77
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and characterization of functional thermoresponsive photoactive copolymers and study of their thermal and photoluminescence properties

&
Pages 2273-2285 | Received 10 Apr 2023, Accepted 16 Aug 2023, Published online: 11 Sep 2023

References

  • Laukkanen, A.; Valtola, L.; Winnik, F. M.; Tenhu, H. Formation of Colloidally Stable Phase Separated Poly(N-Vinylcaprolactam) in Water: A Study by Dynamic Light Scattering, Microcalorimetry, and Pressure Perturbation Calorimetry. Macromolecules. 2004, 37(6), 2268–2274. DOI: 10.1021/ma035124l.
  • Hoare, T.; Pelton, R. Calorimetric Analysis of Thermal Phase Transitions in Functionalized Microgels. J. Phys. Chem B. 2007, 111(6), 1334–1342. DOI: 10.1021/jp066916v.
  • Barker, I. C.; Cowie, J. M. G.; Huckerby, T. N.; Shaw, D. A.; Soutar, I.; Swanson, L. Studies of the “Smart” Thermoresponsive Behavior of Copolymers of N-Isopropylacrylamide and N,N-Dimethylacrylamide in Dilute Aqueous Solution. Macromolecules. 2003, 36(20), 7765–7770. DOI: 10.1021/ma034250m.
  • Hahn, M.; Görnitz, E.; Dautzenberg, H. Synthesis and Properties of Ionically Modified Polymers with LCST Behavior. Macromolecules. 1998, 31(17), 5616–5623. DOI: 10.1021/ma9800010.
  • Tanaka, F.; Koga, T.; Winnik, F. M. Temperature-Responsive Polymers in Mixed Solvents: Competitive Hydrogen Bonds Cause Cononsolvency. Phys. Rev. Lett. 2008, 101(2), 1–4. DOI: 10.1103/PhysRevLett.101.028302.
  • Tsubouchi, T.; Nishida, K.; Kanaya, T. Lower Critical Solution Temperature Type of Phase Separation in Aqueous Mixture of Polyelectrolytes. Colloids Surf. B Biointerfaces. 2007, 56(1–2), 265–269. DOI: 10.1016/j.colsurfb.2006.10.035.
  • Smith, A. E.; Xu, X.; Kirkland-York, S. E.; Savin, D. A.; McCormick, C. L. “Schizophrenic” Self-Assembly of Block Copolymers Synthesized via Aqueous RAFT Polymerization: From Micelles to Vesicles. Macromolecules. 2010, 43(3), 1210–1217. DOI: 10.1021/ma902378k.
  • Cheng, H.; De La Cruz, M. O. Hydrophobic-Charged Block Copolymer Micelles Induced by Oppositely Charged Surfaces: Salt and PH Dependence. Macromolecules. 2006, 39(5), 1961–1970. DOI: 10.1021/ma051965b.
  • Bignotti, F.; Penco, M.; Sartore, L.; Peroni, I.; Mendichi, R.; Casolaro, M.; D’Amore, A. S. Characterisation and Solution Behaviour of Thermo- and PH- Responsive Polymers Bearing L-Leucine Residues in the Side Chains. Polymer (Guildf.). 2000, 41(23), 8247–8256. DOI: 10.1016/S0032-3861(00)00177-4.
  • Murthy, N.; Xu, M.; Schuck, S.; Kunisawa, J.; Shastri, N.; Fréchet, J. M. J. A Macromolecular Delivery Vehicle for Protein-Based Vaccines: Acid-Degradable Protein-Loaded Microgels. Proc. Natl. Acad. Sci. U. S. A. 2003, 100(9), 4995–5000. DOI: 10.1073/pnas.0930644100.
  • Burba, C. M.; Carter, S. M.; Meyer, K. J.; Rice, C. V. Salt Effects on Poly(N-Isopropylacrylamide) Phase Transition Thermodynamics from NMR Spectroscopy. J. Phys. Chem B. 2008, 112(34), 10399–10404. DOI: 10.1021/jp8005553.
  • Foster, E. J.; Berda, E. B.; Meijer, E. W. Metastable Supramolecular Polymer Nanoparticles via Intramolecular Collapse of Single Polymer Chains. J. Am. Chem. Soc. 2009, 131(20), 6964–6966. DOI: 10.1021/ja901687d.
  • Huang, J.; Wu, X. Y. Effects of PH, Salt, Surfactant and Composition on Phase Transition of Poly(NIPAm/MAA) Nanoparticles. J. Polym. Sci. Part A Polym. Chem. 1999, 37(14), 2667–2676. DOI: 10.1002/(SICI)1099-0518(19990715)37:14<2667:AID-POLA42>3.0.CO;2-J.
  • Matyjaszewski, K.; Xia, J. Atom Transfer Radical Polymerization. Chem. Rev. 2001, 101(9), 2921–2990. DOI: 10.1021/cr940534g.
  • Kamigaito, M.; Tsuyoshi, A., Sawamoto, M. Transition-Metal-Catalyzed Living-Radical Polymerization Chem. Rev. 2001, 101(12), 3689–3745.
  • Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G., et al. Living Free-Radical Polymerization by Reversible Addition - Fragmentation Chain Transfer: The RAFT Process. Macromolecules. 1998, 31(16), 5559–5562. DOI: 10.1021/ma9804951.
  • Hawker, C. J.; Bosman, A. W.; Harth, E. New Polymer Synthesis by Nitroxide Mediated Living Radical Polymerizations. Chem. Rev. 2001, 101(12), 3661–3688. DOI: 10.1021/cr990119u.
  • © 19 9 5 Nature Publishing Group.
  • Umeno, D.; Mori, T.; Maeda, M. Single Stranded DNA-Poly(N-Isopropylacrylamide) Conjugate for Affinity Precipitation Separation of Oligonucleotides. Chem. Commun. 1998, 14, 1433–1434. DOI: 10.1039/a802431f.
  • Pennadam, S. S.; Lavigne, M. D.; Dutta, C. F.; Firman, K.; Mernagh, D.; Górecki, D. C.; Alexander, C. Control of a Multisubunit DNA Motor by a Thermoresponsive Polymer Switch. J. Am. Chem. Soc. 2004, 126(41), 13208–13209. DOI: 10.1021/ja045275j.
  • Hoffman, A. S.; Stayton, P. S. Bioconjugates of Smart Polymers and Proteins: Synthesis and Applications. Macromol. Symp. 2004, 207(1), 139–152. DOI: https://doi.org/10.1002/masy.200450314.
  • Xu, Y.; Shi, L.; Ma, R.; Zhang, W.; An, Y.; Zhu, X. X. Synthesis and Micellization of Thermo- and PH-Responsive Block Copolymer of Poly(N-Isopropylacrylamide)-Block-Poly(4-Vinylpyridine). Polymer (Guildf.). 2007, 48(6), 1711–1717. DOI: 10.1016/j.polymer.2007.01.022.
  • Zeng, J.; Shi, K.; Zhang, Y.; Sun, X.; Deng, L.; Guo, X.; Du, Z.; Zhang, B. Synthesis of Poly(N-Isopropylacrylamide)-B-Poly(2-Vinylpyridine) Block Copolymers via RAFT Polymerization and Micellization Behavior in Aqueous Solution. J. Colloid. Interface. Sci. 2008, 322(2), 654–659. DOI: 10.1016/j.jcis.2008.03.032.
  • Deng, L.; Shi, K.; Zhang, Y.; Wang, H.; Zeng, J.; Guo, X.; Du, Z.; Zhang, B. Synthesis of Well-Defined Poly(N-Isopropylacrylamide)-B-Poly(L-Glutamic Acid) by a Versatile Approach and Micellization. J. Colloid. Interface. Sci. 2008, 323(1), 169–175. DOI: 10.1016/j.jcis.2008.04.007.
  • Timothy, J. D. Living Polymerization of Alpha-Amino Acid-N-Carboxyanhydrides. J. Polym. Sci. Part A Polym. Chem. 2000, 38(17), 3011–3018. DOI: 10.1002/1099-0518(20000901)38:17<3011:AID-POLA10>3.0.CO;2-Z.
  • Li, Y. Y.; Dai, Y.; Zhang, X. Z.; Zhuo, R. X. The Tuned-Morphology Studies of the Complexes Between Poly(N-Isopropylacrylamide)-B-Poly(vinylpyridine) and Poly(N-Isopropylacrylamide-Co-Hydroxylethyl Methacrylate)-B-Poly(vinylphenol). J. Colloid. Interface. Sci. 2008, 328(1), 211–215. DOI: 10.1016/j.jcis.2008.09.008.
  • Jochum, F. D.; Theato, P. Temperature- and Light-Responsive Smart Polymer Materials. Chem. Soc. Rev. 2013, 42(17), 7468–7483. DOI: 10.1039/c2cs35191a.
  • Abdollahi, A.; Roghani-Mamaqani, H.; Razavi, B.; Salami-Kalajahi, M. The Light-Controlling of Temperature-Responsivity in Stimuli-Responsive Polymers. Polym. Chem. 2019, 10(42), 5686–5720. DOI: 10.1039/c9py00890j.
  • Roy, D.; Brooks, W. L. A.; Sumerlin, B. S. New Directions in Thermoresponsive Polymers. Chem. Soc. Rev. 2013, 42(17), 7214–7243. DOI: 10.1039/c3cs35499g.
  • Shakespeare, W. Smart Polymers and Their Applications, Aguilar, M. R., & Román, J. S. (Eds.). 2014. Cambridge: Woodhead Publishing is an imprint of Elsevier.
  • Sedlacek, O.; Bera, D.; Hoogenboom, R. Poly(2-Amino-2-Oxazoline)s: A New Class of Thermoresponsive Polymers. Polym. Chem. 2019, 10(34), 4683–4689. DOI: 10.1039/c9py00943d.
  • Papagiannouli, I.; Iliopoulos, K.; Gindre, D.; Sahraoui, B.; Krupka, O.; Smokal, V.; Kolendo, A.; Couris, S. Third-Order Nonlinear Optical Response of Push-Pull Azobenzene Polymers. Chem. Phys. Lett. 2012, 554, 107–112. DOI: 10.1016/j.cplett.2012.10.007.
  • Lemouchi, C.; Iliopoulos, K.; Zorina, L.; Simonov, S.; Wzietek, P.; Cauchy, T.; Rodríguez-Fortea, A.; Canadell, E.; Kaleta, J.; Michl, J., et al. Crystalline Arrays of Pairs of Molecular Rotors: Correlated Motion, Rotational Barriers, and Space-Inversion Symmetry Breaking Due to Conformational Mutations. J. Am. Chem. Soc. 2013, 135(25), 9366–9376. DOI: 10.1021/ja4044517.
  • Pai, C. F.; Liu, L.; Li, Y.; Tseng, H. W.; Ralph, D. C.; Buhrman, R. A. Spin Transfer Torque Devices Utilizing the Giant Spin Hall Effect of Tungsten. Appl. Phys. Lett. 2012, 101(12), 1–5. DOI: 10.1063/1.4753947.
  • Iliopoulos, K.; El-Ghayoury, A.; El Ouazzani, H.; Pranaitis, M.; Belhadj, E.; Ripaud, E.; Mazari, M.; Sallé, M.; Gindre, D.; Sahraoui, B. Nonlinear Absorption Reversing Between an Electroactive Ligand and Its Metal Complexes. Opt. Express. 2012, 20(23), 25311. DOI: 10.1364/oe.20.025311.
  • Iwahori, F.; Hatano, S.; Abe, J. Rational Design of a New Class of Diffusion-Inhibited HABI with Fast Back-Reaction. J. Phys. Org. Chem. 2007, 20(11), 857–863. DOI: 10.1002/poc.1183.
  • Priimagi, A.; Kaivola, M.; Rodriguez, F. J.; Kauranen, M. Enhanced Photoinduced Birefringence in Polymer-Dye Complexes: Hydrogen Bonding Makes a Difference. Appl. Phys. Lett. 2007, 90(12), 2–5. DOI: 10.1063/1.2714292.
  • Yaroshchuk, O.; Reznikov, Y. Photoalignment of Liquid Crystals: Basics and Current Trends. J. Mater. Chem. 2012, 22(2), 286–300. DOI: 10.1039/c1jm13485j.
  • Koskela, J. E.; Vapaavuori, J.; Hautala, J.; Priimagi, A.; Faul, C. F. J.; Kaivola, M.; Ras, R. H. A. Surface-Relief Gratings and Stable Birefringence Inscribed Using Light of Broad Spectral Range in Supramolecular Polymer-Bisazobenzene Complexes. J. Phys. Chem. C. 2012, 116(3), 2363–2370. DOI: 10.1021/jp210706n.
  • Tsutsumi, N.; Matsumoto, O.; Sakai, W.; Kiyotsukuri, T. Nonlinear Optical Polymers. 2. Novel NLO Linear Polyurethane with Dipole Moments Aligned Transverse to the Main Backbone. Macromolecules. 1996, 29(2), 592–597. DOI: 10.1021/ma951077o.
  • Tsutsumi, N.; Morishima, M.; Sakai, W. Nonlinear Optical (NLO) Polymers. 3. NLO Polyimide with Dipole Moments Aligned Transverse to the Imide Linkage. Macromolecules. 1998, 31(22), 7764–7769. DOI: 10.1021/ma9803436.
  • Persoons, Â.; Samyn, C.; Gubbelmans, E.; Verbiest, T.; Beylen Van, M. Chromophore-Functionalised Polymides with High-Poling Stabilities of the Nonlinear Optical Effect at Elevated Temperature. Polymer (Guildf.). 2002, 43(5), 1581–1585. DOI: 10.1016/S0032-3861(01)00678-4.
  • Aoshima, Y. Two-Way Optical Memory for Azobenzene-Containing Urethane – Urea Copolymer Films. Opt. Commun. 1999, 165(July), 177–182. DOI: 10.1016/S0030-4018(99)00242-4.
  • Xie, H.; Liu, Z.; Huang, X.; Guo, J. Synthesis and Non-Linear Optical Properties of Four Polyurethanes Containing Di € Erent Chromophore Groups. Eur. Polym. J. 2001, 37, 497–505. DOI: 10.1016/S0014-3057(00)00146-4.
  • Luh, T.; Chen, R.; Hwu, T.; Basu, S.; Shiau, C.; Lin, W.; Jin, B.; Hsu, C. Rational Design of Polymers for Optoelectronic Interests *. Pure Appl. Chem. 2001, 73(2), 243–246. DOI: 10.1351/pac200173020243.
  • Tirelli, N.; Altomare, A.; Solaro, R.; Ciardelli, F.; Follonier, S.; Gu, P. Structure – Activity Relationship of New NLO Organic Materials Based on Push – Pull Azodyes 4. Side Chain Polymers. 2000, 41, 415–421. DOI: 10.1016/S0032-3861(99)00202-5.
  • Nemoto, N.; Miyata, F.; Nagase, Y.; Abe, J.; Hasegawa, M.; Shirai, Y. Novel Types of Polyesters Containing Second-Order Nonlinear Optically Active Chromophores with High Density. Macromolecules. 1996, 29(7), 2365–2371. DOI: 10.1021/ma951032n.
  • Liu, Y.; Jiang, A.; Xiang, L.; Gao, J.; Huang, D. Nonlinear Optical Chromophores with Good Transparency and High Thermal Stability. Dyes Pigm. 2000, 45, 189–193. DOI: 10.1016/S0143-7208(00)00018-8.
  • Chen, M.; Yu, L.; Dalton, L. R.; Shi, Y., Steier, W. H. New Polymers with Large and Stable Second-Order Nonlinear Optical Effects. Macromolecules . 1991, 24, 5421–5428.
  • Dalton, R.; Shi, Y.; Steier, W. H. New Polymers with Large and Stable Second-Order Nonlinear Optical Effects. Macromolecules. 1991, 24(19), 5421–5428. DOI: 10.1021/ma00019a033.
  • Zhang, C.; Wang, C.; Yang, J.; Dalton, L. R.; Sun, G.; Zhang, H.; Steier, W. H. Electric Poling and Relaxation of Thermoset Polyurethane Second-Order Nonlinear Optical Materials: Role of Cross-Linking and Monomer Rigidity. Macromolecules. 2001, 34(2), 235–243. DOI: 10.1021/ma0011688.
  • Natansohn, A.; Rochon, P. Novel Polyesters with Amino-Sulfone Azobenzene Chromophores in the Main Chain. J. Polym. Sci. A Polym. Chem. 2000, 38, 2245–2253. DOI: 10.1002/(SICI)1099-0518(20000615)38:12<2245:AID-POLA130>3.0.CO;2-U.
  • Wu, S.; Duan, S.; Lei, Z.; Su, W.; Zhang, Z.; Zhang, Q. Supramolecular Bisazopolymers Exhibiting Enhanced Photoinduced Birefringence and Enhanced Stability of Birefringence for Four-Dimensional Optical Recording †. J. Mater. Chem. 2010, 20, 5202–5209. DOI: 10.1039/c000073f.
  • Schab-Balcerzak, E.; Sobolewska, A.; Stumpe, J.; Hamryszak, L.; Bujak, P. Surface Relief Gratings in Azobenzene Supramolecular Systems Based on Polyimides. Opt. Mater. (Amst). 2012, 35(2), 155–167. DOI: 10.1016/j.optmat.2012.07.029.
  • Schab-Balcerzak, E.; Konieczkowska, J.; Siwy, M.; Sobolewska, A.; Wojtowicz, M.; Wiacek, M. Comparative Studies of Polyimides with Covalently Bonded Azo-Dyes with Their Supramolecular Analoges: Thermo-Optical and Photoinduced Properties. Opt. Mater. (Amst). 2014, 36(5), 892–902. DOI: 10.1016/j.optmat.2013.12.017.
  • Angiolini, L.; Giorgini, L.; Bozio, R.; Pedron, D. Reversible Chirality Inversion of Photochromic Methacrylic Polymers Upon Irradiation with One-Handed Circularly Polarized Light. Synth. Met. 2003, 138, 375–379. DOI: 10.1016/S0379-6779(02)01302-4.
  • Angiolini, L.; Caretti, D.; Giorgini, L.; Salatelli, E. Optically Active Methacrylic Polymers Bearing Side-Chain Conjugated Azoaromatic Chromophores. Synth. Met. 2000, 115(1–3), 235–239. DOI: 10.1016/S0379-6779(00)00341-6.
  • Angiolini, L.; Benelli, T.; Giorgini, L.; Salatelli, E. Optically Active Photochromic Methacrylic Polymers with Controlled Average Molecular Weight and Defined End-Groups by Atom Transfer Radical Polymerization. Polymer (Guildf.). 2005, 46, 2424–2432. DOI: 10.1016/j.polymer.2005.02.023.
  • Bobrovsky, A.; Shibaev, V. A Study of Photooptical Processes in Photosensitive Cholesteric Azobenzene-Containing Polymer Mixture Under an Action of the Polarized and Nonpolarized Light. Polymer (Guildf.). 2006, 47, 4310–4317. DOI: 10.1016/j.polymer.2006.04.010.
  • Bag, D. S.; Alam, S. Synthesis and Characterization of Photoactive Chiral Copolymers of (S) - N - (1-Phenyl Ethyl) Methacrylamide and Disperse Red 1 Methacrylate. J. Appl. Polym. Sci. 2012, 125, 2595–2603. DOI: 10.1002/app.36369.
  • Meenu, K.; Bag, D. S.; Saxena, A. K. Synthesis ofOrganic–Inorganic Chiral Block Poly (Methylphenylsilane) Functional Polymers, and Study of Their Optical and Chiroptical Properties. 2016, 1–10. DOI: 10.1002/pola.28251.
  • Meenu, K.; Bag, D. S. Pure, and Applied Chemistry Synthesis and Characterization of Functional Photoactive Organic-Inorganic Block Copolymers of Poly (Methylphenylsilane) and Disperse Red 1 Methacrylate and Study of Their Optical and Photophysical Properties. J. Macromol. Sci. Part A Pure Appl. Chem. 2017, 54(6), 418–425. DOI: 10.1080/10601325.2017.1313156.
  • Meenu, K.; Bag, D. S.; Lagarkha, R.; Tomar, R. Synthesis of Multifunctional Copolymers of Poly (Methylphenylsilane) with (R) -N- Red 1 Methacrylate and Their Optical and Photoluminescence Properties. Phosphorus Sulfur Silicon Relat. Elem. 2019, 0(), 1–11. DOI: 10.1080/10426507.2019.1700259.
  • Meenu, K.; Bag, D. S.; Lagarkha, R.; Tomar, R.; Gupta, A. K. Functional Polysilanes and Photoluminescence Properties Their Optical, Chiroptical and. Curr. Organocatalysis. 2019, 6, 193–221. DOI: 10.2174/2213337206666190415124549.
  • Meenu, K.; Bag, D. S.; Lagarkha, R. Synthesis of Functional Photoactive Polysilane Copolymers with Disperse Yellow 7 Methacrylate and Study of Their Optical, Photophysical and Thermal Properties. J. Polym Mater. 2020, 36(3), 275–292. DOI: 10.32381/jpm.2019.36.03.7.
  • Zhang, M.; Li, Y.; Yang, Q.; Huang, L.; Chen, L.; Xiao, H. Adsorption of Methyl Violet Using PH- and Temperature-Sensitive Cellulose Filament/poly(NIPAM-Co-AAc) Hybrid Hydrogels. J. Mater. Sci. 2018, 53(16), 11837–11854. DOI: 10.1007/s10853-018-2342-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.