Nanocomposites Thin Films. Optik. 2022, 259, 168884. DOI: 10.1016/j.ijleo.2022.168884.
  • Okonkwo, U. C.; Idumah, C. I.; Okafor, C. E., et al. Development, Characterization, and Properties of Polymeric Nanoarchitectures for Radiation Attenuation. J. Inorg. Organomet. Polym. 2022, 32(11), 4093–4113.
  • Thankan, N.; Puthiyaveettil Azeez, B.; Jaroszewski, N.; Gopakumar, M.; Kalarikkal, C.; Paoloni, N.; Thomas, S.; Thomas, S. Recent Progress in Electromagnetic Interference Shielding Performance of Porous Polymer Nanocomposites —A Review. Energies. 2022, 15(11), 3901. DOI: 10.3390/en15113901.
  • Idumah, C. I.; Nwuzor, I. C.; Odera, R. S. Recent Advances in Polymer Hydrogel Nanoarchitectures and Applications. Cur. Res. Green Sust. Chem. 2021, 4, 100143. DOI: 10.1016/j.crgsc.2021.100143.
  • Idumah, C. I.; Ezika, A.; Okpechi, V. Emerging Trends in Polymer Aerogel Nanoarchitectures, Surfaces, Interfaces and Applications. Surf. Interf. 2021, 25, 101258. DOI: 10.1016/j.surfin.2021.101258.
  • Idumah, C. I. Progress in Polymer Nanocomposites for Bone Regeneration and Engineering. Polym. Polym. Compos. 2021, 29(5), 509–527. DOI: 10.1177/0967391120913658.
  • Idumah, C. I. Novel Trends in Self-Healable Polymer Nanocomposites. J. Thermoplast. Compos. Mater. 2021, 34(6), 834–858. DOI: 10.1177/0892705719847247.
  • Idumah, C. I.; Ezeani, E. O.; Nwuzor, I. C. A Review: Advancements in Conductive Pol-Ymers Nanocomposites. Polym-Plast Techno. Mater. 2021, 60(7), 756–783. DOI: 10.1080/25740881.2020.1850783.
  • Idumah, C. I. Recent Advancements in Self-Healing Polymers, Polymer Blends, and Nanocomposites. Polym. Polym. Compos. 2021, 29(4), 246–258. DOI: 10.1177/0967391120910882.
  • Idumah, C. I. Recent Advancements in Thermolysis of Plastic Solid Wastes to Liquid Fuel. J. Therm. Anal. Calorim. 2021, 147(5), 3495–3508. DOI: 10.1007/s10973-021-10776-5.
  • Idumah, C. I.; Obele, C. M.; Enwerem, U. E. On Interfacial and Surface Behavior of Pol-Ymeric MXenes Nanoarchitectures and Applications. Curr. Res. Green Sust. Chem. 2021, 4, 100104. DOI: 10.1016/j.crgsc.2021.100104.
  • Idumah, C. I.; Ezeani, E. O.; Nwuzor, I. C. A Review: Advancements in Conductive Pol-Ymers Nanocomposites. Polym. Plast. Technol. Mater. 2021, 60(7), 756–783. DOI: 10.1080/25740881.2020.1850783.
  • Idumah, C. I. Novel Trends in Polymer Aerogel Nanocomposites. Polym-Plast. Tech-Nol. Mater. 2021, 1–13. DOI: 10.1080/25740881.2021.1912092.
  • Nwuzor, I. C.; Idumah, C. I.; Nwanonenyi, S. C.; Ezeani, O. E. Emerging Trends in Self-Polishing Anti-Fouling Coatings for Marine Environment. Saf. Extreme Environ. 2021, 3(1), 9–25. DOI: 10.1007/s42797-021-00031-3.
  • Idumah, C. I. Novel Trends in Conductive Polymeric Nanocomposites, and Bionano-Composites. Syn. Met. 2021, 273, 116674. DOI: 10.1016/j.synthmet.2020.116674.
  • Idumah, C. I.; Ogbu, J.; Ndem, J.; Obiana, V. Influence of Chemical Modification of Kenaf Fiber on Xgnp-PP- Nano-Biocomposites. SN App. Sci. 2019, 1(10), 1261. DOI: 10.1007/s42452-019-1319-1.
  • Idumah, C. I.; Hassan, A.; Affam, A. A Review of Recent Developments in Flammability of Polymer Nanocomposites. Rev. Chem. Eng. 2015, 31(2), 149–177. DOI: 10.1515/revce-2014-0038.
  • Idumah, C.; Hassan, A. Characterization and Preparation of Conductive Exfoliated Graphene Nanoplatelets Kenaf Fibre Hybrid Polypropylene Composites. Syn. Met. 2016, 212, 91–104. DOI: 10.1016/j.synthmet.2015.12.011.
  • Idumah, C.; Hassan, A. Recently Emerging Trends in Thermal Conductivity of Poly-Mer Nanocomposites. Rev. Chem. Eng. 2016, 32(4), 413–457. DOI: 10.1515/revce-2016-0004.
  • Idumah, C.; Hassan, A. Emerging Trends in Flame Retardancy of Biofibers, Biopolymers, Biocomposites, and Bionanocomposites. Rev. Chem. Eng. 2015, 32(1), 115–148. DOI: 10.1515/revce-2015-0017.
  • Idumah, C.; Hassan, A. Emerging Trends in Graphene Carbon Based Polymer Nano-Composites and Applications. Rev. Chem. Eng. 2016, 32(2), 223–226. DOI: 10.1515/revce-2015-0038.
  • Idumah, C.; Hassan, A. Effect of Exfoliated Graphite Nanoplatelets on Thermal and Heat Deflection Properties of Kenaf Polypropylene Hybrid Nanocomposites. J. Polym. Eng. 2016, 36(9), 877–889. DOI: 10.1515/polyeng-2015-0445.
  • Idumah, C.; Hassan, A. Emerging Trends in Eco-Compliant, Synergistic, and Hybrid Assembling of Multifunctional Polymeric Bionanocomposites. Rev. Chem. Eng. 2016, 305–361. DOI: 10.1515/revce-2015-0046.
  • Idumah, C.; Hassan, A.; Bourbigot, S. Influence of Exfoliated Graphene Nanoplatelets on Flame Retardancy of Kenaf Flour Polypropylene Hybrid Nanocomposites. J. Anal. Appl. Pyrolysis. 2017, 123, 65–72. DOI: 10.1016/j.jaap.2017.01.006.
  • Idumah, C.; Hassan, A. Hibiscus Cannabinus Fiber/PP Based Nano-Biocomposites Reinforced with Graphene Nanoplatelets. J. Nat. Fibers. 2017, 14(5), 691–706. DOI: 10.1080/15440478.2016.1277817.
  • Idumah, C.; Hassan, A.; Ogbu, J.; Ndem, J.; Nwuzor, I. Recently Emerging Advance-Ments in Halloysite Nanotubes Polymer Nanocomposites. Compos. Interface. 2018, 26(9), 751–824. DOI: 10.1080/09276440.2018.1534475.
  • Idumah, C.; Hassan, A.; Bourbigot, S. Synergistic Effect of Exfoliated Graphene Nanoplatelets and Non-Halogen Flame Retardants on Flame Retardancy and Thermal Properties of Kenaf Flour-PP Nanocomposites. J. Therm. Anal. Calorim. 2018, 134(3), 1681–1703. DOI: 10.1007/s10973-018-7833-3.
  • Idumah, C.; Hassan, A.; Ihuoma, D. Recently Emerging Trends in Polymer Nanocomposites Packaging Materials. Polym. Plast. Technol. Eng. 2019, 58(10), 1054–1109. DOI: 10.1080/03602559.2018.1542718.
  • Idumah, C. I.; Hassan, A.; Ogbu, J. E.; Ndem, J.; Oti, W.; Obiana, V. Electrical, Thermal and Flammability Properties of Conductive Filler Kenaf–Reinforced Polymer Nanocomposites. J. Therm. Compos. Mater. 2020, 33(4), 516–540. DOI: 10.1177/0892705718807957.
  • Idumah, C. I.; Obere, C. M. Understanding Interfacial Influence on Properties of Pol-Ymer Nanocomposites. Surf. Interf. 2021, 22, 100879. DOI: 10.1016/j.surfin.2020.100879.
  • Idumah, C. I.; Obele, M. C.; Ezeani, E. O. Understanding Interfacial Dispersions in Eco-Benign Polymer Nano-Biocomposites. Polym.-Plast. Technol. Mater. 2021, 60(3), 233–252. DOI: 10.1080/25740881.2020.1811312.
  • Idumah, C. I.; Obele, C. M.; Ezeani, E. O.; Hassan, A. Recently Emerging Nanotechnological Advancements in Polymer Nanocomposite Coatings for Anti-Corrosion, Anti-Fouling and Self-Healing. Surf. Interf. 2020, 21, 100734. DOI: 10.1016/j.surfin.2020.100734.
  • Idumah, C. I. Novel Trends in Selfhealable Polymer Nanocomposites. J. Thermoplast. Compos. Mater. 2019, 0892705719847247.
  • Idumah, C. I.; Zurina, M.; Hassan, A.; Norhayani, O.; Shuhadah, I. Recently Emerging Trends in Bone Replacement Polymer Nanocomposites. Nano. Poly. Comp. Biomed. Appl. 2019, 139–166.
  • Idumah, C. I. Advancements in Conducting Polymer Bionanocomposites, and Hy-Drogels for Biomedical Applications. Int. J. Polym. Mater. Polym. Biomater. 2020, 71(7), 513–530. DOI: 10.1080/00914037.2020.1857384.
  • Idumah, C. I.; EO, E.; Nwuzor, I. C. A Review: Advancements in Conductive Pol-Ymers Nanocomposites. Polym. Plast. Technol. Mater. 2020, 60(7), 756–783. DOI: 10.1080/25740881.2020.1850783.
  • Idumah, C. I. Influence of NT in Polymeric Textiles, Applications, and Fight Against COVID. J. Text. Inst. 2020, 112(12), 2056–2076. DOI: 10.1080/00405000.2020.1858600.
  • Idumah, C. I.; Nwabanne, J. T.; Tanjung, F. A. Novel Trends in Poly (Lactic) Acid Hybrid Bionanocomposites. Cleaner Mater. 2021, 2, 100022. DOI: 10.1016/j.clema.2021.100022.
  • Idumah, C. I.; Ezeani, O. E.; Okonkwo, U. C.; Nwuzor, I. C.; Odera, S. R. Novel Trends in MXene/Conducting Polymeric Hybrid Nanoclusters. J. Clust. Sci. 2022, 34(1), 1–32. DOI: 10.1007/s10876-022-02243-4.
  • Idumah, C. I. Recently Emerging Trends in Magnetic Polymer Hydrogel Nanoarchi-Tectures. Polym.-Plast. Technol. Mater. 1–32.
  • Idumah, C. I.; Okonkwo, U. C.; Obele, C. M. Recently Emerging Advancements in Montmorillonite Polymeric Nanoarchitectures and Applications. Cleaner Mater. 2022. DOI: 10.1016/j.clema.2022.100071.
  • Tanjung, F. A.; Kuswardani, R. A.; Idumah, C. I.; Siregar, J. P.; Karim, A. Characterization of Mechanical and Thermal Properties of Esterified Lignin Modified Poly-Propylene Composites Filled with Chitosan Fibers. Polym. Polym. Composites. 2022, 30, 096739112. DOI: 10.1177/09673911221082482.
  • Idumah, C. I. Recent Trends in MXene Polymeric Hydrogel Bionanoar-Chitectures and Applications. Cleaner Mater. 2022, 5, 100103. DOI: 10.1016/j.clema.2022.100103.
  • Idumah, C. I. Emerging Trends in Poly (Lactic-Co-Glycolic) Acid Bionano-Architectures and Applications. Cleaner Mater. 2022, 5, 100102. DOI: 10.1016/j.clema.2022.100102.
  • Idumah, C. I. A Review on Polyaniline and Graphene Nanocomposites for Supercapacitors. Polym. Plast. Technol. Eng. 2022, 61(17), 1871–1907. DOI: 10.1080/25740881.2022.2086810.
  • Idumah, C. I. Recent Advancements in Electromagnetic Interference Shield-Ing of Polymer and Mxene Nanocomposites. Polym. Plast. Technol. Eng. 2022, 62(1), 19–53. DOI: 10.1080/25740881.2022.2089581.
  • Idumah, C. I. Influence of Surfaces and Interfaces on MXene and MXene Hybrid Polymeric Nanoarchitectures, Properties, and Applications. J. Mater. Sci. 2022, 57(31), 14579–14619. DOI: 10.1007/s10853-022-07526-9.
  • Idumah, C. I. Characterization and Fabrication of Xerogel Polymeric Nanocomposites and Multifunctional Applications. 2022.
  • Idumah, C. I. Influence of Morphology and Architecture on Properties and Applications of MXene Polymeric Nanocomposites. J. Therm. Com. Mat. 2022, 08927057221122096. DOI: 10.1177/08927057221122096.
  • Idumah, C. I.; Nwuzor, I. C.; Odera, S. R.; Timothy, U. J.; Ngenegbo, U.; Tanjung, F. A. Recent Advances in Polymeric Hydrogel Nanoarchitectures for Drug Delivery Applications. Int. J. Polym. Mater. Polym. Biomater. 2022, 1–32. DOI: 10.1080/00914037.2022.2120875.
  • Idumah, C. I. Recently Emerging Advancements in Thermal Conductivity and Flame Retardancy of MXene Polymeric Nanoarchitectures. Polym.-Plast. Technol. Mater. 2022, 62(4), 510–546. DOI: 10.1080/25740881.2022.2121220.
  • Idumah, C. I. Recently Emerging Advancements in Polymeric Nanogel Nano-Architectures for Drug Delivery Applications. Int. J. Polym. Mater. Polym. Biomater. 2022, 1–13. DOI: 10.1080/00914037.2022.2124256.
  • Idumah, C. I. Design, Development, and Drug Delivery Applications of Graphene Polymeric Nanocomposites and Bionanocomposites. Emer. Mat. 2023, 1–31. DOI: 10.1007/s42247-023-00465-4.
  • Idumah, C. I. Recently Emerging Trends in Flame Retardancy of Phosphorene Polymeric Nanocomposites and Applications. J. Anal. Appl. Pyrolysis. 2023, 105855, 105855. DOI: 10.1016/j.jaap.2022.105855.
  • Idumah, C. I. Recent Advancements in Electromagnetic Interference Shielding of Polymer and Mxene Nanocomposites. Polym. Plast. Technol. Eng. 2023, 62(1), 19–53. DOI: 10.1080/25740881.2022.2089581.
  • Idumah, C. I. Phosphorene Polymeric Nanocomposites for Biomedical Applications: A Review. Int. J. Polym. Mater. Polym. Biomater. 2022, 1–18. DOI: 10.1080/00914037.2022.2158333.
  • Idumah, C. I. Emerging Advancements in Xerogel Polymeric Bionanoarchitectures and Applications. JCIS Open. 2022, 100073, 100073. DOI: 10.1016/j.jciso.2022.100073.
  • Idumah, C. I.; Low, J. H.; Emmanuel, E. O. Recently Emerging Trends in Xerogel Polymeric Nanoarchitectures and Multifunctional Applications. Polym. Bull. 2022, 1–31. DOI: 10.1007/s00289-022-04625-0.
  • Idumah, C. I. Recent Advances on Graphene Polymeric Bionanoarchitectures for Biomedicals. JCIS Open. 2022, 100070, 100070. DOI: 10.1016/j.jciso.2022.10007.
  • Idumah, C. I. Thermal Expansivity of Polymer Nanocomposites and Applications. Polym. Plast. Technol. Eng. 2023, 62(9), 1178–1203. DOI: 10.1080/25740881.2023.2204952.
  • Idumah, C. I. Novel Advancements in Xerogel Polymeric Nanoarchitectures and Multifunctional Applications. J. Porous Mater. 2023, 1–19 1. DOI: 10.1007/s10934-023-01446-y.
  • Idumah, C. I. Recently Emerging Advancements in Thermal Conductivity and Flame Retardancy of MXene Polymeric Nanoarchitectures. Polym. Plast. Technol. Eng. 2023, 62(4), 510–546. DOI: 10.1080/25740881.2022.2121220.
  • Idumah, C. I. MXene Polymeric Nanoarchitectures Mechanical, Deformation, and Failure Mechanism: A Review. Polym. Plast. Technol. Eng. 2023, 62(4), 443–466. DOI: 10.1080/25740881.2022.2114365.
  • Idumah, C. I. Multifunctional Properties Optimization and Stimuli-Responsivity of Shape Memory Polymeric Nanoarchitectures and Applications. Polym. Eng. Sci. 2023, 1. DOI: 10.1002/pen.26331.
  • Idumah, C. I. Design, Fabrication, Characterization and Properties of Metallic and Conductive Smart Polymeric Textiles for Multifunctional Applications. Nano-Struct. Nano-Object. 2023, 35, 100982. DOI: 10.1016/j.nanoso.2023.100982.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.