137
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Effect of functionalization and defects in carbon nanotube on mechanical properties and creep behavior of nitrile butadiene rubber composites: A molecular dynamics approach

, , &
Pages 1998-2014 | Received 26 Dec 2022, Accepted 28 Jul 2023, Published online: 03 Aug 2023

References

  • Kim, H. J.; Kim, D. E. Molecular Dynamics Simulation of Atomic-Scale Frictional Behavior of Corrugated Nano-Structured Surfaces. Nanoscale. 2012, 4(13), 3937–3944. DOI: 10.1039/c2nr30691c.
  • Wang, X.; Chen, D.; Zhong, W.; Zhang, L.; Fan, X.; Cai, Z.; Zhu, M. Experimental and Theoretical Evaluations of the Interfacial Interaction Between Carbon Nanotubes and Carboxylated Butadiene Nitrile Rubber: Mechanical and Damping Properties. Mater. Des. 2020, 186, 108318. DOI: 10.1016/j.matdes.2019.108318.
  • Li, Q.; Dong, Y.; Perez, D.; Martini, A.; Carpick, R. W. Speed Dependence of Atomic Stick-Slip Friction in Optimally Matched Experiments and Molecular Dynamics Simulations. Phys. Rev. Lett. 2011, 106(12), 1–4. DOI: 10.1103/PhysRevLett.106.126101.
  • Palaty, S.; Joseph, R. Low Temperature Curing of NBR for Property Improvement. J. Elastomers Plast. 2006, 38(3), 199–209. DOI: 10.1177/0095244306063479.
  • Arash, B.; Wang, Q.; Varadan, V. K. Mechanical Properties of Carbon Nanotube/Polymer Composites. Sci. Rep. 2014, 4(1), 1–8. DOI: 10.1038/srep06479.
  • Liang, Y.; Han, Q.; Xin, H. Elastic Properties of Carbon Nanotubes. J. Comput. Theor. Nanosci. 2013, 10(5), 1061–1071. DOI: 10.1166/jctn.2013.2807.
  • Adohi, B. J. P.; Mdarhri, A.; Prunier, C.; Haidar, B.; Brosseau, C. A Comparison Between Physical Properties of Carbon Black-Polymer and Carbon Nanotubes-Polymer Composites. J. Appl. Phys. 2010, 108(7). DOI: 10.1063/1.3486491.
  • Dai, H.; Wong, E. W.; Lieber, C. M. Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes. Science. 1996, 272(5261), 523–526. DOI: 10.1126/science.272.5261.523.
  • Zhao, J.; Park, H.; Han, J.; Lu, J. P. Electronic Properties of Carbon Nanotubes with Covalent Sidewall Functionalization. J. Phys. Chem B. 2004, 108(14), 4227–4230. DOI: 10.1021/jp036814u.
  • Iijima, S. Helical Microtubules of Graphitic Carbon. Nature. 1991, 354(6348), 56–58. DOI: 10.1038/354056a0.
  • Kim, H.; Abdala, A. A.; MacOsko, C. W. Graphene/Polymer Nanocomposites. Macromolecules. 2010, 43(16), 6515–6530. DOI: 10.1021/ma100572e.
  • Li, Y.; Wang, Q.; Wang, S. A Review on Enhancement of Mechanical and Tribological Properties of Polymer Composites Reinforced by Carbon Nanotubes and Graphene Sheet: Molecular Dynamics Simulations. Compos.: Part B. 2019, 160, 348–361. December 2018. DOI: 10.1016/j.compositesb.2018.12.026.
  • Sharma, S. Molecular Dynamics Simulation of Nanocomposites Using BIOVIA Materials Studio, Lammps and Gromacs; Mattthew Deans, 2019. DOI: 10.1016/B978-0-12-816954-4.00006-1.
  • Singaravel, D. K.; Sharma, S.; Kumar, P. Recent Progress in Experimental and Molecular Dynamics Study of Carbon Nanotube Reinforced Rubber Composites: A Review. Polym. Technol. Mater. 2022, 1–34. DOI: 10.1080/25740881.2022.2084411.
  • Ji, L.; Chen, L.; Lin, L.; Wang, S. Mechanical Properties of Amide Functionalized CNT/NBR at Different Temperatures: A Molecular Dynamics Study. Polymers (Basel). 2022, 14(7), 1307. DOI: 10.3390/polym14071307.
  • Liu, X.; Huang, J.; Yang, C.; Wang, P.; Xing, S.; Zhong, D.; Zhou, X. Effects of Graphene and CNTs Reinforcement on the Friction Mechanism of Nitrile Butadiene Rubber Under Water Lubrication Conditions. Wear. 2022, 500-501(March), 204334. DOI: 10.1016/j.wear.2022.204334.
  • Zhang, H.; Zhou, Z.; Qiu, J.; Chen, P.; Sun, W. Defect Engineering of Carbon Nanotubes and Its Effect on Mechanical Properties of Carbon Nanotubes/Polymer Nanocomposites: A Molecular Dynamics Study. Compos. Commun. 2021, 28(April), 100911. DOI: 10.1016/j.coco.2021.100911.
  • Cui, J.; Zhao, J.; Wang, S.; Wang, Y.; Li, Y. Effects of Carbon Nanotubes Functionalization on Mechanical and Tribological Properties of Nitrile Rubber Nanocomposites: Molecular Dynamics Simulations. Comput. Mater. Sci. 2021, 196(April), 110556. DOI: 10.1016/j.commatsci.2021.110556.
  • Teng, F.; Wu, J.; Su, B.; Wang, Y. Enhanced Tribological Properties of Vulcanized Natural Rubber Composites by Applications of Carbon Nanotube: A Molecular Dynamics Study. Nanomaterials. 2021, 11(9), 2464. DOI: 10.3390/nano11092464.
  • Li, X.; Zhang, X.; Chen, J.; Huang, L.; Lv, Y. The Mechanical Properties and Creep Behavior of Epoxy Polymer Under the Marine Environment: A Molecular Dynamics Investigation. Mater. Today Commun. 2021, 28(August), 102737. DOI: 10.1016/j.mtcomm.2021.102737.
  • Jian, W.; Lau, D. Creep Performance of CNT-Based Nanocomposites: A Parametric Study. Carbon. 2019, 153, 745–756. DOI: 10.1016/j.carbon.2019.07.069.
  • Dhawan, M.; Dondapati, R. S.; Sharma, S., “Mechanical Characterization of Defective Single-Walled Carbon Nanotubes Reinforced Natural Rubber Composites,” Proc. - 4th Int. Conf. Comput. Sci. ICCS 2018, pp. 209–212, 2019. DOI: 10.1109/ICCS.2018.00042.
  • Rahimian-Koloor, S. M.; Hashemianzadeh, S. M.; Shokrieh, M. M. Effect of CNT Structural Defects on the Mechanical Properties of CNT/Epoxy Nanocomposite. Phys. B Condens. Matter. 2018, 540, 16–25. DOI: 10.1016/j.physb.2018.04.012.
  • Čanađija, M.; Brčić, M.; Brnić, J. Elastic Properties of Nanocomposite Materials: Influence of Carbon Nanotube Imperfections and Interface Bonding. Meccanica. 2017, 52(7), 1655–1668. DOI: 10.1007/s11012-016-0516-x.
  • Lv, Q.; Wang, Z.; Chen, S.; Li, C.; Sun, S.; Hu, S. Effects of Single Adatom and Stone-Wales Defects on the Elastic Properties of Carbon Nanotube/Polypropylene Composites: A Molecular Simulation Study. Int. J. Mech. Sci. 2017, 131–132(August), 527–534. DOI: 10.1016/j.ijmecsci.2017.08.001.
  • Alian, A. R.; Meguid, S. A.; Kundalwal, S. I. Unraveling the Influence of Grain Boundaries on the Mechanical Properties of Polycrystalline Carbon Nanotubes. Carbon. 2017, 125, 180–188. DOI: 10.1016/j.carbon.2017.09.056.
  • Kundalwal, S. I.; Choyal, V. Transversely Isotropic Elastic Properties of Carbon Nanotubes Containing Vacancy Defects Using MD. Acta Mech. 2018, 229(6), 2571–2584. DOI: 10.1007/s00707-018-2123-5.
  • Kothari, R.; Kundalwal, S. I.; Sahu, S. K. Transversely Isotropic Thermal Properties of Carbon Nanotubes Containing Vacancies. Acta Mech. 2018, 229(7), 2787–2800. DOI: 10.1007/s00707-018-2145-z.
  • Mishra, S.; Maware, P. P.; Choyal, V.; Kundalwal, S. I. Atomistic Insights into the Fracture Mechanisms of Stone–Wales-defected CNTs Under Transversely Isotropic Loading. Eur. Phys. J. Plus. 2023, 138(5), 443. DOI: 10.1140/epjp/s13360-023-04104-z.
  • Ajori, S.; Ansari, R.; Haghighi, S. A Molecular Dynamics Study on the Buckling Behavior of Cross-Linked Functionalized Carbon Nanotubes Under Physical Adsorption of Polymer Chains. Appl. Surf. Sci. 2018, 427(Part B), 704–714. DOI: 10.1016/j.apsusc.2017.08.049.
  • Ajori, S.; Boroushak, S. H.; Ansari, R. Fracture Analysis and Tensile Properties of Perfect and Defective Carbon Nanotubes Functionalized with Carbene Using Molecular Dynamics Simulations. J. Braz. Soc. Mech. Sci. Eng. 2020, 42(9), 450. DOI: 10.1007/s40430-020-02530-z.
  • Polyak, B. T. The Conjugate Gradient Method in Extremal Problems. USSR Comput. Math. Math. Phys. 1969, 9(4), 94–112. DOI: 10.1016/0041-5553(69)90035-4.
  • Sun, H. Compass: An Ab Initio Force-Field Optimized for Condensed-Phase Applications - Overview with Details on Alkane and Benzene Compounds. J. Phys. Chem B. 1998, 102(38), 7338–7364. DOI: 10.1021/jp980939v.
  • Zhou, M.; Liu, J.; Hou, G.; Yang, H.; Zhang, L. Study on Structures, Dynamics and Mechanical Properties of Styrene Butadiene Rubber (SBR)/Silica Interfaces: A Fully Atomistic Molecular Dynamics. Polymer (Guildf.). 2021, 218(January), 123523. DOI: 10.1016/j.polymer.2021.123523.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.