142
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study of PDMS-based flexible conductive elastomeric composite filled with rGO-CaCO3 nanocomposite

&
Pages 1776-1788 | Received 11 May 2023, Accepted 05 Jul 2023, Published online: 10 Jul 2023

References

  • Rahmani, H.; Najafi, S. H. M.; Ashori, A. Mechanical Performance of Epoxy/Carbon Fiber Laminated Composites. J. Reinf. Plast. Compos. 2014, 33(8), 733‐740. DOI: 10.1177/0731684413518255.
  • Gantayat, S.; Rout, D.; Swain, S. K. Carbon Nanomaterial–Reinforced Epoxy Composites: A Review. Polym. Plast. Technol. Eng. 2018, 57(1), 1‐16. DOI: 10.1080/03602559.2017.1298802.
  • Brasileiro, L.; Moreno-Navarro, F.; Tauste-Martínez, R.; Matos, J.; Rubio-Gámez, M. D. C. Reclaimed Polymers as Asphalt Binder Modifiers for More Sustainable Roads: A Review. Sustainability. 2019, 11(3), 646. DOI: 10.3390/su11030646.
  • Liu, T.; Chu, Q.; Yan, C.; Zhang, S.; Lin, Z.; Lu, J. Interweaving 3D Network Binder for High‐Areal‐Capacity Si Anode Through Combined Hard and Soft Polymers. Adv. Energy Mater. 2019, 9(3), 1802645. DOI: 10.1002/aenm.201802645.
  • Costa, L. M.; Silva, H. M.; Peralta, J.; Oliveira, J. R. Using Waste Polymers as a Reliable Alternative for Asphalt Binder Modification–Performance and Morphological Assessment. Constr. Build. Mater. 2019, 198, 237–244. DOI: 10.1016/j.conbuildmat.2018.11.279.
  • Schiavon, M. A.; Radovanovic, E.; Yoshida, I. V. P. Microstructural Characterisation of Monolithic Ceramic Matrix Composites from Polysiloxane and SiC Powder. Powder Techn. 2002, 123(2–3), 232–241. DOI: 10.1016/S0032-5910(01)00461-2.
  • Ding, X.; Zhou, S.; Gu, G.; Wu, L. A Facile and Large-Area Fabrication Method of Superhydrophobic Self-Cleaning Fluorinated Polysiloxane/TiO 2 Nanocomposite Coatings with Long-Term Durability. J. Mater. Chem. 2011, 21(17), 6161–6164. DOI: 10.1039/C0JM04546B.
  • Mazurek, P.; Vudayagiri, S.; Skov, A. L. How to Tailor Flexible Silicone Elastomers with Mechanical Integrity: A Tutorial Review. Chem. Soc. Rev. 2019, 48(6), 1448–1464. DOI: 10.1039/C8CS00963E.
  • Qi, L.; Weng, X.; Wei, B.; Yuan, L.; Huang, G.; Du, X.; Wu, X.; Liu, H. Effects of Low-Melting Glass Powder on the Thermal Stabilities of Low Infrared Emissivity Al/Polysiloxane Coatings. Prog. Org. Coat. 2020, 142, 105579. DOI: 10.1016/j.porgcoat.2020.105579.
  • Zalewski, K.; Chyłek, Z.; Trzciński, W. A. A Review of Polysiloxanes in Terms of Their Application in Explosives. Polymers. 2021, 13(7), 1080. DOI: 10.3390/polym13071080.
  • Dvornic, P. R. Thermal Properties of Polysiloxanes. Silicon-Containing Polymers: The Science and Technology of Their Synthesis and Applications. 2000; pp. 185–212. DOI: 10.1007/978-94-011-3939-7_7.
  • Bosq, N.; Guigo, N.; Persello, J.; Sbirrazzuoli, N. Melt and Glass Crystallization of PDMS and PDMS Silica Nanocomposites. Phys. Chem. Chem. Phys. 2014, 16(17), 7830–7840. DOI: 10.1039/C4CP00164H.
  • Chandrasekhar, V. Inorganic and Organometallic Polymers; Springer: Berlin, 2005; pp. 209–248. DOI: 10.1007/b137079.
  • Ponnamma, D.; Cabibihan, J. J.; Rajan, M.; Pethaiah, S. S.; Deshmukh, K.; Gogoi, J. P.; Pasha, S. K.; Ahamed, M. B.; Krishnegowda, J.; Chandrashekar, B. N., et al. Synthesis, Optimization and Applications of ZnO/Polymer Nanocomposites. Mater. Sci. Eng. C. 2019, 98, 1210–1240. DOI: 10.1016/j.msec.2019.01.081.
  • Borysiewicz, M. A. ZnO as a Functional Material, a Review. Crystals. 2019, 9(10), 505. DOI: 10.3390/cryst9100505.
  • Tian, H. C.; Liu, J. Q.; Wei, D. X.; Kang, X. Y.; Zhang, C.; Du, J. C.; Yang, B.; Chen, X.; Zhu, H. Y.; NuLi, Y. N., et al. Graphene Oxide Doped Conducting Polymer Nanocomposite Film for Electrode-Tissue Interface. Biomaterials. 2014, 35(7), 2120–2129. DOI: 10.1016/j.biomaterials.2013.11.058.
  • Yang, X.; Zhang, L.; Zhang, F.; Zhang, T.; Huang, Y.; Chen, Y. 2014 a High-Performance All-Solid-State Supercapacitor with Graphene-Doped Carbon Material Electrodes and a Graphene Oxide-Doped Ion Gel Electrolyte. Carbon. 2014, 72, 381–386. DOI: 10.1016/j.carbon.2014.02.029.
  • Kandulna, R.; Choudhary, R. B.; Maji, P. 2017 Ag-Doped ZnO Reinforced Polymeric Ag: ZnO/PMMA Nanocomposites as Electron Transporting Layer for OLED Application. J. Inorg. Organomet. Polym. 2017, 27(6), 1760–1769. DOI: 10.1007/s10904-017-0639-0.
  • Alhazime, A. A. Effect of Nano CuO Doping on Structural, Thermal and Optical Properties of PVA/PEG Blend. J. Inorg. Organomet. Polym. 2020, 30(11), 4459–4467. DOI: https://doi.org/10.1007/s10904-020-01577-8.
  • Sarkar, B.; Alexandridis, P. Block Copolymer-Nanoparticle Composites: Structure, functional Properties, and Processing. Prog. Polym. Sci. 2015, 40, 33–62. DOI: 10.1016/j.progpolymsci.2014.10.009.
  • Zhang, L.; Chen, Y.; Li, Z.; Li, L.; Saint-Cricq, P.; Li, C.; Lin, J.; Wang, C.; Su, Z.; Zink, J. I. Tailored Synthesis of Octopus-Type Janus Nanoparticles for Synergistic Actively-Targeted and Chemo-Photothermal Therapy. Angew. Chem. Int. Ed. 2016, 55(6), 2118–2121. DOI: 10.1002/anie.201510409.
  • Chen, J.; Cui, X.; Sui, K.; Zhu, Y.; Jiang, W. Balance the Electrical Properties and Mechanical Properties of Carbon Black Filled Immiscible Polymer Blends with a Double Percolation Structure. Compos. Sci. Technol. 2017, 140, 99–105. DOI: 10.1016/j.compscitech.2016.12.029.
  • Hu, J.; Lin, J.; Zhang, Y.; Lin, Z.; Qiao, Z.; Liu, Z.; Yang, W.; Liu, X.; Dong, M.; Guo, Z. A New Anti-Biofilm Strategy of Enabling Arbitrary Surfaces of Materials and Devices with Robust Bacterial Anti-Adhesion via a Spraying Modified Microsphere Method. J. Mater. Chem. A. 2019, 7(45), 26039–26052. DOI: 10.1039/C9TA07236E.
  • Zhang, Y.; An, Y.; Wu, L.; Chen, H.; Li, Z.; Dou, H.; Murugadoss, V.; Fan, J.; Zhang, X.; Mai, X., et al. Metal-Free Energy Storage Systems: Combining Batteries with Capacitors Based on a Methylene Blue Functionalized Graphene Cathode. J. Mater. Chem. A. 2019, 7(34), 19668–19675. DOI: https://doi.org/10.1039/C9TA06734E.
  • Li, S. W.; Yang, P. P.; Liu, X. H.; Zhang, J. X.; Xie, W.; Wang, C.; Liu, C. T.; Guo, Z. H. Graphene Oxide Based Dopamine Mussel-Like Cross-Linked Polyethylene Imine Nanocomposite Coating with Enhanced Hexavalent Uranium Adsorption. J. Mater. Chem. A. 2019, 7(28), 16902–16911. DOI: 10.1039/C9TA04562G.
  • Gu, H.; Xu, X.; Cai, J.; Wei, S.; Wei, H.; Liu, H.; Young, D. P.; Shao, Q.; Wu, S.; Ding, T., et al. Controllable Organic Magnetoresistance in Polyaniline Coated Poly (P-Phenylene-2, 6-Benzobisoxazole) Short Fibers. Chem. Commun. 2019, 55(68), 10068–10071. DOI: 10.1039/C9CC04789A.
  • Wang, Y.; Jiang, D.; Zhang, L.; Li, B.; Sun, C.; Yan, H.; Wu, Z.; Liu, H.; Zhang, J.; Fan, J., et al. Hydrogen Bonding Derived Self-Healing Polymer Composites Reinforced with Amidation Carbon Fibers. Nanotechnology. 2020, 2020(2), 31, 025704.
  • Guo, Y.; Yang, X.; Ruan, K.; Kong, J.; Dong, M.; Zhang, J.; Gu, J.; Guo, Z. Reduced Graphene Oxide Heterostructured Silver Nanoparticles Significantly Enhanced Thermal Conductivities in Hot-Pressed Electrospun Polyimide Nanocomposites. ACS Appl. Mater. Interfaces. 2019, 11(28), 25465–25473. DOI: 10.1021/acsami.9b10161.
  • Chen, J.; Zhu, Y.; Huang, J.; Zhang, J.; Pan, D.; Zhou, J.; Ryu, J. E.; Umar, A.; Guo, Z. Advances in Responsively Conductive Polymer Composites and Sensing Applications. Polym. Rev. 2021, 61(1), 157–193. DOI: 10.1080/15583724.2020.1734818.
  • Zheng, Z.; Olayinka, O.; Li, B. 2S-Soy Protein-Based Biopolymer as a Non-Covalent Surfactant and Its Effects on Electrical Conduction and Dielectric Relaxation of Polymer Nanocomposites. Eng. Sci. 2018, 4, 87–99. DOI: 10.30919/es8d766.
  • Zhao, S.; Li, J.; Cao, D.; Zhang, G.; Li, J.; Li, K.; Yang, Y.; Wang, W.; Jin, Y.; Sun, R., et al. Recent Advancements in Flexible and Stretchable Electrodes for Electromechanical Sensors: Strategies, Materials, and Features. ACS Appl. Mater. Interfaces. 2017, 9(14), 12147–12164. DOI: 10.1021/acsami.6b13800.
  • Ji, L.; Meduri, P.; Agubra, V.; Xiao, X.; Alcoutlabi, M. Graphene‐Based Nanocomposites for Energy Storage. Adv. Energy Mater. 2016, 6(16), 1502159. DOI: 10.1002/aenm.201502159.
  • Borah, B.; Dash, R. K. Improved Dielectric Properties of rGO/PDMS Composites by Incorporation of Ag Nanoparticles. J. Mater. Sci. Mater. Electron. 2022, 33(15), 12334–12350. DOI: 10.1007/s10854-022-08191-z.
  • Amjadi, M.; Kyung, K. U.; Park, I.; Sitti, M. Stretchable, Skin‐Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Adv. Funct. Mater. 2016, 26(11), 1678–1698. DOI: https://doi.org/10.1002/adfm.201504755.
  • Xie, L.; Zhu, Y. Tune the Phase Morphology to Design Conductive Polymer Composites: A Review. Polym. Compos. 2018, 39(9), 2985–2996. DOI: 10.1002/pc.24345.
  • Zheng, Y.; Wang, X.; Wu, G. Chemical Modification of Carbon Fiber with Diethylenetriaminepentaacetic Acid/Halloysite Nanotube as a Multifunctional Interfacial Reinforcement for Silicone Resin Composites. Polym. Adv. Technol. 2020, 31(3), 527–535. DOI: 10.1002/pat.4793.
  • Zheng, Y.; Chen, L.; Wang, X.; Wu, G. Modification of Renewable Cardanol Onto Carbon Fiber for the Improved Interfacial Properties of Advanced Polymer Composites. Polymers. 2019, 12(1), 45. DOI: 10.3390/polym12010045.
  • Gu, H.; Xu, X.; Dong, M.; Xie, P.; Shao, Q.; Fan, R.; Liu, C.; Wu, S.; Wei, R.; Guo, Z. Carbon Nanospheres Induced High Negative Permittivity in Nanosilver-Polydopamine Metacomposites. Carbon. 2019, 147, 550–558. DOI: 10.1016/j.carbon.2019.03.028.
  • Jiang, D.; Wang, Y.; Li, B.; Sun, C.; Wu, Z.; Yan, H.; Xing, L.; Qi, S.; Li, Y.; Liu, H., et al. Flexible Sandwich Structural Strain Sensor Based on Silver Nanowires Decorated with Self-Healing Substrate. Macromol. Mater. Eng. 2019, 304, 1900074. DOI: 10.1002/mame.201900074.
  • Shubham, S. K.; Purohit, R.; Yadav, P. S.; Rana, R. S. Study of Nano-Fillers Embedded in Polymer Matrix Composites to Enhance Its Properties–A Review. Mater. Today Proc. 2020, 26, 3024–3029. DOI: 10.1016/j.matpr.2020.02.629.
  • Zhao, Y.; Wu, Z.; Guo, S.; Zhou, Z.; Miao, Z.; Xie, S.; Huang, R.; Li, L. Hyperbranched Graphene Oxide Structure-Based Epoxy Nanocomposite with Simultaneous Enhanced Mechanical Properties, Thermal Conductivity, and Superior Electrical Insulation. Compos. Sci. Technol. 2022, 217, 109082. DOI: 10.1016/j.compscitech.2021.109082.
  • Liu, Z.; Hong, P.; Huang, Z.; Zhang, T.; Xu, R.; Chen, L.; Xiang, H.; Liu, X. Self-Healing, Reprocessing and 3D Printing of Transparent and Hydrolysis-Resistant Silicone Elastomers. Chem. Eng. J. 2020, 387, 124142. DOI: 10.1016/j.cej.2020.124142.
  • Tang, J.; Yao, W.; Li, W.; Xu, J.; Jin, L.; Zhang, J.; Xu, Z. Study on a Novel Composite Coating Based on PDMS Doped with Modified Graphene Oxide. J. Coat. Technol. Res. 2018, 15(2), 375–383. DOI: https://doi.org/10.1007/s11998-017-9991-9.
  • Talley, S. J.; Branch, B.; Welch, C. F.; Park, C. H.; Watt, J.; Kuettner, L.; Patterson, B.; Dattelbaum, D. M.; Lee, K. S. Impact of Filler Composition on Mechanical and Dynamic Response of 3-D Printed Silicone-Based Nanocomposite Elastomers. Compos. Sci. Technol. 2020, 198, 108258. DOI: 10.1016/j.compscitech.2020.108258.
  • Cavas, L.; Yildiz, P. G.; Mimigianni, P.; Sapalidis, A.; Nitodas, S. Reinforcement Effects of Multiwall Carbon Nanotubes and Graphene Oxide on PDMS Marine Coatings. J. Coat. Technol. Res. 2018, 15(1), 105–120. DOI: https://doi.org/10.1007/s11998-017-9956-z.
  • Tong, H.; Chen, H.; Zhao, Y.; Liu, M.; Cheng, Y.; Lu, J.; Tao, Y.; Du, J.; Wang, H. Robust PDMS-Based Porous Sponge with Enhanced Recyclability for Selective Separation of an Oil-Water Mixture. Colloids Surf. A Physicochem. Eng. Aspects. 2022, 648, 129228. DOI: 10.1016/j.colsurfa.2022.129228.
  • Bera, R.; Maitra, A.; Paria, S.; Karan, S. K.; Das, A. K.; Bera, A.; Si, S. K.; Halder, L.; De, A.; Khatua, B. B. An Approach to Widen the Electromagnetic Shielding Efficiency in PDMS/Ferrous Ferric Oxide Decorated RGO–SWCNH Composite Through Pressure Induced Tunability. Chem. Eng. J. 2018, 335, 501–509. DOI: 10.1016/j.cej.2017.10.178.
  • Yang, Y. F.; Yang, H.; Shang, J. C.; Zhao, W. H.; Yan, X.; Wan, Z. S.; Lei, H. S.; Chen, H. S. A High-Sensitivity Flexible PDMS@ Rgo-Based Pressure Sensor with an Ultra-Wide Working Range Based on a Bioinspired Gradient Hierarchical Structure with Coplanar Electrodes. Compos. Sci. Technol. 2023, 240, 110078. DOI: 10.1016/j.compscitech.2023.110078.
  • Zhou, X.; Ding, C.; Cheng, C.; Liu, S.; Duan, G.; Xu, W.; Liu, K.; Hou, H. Mechanical and Thermal Properties of Electrospun Polyimide/rGO Composite Nanofibers via in-Situ Polymerization and in-Situ Thermal Conversion. Eur. Polym. J. 2020, 141, 110083. DOI: 10.1016/j.eurpolymj.2020.110083.
  • Smith, A. T.; LaChance, A. M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, Properties, and Applications of Graphene Oxide/Reduced Graphene Oxide and Their Nanocomposites. Nano Mater. Sci. 2019, 1(1), 31–47. DOI: 10.1016/j.nanoms.2019.02.004.
  • Wang, Z.; Nelson, J. K.; Hillborg, H.; Zhao, S.; Schadler, L. S. Graphene Oxide Filled Nanocomposite with Novel Electrical and Dielectric Properties. Adv.Mate. 2012, 24(23), 3134–3137. DOI: 10.1002/adma.201200827.
  • Hu, K.; Kulkarni, D. D.; Choi, I.; Tsukruk, V. V. Graphene-polymer nanocomposites for structural and functional applications. Prog. Polym. Sci. 2014, 39(11), 1934–1972. DOI: 10.1016/j.progpolymsci.2014.03.001.
  • Ansari, S.; Rahima, C.; Muralidharan, M. N. Photomechanical Characteristics of Thermally Reduced Graphene Oxide – Polydimethylsiloxane Nanocomposites. Polym.-Plast. Technol. Eng. 2013, 52(15), 1604–1610. DOI: 10.1080/03602559.2013.828232.
  • Soriano-Ortiz, J. A.; Rueda-Morales, G.; Martínez-Guitiérrez, H.; Rojas-Trigos, J. B.; Ortega-Cervantez, G.; Ortiz-López, J. Thermal and electrical properties enhancement of a nanocomposite of industrial silicone rubber filled with reduced graphene oxide. Fuller. Nanotub. Carbon Nanostructures. 2022, 30(2), 221–231. DOI: 10.1080/1536383X.2021.1929189.
  • Kalat, M. N.; Razzaghi-Kashani, M. The role of reduced graphene oxide as a secondary filler in improving the performance of silica-filled styrene-butadiene rubber compounds. Polym. J. 2022, 54(3), 355–365. DOI: 10.1038/s41428-021-00570-3.
  • Mensah, B.; Konadu, D. S.; Agyei-Tuffour, B.; Roghani-Mamaqani, H. Effects of graphene oxide and reduced graphene oxide on the mechanical and dielectric properties of acrylonitrile-butadiene rubber and ethylene-propylene-diene-monomer blend. Int. J. Polym. Sci. 2022, 2022, 1–17. DOI: 10.1155/2022/8038386.
  • https://nanoresearchlab.in/
  • https://www.sigmaaldrich.com/
  • Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Stat. Sol. (b). 1966, 15(2), 627–637. DOI: 10.1002/pssb.19660150224.
  • Singh, P. K.; Das, A. K.; Hatui, G.; Nayak, G. C. Shape-controlled green synthesis of CuO nanoparticles through the ultrasonic assisted electrochemical discharge process and its application for supercapacitor. Mater. Chem. Phys. 2017, 2017, 198 16–34. DOI: 10.1016/j.matchemphys.2017.04.070.
  • Anooja, J. B.; Dijith, K. S.; Surendran, K. P.; Subodh, G. A simple strategy for flexible electromagnetic interference shielding: Hybrid rGO@ CB-Reinforced polydimethylsiloxane. J. Alloys Compound. 2019, 807, 151678. DOI: 10.1016/j.jallcom.2019.151678.
  • Noah, A. Z.; El Semary, M. A.; Youssef, A. M.; El-Safty, M. A. Enhancement of yield point at high pressure high temperature wells by using polymer nanocomposites based on ZnO & CaCO3 nanoparticles. Egypt. J. Pet. 2017, 26(1), 33–40. DOI: 10.1016/j.ejpe.2016.03.002.
  • Render, D.; Samuel, T.; King, H.; Vig, M.; Jeelani, S.; Babu, R. J.; Rangari, V. Biomaterial-derived calcium carbonate nanoparticles for enteric drug delivery. J. Nanomater. 2016, 2016, 1–8. DOI: 10.1155/2016/3170248.
  • Kumar, A.; Sadanandhan, A. M.; Jain, S. L. Silver doped reduced graphene oxide as a promising plasmonic photocatalyst for oxidative coupling of benzylamines under visible light irradiation. New. J. Chem. 2019, 43(23), 9116–9122. DOI: https://doi.org/10.1039/C9NJ00852G.
  • Zhang, Y.; Zhu, Y.; Lin, G.; Ruoff, R. S.; Hu, N.; Schaefer, D. W.; Mark, J. E. What factors control the mechanical properties of poly (dimethylsiloxane) reinforced with nanosheets of 3-aminopropyltriethoxysilane modified graphene oxide?. Polymer. 2013, 54(14), 3605–3611. DOI: 10.1016/j.polymer.2013.04.057.
  • Ying, P.; Liang, T.; Du, Y.; Zhang, J.; Zeng, X.; Zhong, Z. Thermal transport in planar sp2-hybridized carbon allotropes: A comparative study of biphenylene network, pentaheptite and graphene. Int. J. Heat Mass Transfer. 2022, 183, 122060. DOI: 10.1016/j.ijheatmasstransfer.2021.122060.
  • Rane, A. V.; Kanny, K.; Abitha, V. K.; Thomas, S. Methods for synthesis of nanoparticles and fabrication of nanocomposites. In Synthesis of inorganic nanomaterials; Woodhead publishing: 2018; pp. 121–139. DOI: 10.1016/B978-0-08-101975-7.00005-1
  • Valmalette, J. C.; Tan, Z.; Abe, H.; Ohara, S. Raman scattering of linear chains of strongly coupled Ag nanoparticles on SWCNTs. Sci. Rep. 2014, 4(1), 1–8. DOI: 10.1038/srep05238.
  • Fan, X.; Khosravi, F.; Rahneshin, V.; Shanmugam, M.; Loeian, M.; Jasinski, J.; Cohn, R. W.; Terentjev, E.; Panchapakesan, B. MoS2 actuators: reversible mechanical responses of MoS2-polymer nanocomposites to photons. Nanotechnology. 2015, 26(26), 261001. DOI: 10.1088/0957-4484/26/26/261001.
  • Tripathy, P.; Biswas, S. Mechanical and thermal properties of basalt fiber reinforced epoxy composites modified with CaCO3 nanoparticles. Polym. Compos. 2022, 43(11), 7789–7803. DOI: 10.1002/pc.26883.
  • Liu, X.; Wu, Y.; Zhao, X.; Wang, Z. Fabrication and applications of bioactive chitosan-based organic-inorganic hybrid materials: A review. Carbohydr. Polym. 2021, 2021, 267 118179. DOI: 10.1016/j.carbpol.2021.118179.
  • Yaseen, S. A.; Yiseen, G. A.; Li, Z. Synthesis of calcium carbonate in alkali solution based on graphene oxide and reduced graphene oxide. J. Solid State Chem. 2018, 262, 127–134. DOI: 10.1016/j.jssc.2018.03.005.
  • Islam, P.; Sehrawat, S. S.; Ahmad, P.; Mishra, S.; Ahmad, S. Reduced graphene oxide (rGO) based wideband optical sensor and the role of Temperature, Defect States, and Quantum Efficiency. Sci. Rep. 2018, 8(1), 1–13. DOI: 10.1038/s41598-018-21686-2.
  • Son, Y. R.; Park, S. J. Green preparation and Characterization of graphene oxide/carbon nanotubes-loaded carboxymethyl cellulose nanocomposites. Sci. Rep. 2018, 8(1), 1–10. DOI: 10.1038/s41598-018-35984-2.
  • Borah, B.; Rajitha, G.; Dash, R. K. Correlation between the thickness and properties of the ethanol treated G.O.–PDMS based composite materials. J. Mater. Sci. Mater. Electron. 2018, 29(23), 20216–20224. DOI: 10.1007/s10854-018-0154-2.
  • Sengun, P.; Kesim, M. T.; Caglar, M.; Savaci, U.; Turan, S.; Sahin, İ.; Suvaci, E. Characterization of designed, transparent and conductive Al doped ZnO particles and their utilization in conductive polymer composites. Powder Techn. 2020, 374, 214–222. DOI: 10.1016/j.powtec.2020.07.025.
  • Ashokkumar, S. P.; Vijeth, H.; Yesappa, L.; Niranjana, M.; Vandana, M.; Devendrappa, H. Electrochemically synthesized polyaniline/copper oxide nano composites: To study optical band gap and electrochemical performance for energy storage devices. Inorg. Chem. Commun. 2020, 115, 107865. DOI: 10.1016/j.inoche.2020.107865.
  • Murad, R. A.; Iraqi, A.; Aziz, S. B.; Abdullah, N. S.; Brza, M. A. Conducting polymers for optoelectronic devices and organic solar cells: A review. Polymers. 2020, 12(11), 2627. DOI: 10.3390/polym12112627.
  • Krishnaswamy, S.; Panigrahi, P.; Kumaar, S.; Nagarajan, G. S. Effect of conducting polymer on photoluminescence quenching of green synthesized ZnO thin film and its photocatalytic properties. Nano-Struct. Nano-Object. 2020, 22, 100446. DOI: 10.1016/j.nanoso.2020.100446.
  • Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene oxide: synthesis, properties, and applications. Adv.Mate. 2010, 22(35), 3906–3924. DOI: 10.1002/adma.201001068.
  • Song, B.; Wu, Z.; Zhu, Y.; Moon, K. S.; Wong, C. P. Three-dimensional graphene-based composite for flexible electronic applications. 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), 2015 May. pp. 1803–1807. IEEE. DOI: 10.1109/ECTC.2015.7159843
  • Ghouri, Z. K.; Barakat, N. A.; Alam, A. M.; Alsoufi, M. S.; Bawazeer, T. M.; Mohamed, A. F.; Kim, H. Y. Synthesis and Characterization of Nitrogen-doped &CaCO3-decorated reduced graphene oxide nanocomposite for electrochemical supercapacitors. Electrochim. Acta. 2015, 184, 193–202. DOI: 10.1016/j.electacta.2015.10.069.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.