296
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Chemically modified water-soluble chitosan derivatives: Modification strategies, biological activities, and applications

, , , , , , ORCID Icon & ORCID Icon show all
Pages 2182-2220 | Received 20 Jun 2023, Accepted 16 Aug 2023, Published online: 03 Sep 2023

References

  • Morin-Crini, N.; Lichtfouse, E.; Torri, G.; Crini, G. Applications of Chitosan in Food, Pharmaceuticals, Medicine, Cosmetics, Agriculture, Textiles, Pulp and Paper, Biotechnology, and Environmental Chemistry. Environ. Chem. Lett. 2019, 17(4), 1667–1692. DOI: 10.1007/s10311-019-00904-x.
  • Philibert, T.; Lee, B. H.; Fabien, N. Current Status and New Perspectives on Chitin and Chitosan as Functional Biopolymers. Appl. Biochem. Biotechnol. 2017, 181(4), 1314–1337. DOI: 10.1007/s12010-016-2286-2.
  • Islam, N.; Dmour, I.; Taha, M. O. Degradability of Chitosan Micro/Nanoparticles for Pulmonary Drug Delivery. Heliyon. 2019, 5(5), e01684. DOI: 10.1016/j.heliyon.2019.e01684.
  • Jain, T.; Srivastava, K.; Kumar, S.; Dutta, P. K. Current and Future Prospects of Chitosan-Based Nanomaterials in Plant Protection and Growth. In Role of Chitosan and Chitosan-Based Nanomaterials in Plant Sciences. 2022,Elsevier Inc. pp. 143–163. DOI: 10.1016/b978-0-323-85391-0.00019-8.
  • Desbrières, J.; Guibal, E. Chitosan for Wastewater Treatment. Polym. Int. 2018, 67(1), 7–14. DOI: 10.1002/pi.5464.
  • Habibie, S.; Hamzah, M.; Anggaravidya, M.; Kalembang, E. The Effect of Chitosan on Physical and Mechanical Properties of Paper. J. Chem. Eng. Mater. Sci. 2016, 7(1), 1–10. DOI: 10.5897/jcems2015.0235.
  • Cazón, P.; Vázquez, M. Applications of Chitosan as Food Packaging Materials. 2019. DOI: 10.1007/978-3-030-16581-9_3.
  • Xiao, L. Chitosan Application in Textile Processing. Curr. Trends Fash. Technol. Text. Eng. 2018, 4(2), 32–34. DOI: 10.19080/ctftte.2018.04.555635.
  • Wang, W.; Xue, C.; Mao, X. Chitosan: Structural Modification, Biological Activity and Application. Int. J. Biol. Macromol. 2020, 164, 4532–4546. DOI: 10.1016/j.ijbiomac.2020.09.042.
  • Kumari, S.; Hari, S.; Annamareddy, K.; Abanti, S.; Kumar, P. Physicochemical Properties and Characterization of Chitosan Synthesized from Fish Scales, Crab and Shrimp Shells. Int. J. Biol. Macromol. 2017, 104, 1697–1705. DOI: 10.1016/j.ijbiomac.2017.04.119.
  • Ardean, C.; Davidescu, C. M.; Nemeş, N. S.; Negrea, A.; Ciopec, M.; Duteanu, N.; Negrea, P.; Duda‐Seiman, D.; Musta, V. Factors Influencing the Antibacterial Activity of Chitosan and Chitosan Modified by Functionalization. Int. J. Mol. Sci. 2021, 22(14), 7449. DOI: 10.3390/ijms22147449.
  • Fan, Z.; Qin, Y.; Liu, S.; Xing, R.; Yu, H.; Chen, X.; Li, K.; Li, P. S. Characterization, and Antifungal Evaluation of Diethoxyphosphoryl Polyaminoethyl Chitosan Derivatives. Carbohydr. Polym. 2018, 190(7), 1–11. DOI: 10.1016/j.carbpol.2018.02.056.
  • Pakizeh, M.; Moradi, A.; Ghassemi, T. Chemical Extraction and Modification of Chitin and Chitosan from Shrimp Shells. Eur. Polym. J. 2021, 159(August), 110709. DOI: 10.1016/j.eurpolymj.2021.110709.
  • Wang, J.; Zhuang, S. Chitosan-Based Materials: Preparation, Modification and Application. J. Clean. Prod. 2022, 355(2022), 131825. DOI: 10.1016/j.jclepro.2022.131825.
  • Argüelles-Monal, W. M.; Lizardi-Mendoza, J.; Fernández-Quiroz, D.; Recillas-Mota, M. T.; Montiel-Herrera, M. Chitosan Derivatives: Introducing New Functionalities with a Controlled Molecular Architecture for Innovative Materials. Polym. 2018, 10(3), 3. DOI: 10.3390/POLYM10030342.
  • Shariatinia, Z. Carboxymethyl Chitosan: Properties and Biomedical Applications. Int. J. Biol. Macromol. 2018, 120, 1406–1419. DOI: 10.1016/j.ijbiomac.2018.09.131.
  • Chong, W. M.; Kadir, E. A. A Brief Review on Hydrophobic Modifications of Glycol Chitosan into Amphiphilic Nanoparticles for Enhanced Drug Delivery. Sains. Malays. 2021, 50(12), 3693–3703. DOI: 10.17576/jsm-2021-5012-19.
  • Maruthiah, T.; Palavesam, A. Characterization of Haloalkalophilic Organic Solvent Tolerant Protease for Chitin Extraction from Shrimp Shell Waste. Int. J. Biol. Macromol. 2017, 97, 552–560. DOI: 10.1016/j.ijbiomac.2017.01.021.
  • Vicente, F. A.; Ventura, S. P. M.; Passos, H.; Dias, A. C. R. V.; Torres-Acosta, M. A.; Novak, U.; Likozar, B. Crustacean Waste Biorefinery as a Sustainable Cost-Effective Business Model. Chem. Eng. J. March, 2022, 442, 135937. DOI: 10.1016/j.cej.2022.135937.
  • Bakshi, P. S.; Selvakumar, D.; Kadirvelu, K.; Kumar, N. S. Chitosan as an Environment Friendly Biomaterial – a Review on Recent Modifications and Applications. Int. J. Biol. Macromol. 2020, 150(2020), 1072–1083. DOI: 10.1016/j.ijbiomac.2019.10.113.
  • Kaczmarek, M. B.; Struszczyk-Swita, K.; Li, X.; Szczęsna-Antczak, M.; Daroch, M. Enzymatic Modifications of Chitin, Chitosan, and Chitooligosaccharides. Front. Bioeng. Biotechnol. 2019, 7(SEP). DOI: 10.3389/fbioe.2019.00243.
  • Soon, C. Y.; Tee, Y. B.; Tan, C. H.; Rosnita, A. T.; Khalina, A. Extraction and Physicochemical Characterization of Chitin and Chitosan from Zophobas Morio Larvae in Varying Sodium Hydroxide Concentration. Int. J. Biol. Macromol. 2018, 108, 135–142. DOI: 10.1016/j.ijbiomac.2017.11.138.
  • Srinivasan, H.; Kanayairam, V.; Ravichandran, R. Chitin and Chitosan Preparation from Shrimp Shells Penaeus Monodon and Its Human Ovarian Cancer Cell Line, PA-1. Int. J. Biol. Macromol. 2018, 107(PartA), 662–667. DOI: 10.1016/j.ijbiomac.2017.09.035.
  • Duarte, M. L.; Ferreira, M. C.; Mar, M. R. An Optimised Method to Determine the Degree of Acetylation of Chitin and Chitosan by FTIR Spectroscopy. Int. J. Biol. Macromol. 2002, 31(2002), 1–8. DOI: 10.1016/S0141-8130(02)00039-9.
  • Rasweefali, M. K.; Sabu, S.; Sunooj, K. V.; Sasidharan, A.; Xavier, K. A. M. Consequences of Chemical Deacetylation on Physicochemical, Structural and Functional Characteristics of Chitosan Extracted from Deep-Sea Mud Shrimp. Carbohydr. Polym. Technol. Appl. 2021, 2(December 2020), 100032. DOI: 10.1016/j.carpta.2020.100032.
  • Wan, Y.; Creber, K. A. M.; Peppley, B.; Bui, V. T. Ionic Conductivity and Related Properties of Crosslinked Chitosan Membranes. J. Appl. Polym. Sci. 2003, 89(2), 306–317. DOI: 10.1002/app.12090.
  • Hossain, M. S.; Iqbal, A. Production and Characterization of Chitosan from Shrimp Waste. J. Bangladesh Agric. Univ. 2014, 12(1), 153–160. DOI: 10.3329/jbau.v12i1.21405.
  • Wang, Y.; Wang, B.; Liu, M.; Jiang, K.; Wang, M.; Wang, L. Comparative Transcriptome Analysis Reveals the Potential Influencing Mechanism of Dietary Astaxanthin on Growth and Metabolism in Litopenaeus Vannamei. Aquac. Rep. 2020, 16(2019), 100259. DOI: 10.1016/j.aqrep.2019.100259.
  • El Knidri, H.; Belaabed, R.; Addaou, A.; Laajeb, A.; Lahsini, A. E. Extraction, Chemical Modification and Characterization of Chitin and Chitosan. Int. J. Biol. Macromol. 2018, 120, 1181–1189. DOI: 10.1016/j.ijbiomac.2018.08.139.
  • Bai, Y.; Wang, Y.; Liu, X.; Zhao, J.; Kang, L. Q.; Liu, Z.; Yuan, S. Heterologous Expression and Characterization of a Novel Chitin Deacetylase, CDA3, from the Mushroom Coprinopsis Cinerea. Int. J. Biol. Macromol. 2020, 150, 536–545. DOI: 10.1016/j.ijbiomac.2020.02.083.
  • Sarkar, S.; Gupta, S.; Chakraborty, W.; Senapati, S.; Gachhui, R. Homology Modeling, Molecular Docking and Molecular Dynamics Studies of the Catalytic Domain of Chitin Deacetylase from Cryptococcus Laurentii Strain RY1. Int. J. Biol. Macromol. 2017, 104, 1682–1691. DOI: 10.1016/j.ijbiomac.2017.03.057.
  • Hao, W.; Li, K.; Li, P. Review: Advances in Preparation of Chitooligosaccharides with Heterogeneous Sequences and Their Bioactivity. Carbohydr. Polym. 2021, 252(May 2020), 117206. DOI: 10.1016/j.carbpol.2020.117206.
  • Liu, Z.; Gay, L. M.; Tuveng, T. R.; Agger, J. W.; Westereng, B.; Mathiesen, G.; Horn, S. J.; Vaaje-Kolstad, G.; Van Aalten, D. M. F.; Eijsink, V. G. H. Structure and Function of a Broad-Specificity Chitin Deacetylase from Aspergillus Nidulans FGSC A4. Sci. Rep. 2017, 7(1), 1–12. DOI: 10.1038/s41598-017-02043-1.
  • Chai, J.; Hang, J.; Zhang, C.; Yang, J.; Wang, S.; Liu, S.; Fang, Y. Purification and Characterization of Chitin Deacetylase Active on Insoluble Chitin from Nitratireductor Aquimarinus MCDA3-3. Int. J. Biol. Macromol. 2020, 152, 922–929. DOI: 10.1016/j.ijbiomac.2020.02.308.
  • Younes, I.; Rinaudo, M. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Mar. Drugs. 2015, 13(3), 1133–1174. DOI: 10.3390/md13031133.
  • Hamed, I.; Ozogul, F.; Regenstein, J. M. Industrial Applications of Crustacean By-Products (Chitin, Chitosan, and Chitooligosaccharides): A Review. Trends Food Sci. Technol. 2016, 48(2016), 40–50. DOI: 10.1016/j.tifs.2015.11.007.
  • Santoso, J.; Adiputra, K. C.; Soerdirga, L. C.; Tarman, K. Effect of Acetic Acid Hydrolysis on the Characteristics of Water Soluble Chitosan. IOP Conf. Ser. Earth Environ. Sci. 2020, 414(1), 1. DOI: 10.1088/1755-1315/414/1/012021.
  • Cheung, R. C. F.; Ng, T. B.; Wong, J. H.; Chan, W. Y. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Mar. Drugs. 2015, 13(8), 5156–5186. DOI: 10.3390/md13085156.
  • Gzyra-Jagieła, K.; Pęczek, B.; Wisńiewska-Wrona, M.; Gutowska, N. Physicochemical Properties of Chitosan and Its Degradation Products. Chitin. Chitosan. Prop. Appl 2019, (August), 61–80. DOI: 10.1002/9781119450467.ch3.
  • Khalil, E. S.; Saad, B.; Negim, E. S. M.; Saleh, M. I. Novel Water-Soluble Chitosan Derivative Prepared by Graft Polymerization of Dicyandiamide: Synthesis, Characterisation, and Its Antibacterial Property. J. Polym. Res. 2015, 22(6), 1–12. DOI: 10.1007/s10965-015-0756-9.
  • Suryani, S.; Chaerunisaa, A. Y.; Joni, I. M.; Ruslin, R.; Ramadhan, L. O. A. N.; Wardhana, Y. W.; Sabarwati, S. H. Production of Low Molecular Weight Chitosan Using a Combination of Weak Acid and Ultrasonication Methods. Polym. 2022, 14(16), 3417. DOI: 10.3390/polym14163417.
  • Li, B.; Elango, J.; Wu, W. Recent Advancement of Molecular Structure and Biomaterial Function of Chitosan from Marine Organisms for Pharmaceutical and Nutraceutical Application. Appl. Sci. 2020, 10(14), 30–50. DOI: 10.3390/app10144719.
  • Panda, P. K.; Dash, P.; Chang, Y. H.; Yang, J. M. Improvement of Chitosan Water Solubility by Fumaric Acid Modification. Mater. Lett. 2022, 316(December 2021), 132046. DOI: 10.1016/j.matlet.2022.132046.
  • Li, J.; Wu, Y.; Zhao, L. Antibacterial Activity and Mechanism of Chitosan with Ultra High Molecular Weight. Carbohydr. Polym. 2016, 148, 200–205. DOI: 10.1016/j.carbpol.2016.04.025.
  • Aranda-Barradas, M. E.; Trejo-López, S. E.; Real, A. D.; Álvarez-Almazán, S.; Méndez-Albores, A.; García-Tovar, C. G.; González-Díaz, F. R.; Miranda-Castro, S. P. Effect of Molecular Weight of Chitosan on the Physicochemical, Morphological, and Biological Properties of Polyplex Nanoparticles Intended for Gene Delivery. Carbohydr. Polym. Technol Appl. March, 2022, 4, 100228. DOI: 10.1016/j.carpta.2022.100228.
  • Krisanti, E.; Aryani, S. D.; Mulia, K. Effect of Chitosan Molecular Weight and Composition on Mucoadhesive Properties of Mangostin-Loaded Chitosan-Alginate Microparticles. AIP Conf. Proc. 2017. 1817. DOI: 10.1063/1.4976766.
  • Chang, S. H.; Wu, C. H.; Tsai, G. J. Effects of Chitosan Molecular Weight on Its Antioxidant and Antimutagenic Properties. Carbohydr. Polym. 2018, 181(November 2017), 1026–1032. DOI: 10.1016/j.carbpol.2017.11.047.
  • Friedman, M.; Juneja, V. K. Review of Antimicrobial and Antioxidative Activities of Chitosans in Food. J. Food Prot. 2010, 73(9), 1737–1761. DOI: 10.4315/0362-028X-73.9.1737.
  • Xuan Du, D.; Xuan Vuong, B. Study on Preparation of Water-Soluble Chitosan with Varying Molecular Weights and Its Antioxidant Activity. Adv. Mater. Sci. Eng. 2019, 2019, 1–8. DOI: 10.1155/2019/8781013.
  • Jiang, Y.; Fu, C.; Wu, S.; Liu, G.; Guo, J.; Su, Z. Determination of the Deacetylation Degree of Chitooligosaccharides. Mar. Drugs. 2017, 15(11), 1–14. DOI: 10.3390/md15110332.
  • Al-Jbour, N. D.; Beg, M. D. H.; Gimbun, J.; Moshiul Alam, A. K. M. Preparation and Characterization of Low Molecular Weight Chitosan with Different Degrees of Deacetylation by the Acid Hydrolysis Method. Int. J. Appl. Pharm. 2021, 13(2), 153–164. DOI: 10.22159/ijap.2021v13i2.32229.
  • Mohanasrinivasan, V.; Mishra, M.; Paliwal, J. S.; Singh, S. K.; Selvarajan, E.; Suganthi, V.; Subathra Devi, C. Studies on Heavy Metal Removal Efficiency and Antibacterial Activity of Chitosan Prepared from Shrimp Shell Waste. 3 Biotech. 2014, 4(2), 167–175. DOI: 10.1007/s13205-013-0140-6.
  • Rajathy, T. J.; Srinivasan, M.; Mohanraj, T. Physicochemical and Functional Characterization of Chitosan from Horn Snail Gastropod Telescopium Telescopium. J. Appl. Pharm. Sci. 2021, 11(2), 052–058. DOI: 10.7324/JAPS.2021.110207.
  • Majekodunmi, S. O.; Olorunsola, E. O.; Uzoaganobi, C. C. Comparative Physicochemical Characterization of Chitosan from Shells of Two Bivalved Mollusks from Two Different Continents. Am J. Polym. Sci. 2017, 2017(1), 15–22. DOI: 10.5923/j.ajps.20170701.03.
  • Roy, J. C.; Salaün, F.; Giraud, S.; Ferri, A.; Chen, G.; Guan, J. Solubility of Chitin: Solvents, Solution Behaviors and Their Related Mechanisms. Solubility Polysaccharides. 2017, (November). DOI: 10.5772/intechopen.71385.
  • Lv, S. H. High-Performance Superplasticizer Based on Chitosan. Biopolym. Biotech. Admixtures Eco-Efficient Constr. Mater, 2016, 131–150. DOI: 10.1016/B978-0-08-100214-8.00007-5.
  • Aranaz, I.; Alcántara, A. R.; Civera, C.; Arias, C.; Elorza, B. Chitosan: A Versatile Polymer for 21st Century. Polym. 2021, 13(3256), 1–30. DOI: 10.3390/polym13193256.
  • Nunes, Y. L.; de Menezes, F. L.; de Sousa, I. G.; Cavalcante, A. L. G.; Cavalcante, F. T. T.; da Silva Moreira, K.; de Oliveira, A. L. B.; Mota, G. F.; da Silva Souza, J. E.; de Aguiar Falcão, I. R., et al. Chemical and Physical Chitosan Modification for Designing Enzymatic Industrial Biocatalysts: How to Choose the Best Strategy? Int. J. Biol. Macromol. 2021, 181, 1124–1170. DOI: 10.1016/j.ijbiomac.2021.04.004.
  • Wei, L.; Tan, W.; Wang, G.; Li, Q.; Dong, F.; Guo, Z. The Antioxidant and Antifungal Activity of Chitosan Derivatives Bearing Schiff Bases and Quaternary Ammonium Salts. Carbohydr. Polym. 2019, 226(August), 115256. DOI: 10.1016/j.carbpol.2019.115256.
  • Tian, M.; Tan, H.; Li, H.; You, C. Molecular Weight Dependence of Structure and Properties of Chitosan Oligomers. R.S.C. Adv. 2015, 5(85), 69445–69452. DOI: 10.1039/c5ra08358c.
  • Kasaai, M. R.; Arul, J.; Charlet, G. Intrinsic Viscosity-Molecular Weight Relationship for Chitosan. J. Polym. Sci. Part B: Polym. Phys. 2000, 38(19), 2591–2598. DOI: 10.1002/1099-0488(20001001)38:19<2591:AID-POLB110>3.0.CO;2-6.
  • Yuan, Y.; Tan, W.; Zhang, J.; Li, Q.; Guo, Z. Water-Soluble Amino Functionalized Chitosan: Preparation, Characterization, Antioxidant and Antibacterial Activities. Int. J. Biol. Macromol. 2022, 217(May), 969–978. DOI: 10.1016/j.ijbiomac.2022.07.187.
  • Rahimi, S.; Khoee, S.; Ghandi, M. Preparation and Characterization of Rod-Like Chitosan–Quinoline Nanoparticles as PH-Responsive Nanocarriers for Quercetin Delivery. Int. J. Biol. Macromol. 2019, 128, 279–289. DOI: 10.1016/j.ijbiomac.2019.01.137.
  • Yusharani, M. S.; Stenley, H.; Ni’mah, I.; Ulfin, Y. L.; Ni’mah, Y. L. Synthesis of Water-Soluble Chitosan from Squid Pens Waste as Raw Material for Capsule Shell: Temperature Deacetylation and Reaction Time. IOP Conf. Ser Mater. Sci. Eng. 2019, 509(1), 012070. DOI: 10.1088/1757-899X/509/1/012070.
  • Kapadnis, G.; Dey, A.; Jain, R. Effect of Degree of Deacetylation on Solubility of Low-Molecular-Weight Chitosan Produced via Enzymatic Breakdown of Chitosan. Polym. Int. 2019, 68(6), 1054–1063. DOI: 10.1002/pi.5795.
  • El-Hefian, E. A.; Elgannoudi, E. S.; Mainal, A.; Yahaya, A. H. Characterization of Chitosan in Acetic Acid: Rheological and Thermal Studies. Turkish J. Chem. 2010, 34(1), 47–56. DOI: 10.3906/kim-0901-38.
  • Annu, A. S.; Ahmed, S.; Ikram, S. Chitin and Chitosan: History, Composition and Properties. Chitosan. 2017, 1–24. DOI: 10.1002/9781119364849.ch1.
  • Liu, W.; Qin, Y.; Liu, S.; Xing, R.; Yu, H.; Chen, X.; Li, K.; Li, P. Synthesis of C-Coordinated O-Carboxymethyl Chitosan Metal Complexes and Evaluation of Their Antifungal Activity. Sci. Rep. 2018, 8(1), 1–10. DOI: 10.1038/s41598-018-23283-9.
  • Pellis, A.; Guebitz, G. M.; Nyanhongo, G. S. Chitosan: Sources, Processing and Modification Techniques. Gels. 2022, 8(7), 7. DOI: 10.3390/gels8070393.
  • Verlee, A.; Mincke, S.; Stevens, C. V. Recent Developments in Antibacterial and Antifungal Chitosan and Its Derivatives. Carbohydr. Polym. 2017, 164, 268–283. DOI: 10.1016/j.carbpol.2017.02.001.
  • Kim, S. Competitive Biological Activities of Chitosan and Its Derivatives: Antimicrobial, Antioxidant, Anticancer, and Anti-Inflammatory Activities. Int. J. Polym. Sci. 2018, 2018, 1–13. DOI: 10.1155/2018/1708172.
  • Samar, M. M.; Khalaf, M. M.; El-Razik, M. M. A. P. Functional, Antioxidant and Antibacterial Properties of Chitosan Extracted from Shrimp Wastes by Microwave Technique. Ann. Agric. Sci. 2013, 58(1), 33–41. DOI: 10.1016/j.aoas.2013.01.006.
  • Ways, T. M. M.; Lau, W. M.; Khutoryanskiy, V. V. Chitosan and Its Derivatives for Application in Mucoadhesive Drug Delivery Systems. Polym. 2018, 10(3), 1–37. DOI: 10.3390/polym10030267.
  • Puri, V.; Sharma, A.; Kumar, P.; Singh, I. Thiolation of Biopolymers for Developing Drug Delivery Systems with Enhanced Mechanical and Mucoadhesive Properties: A Review. Polym. 2020, 12(8), 8. DOI: 10.3390/polym12081803.
  • Croisier, F.; Jérôme, C. Chitosan-Based Biomaterials for Tissue Engineering. Eur. Polym. J. 2013, 49(4), 780–792. DOI: 10.1016/j.eurpolymj.2012.12.009.
  • Lim, S. M.; Song, D. K.; Oh, S. H.; Sin, D. In vitro and in vivo Degradation Behavior of Acetylated Chitosan Porous Beads. J. Biomater. Sci. Polym. Ed. 2008, 19(4), 456–466. DOI: 10.1163/156856208783719482.
  • Mohammed, M. A.; Syeda, J. T. M.; Wasan, K. M.; Wasan, E. K. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics. 2017, 9(4), 4. DOI: 10.3390/pharmaceutics9040053.
  • Jiao, J.; Huang, J. Hydrogels Based on Chitosan in Tissue Regeneration: How Do They Work? A Mini Review. J. Appl. Pharm. Sci. 2018, 135(47235), 1–9. DOI: 10.1002/app.47235.
  • Rodrigues, S.; Dionísio, M.; López, C. R.; Grenha, A. Biocompatibility of Chitosan Carriers with Application in Drug Delivery. J. Funct. Biomater. 2012, 3(3), 615–641. DOI: 10.3390/jfb3030615.
  • Matica, A.; Menghiu, G.; Ostafe, V. Toxicity of Chitosan Based Products. Former Ann. West Univ. Timisoara-Series Chem. 2017, 26(1), 65–74.
  • Mishra, A. K.; Hussain, C. M.; Mishra, S. B. Biopolymers: Structure, Performance and Applications; Nova Science Pub Inc.: Hauppauge, NY, USA, 2017.
  • Mukhopadhyay, P.; Bhattacharya, S.; Nandy, A.; Bhattacharyya, A.; Mishra, R.; Kundu, P. P. Assessment of in vivo Chronic Toxicity of Chitosan and Its Derivates Used as Oral Insulin Carriers. Toxicol. Res. 2015, 4(2), 281–290. DOI: 10.1039/c4tx00102h.
  • Kean, T.; Thanou, M. B. Biodegradation, Biodistribution and Toxicity of Chitosan. Adv. Drug Deliv. Rev. 2010, 62(1), 3–11. DOI: 10.1016/j.addr.2009.09.004.
  • Rubio, N. K.; Quintero, R.; Fuentes, J.; Brandao, J.; Janes, M.; Prinyawiwatkul, W. Antimicrobial Activities of High Molecular Weight Water-Soluble Chitosans Against Selected Gram-Negative and Gram-Positive Foodborne Pathogens. Int. J. Food Sci. Technol. 2018, 53(10), 2349–2356. DOI: 10.1111/ijfs.13827.
  • Yan, D.; Li, Y.; Liu, Y.; Li, N.; Zhang, X.; Yan, C. Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections. Molecules. 2021, 26(23), 23. DOI: 10.3390/molecules26237136.
  • Ke, C. L.; Deng, F. S.; Chuang, C. Y.; Lin, C. H. Antimicrobial Actions and Applications of Chitosan. Polym. 2021, 13(6), 6. DOI: 10.3390/polym13060904.
  • Abd El-Hack, M. E.; El-Saadony, M. T.; Shafi, M. E.; Zabermawi, N. M.; Arif, M.; Batiha, G. E.; Khafaga, A. F.; Abd El-Hakim, Y. M.; Al-Sagheer, A. A. Antimicrobial and Antioxidant Properties of Chitosan and Its Derivatives and Their Applications: A Review. Int. J. Biol. Macromol. 2020, 164, 2726–2744. DOI: 10.1016/j.ijbiomac.2020.08.153.
  • Sarbon, N. M.; Sandanamsamy, S.; Kamaruzaman, S. F. S.; Ahmad, F. Chitosan Extracted from Mud Crab (Scylla olivacea) Shells: Physicochemical and Antioxidant Properties. J. Food Sci. Technol. 2014, 52(7), 4266–4275. DOI: 10.1007/s13197-014-1522-4.
  • Yen, M.-T.; Yang, J.-H.; Mau, J.-L. Antioxidant Properties of Chitosan from Crab Shells. Carbohydr. Polym. 2008, 74(4), 840–844. DOI: 10.1016/j.carbpol.2008.05.003.
  • Kurniasih, M.; Purwati, D.; S, R. Toxicity Tests, Antioxidant Activity, and Antimicrobial Activity of Chitosan. IOP Conf. Ser Mater. Sci. Eng. 2018, 349, 1. DOI: 10.1088/1757-899X/349/1/012037.
  • Yusof, W. R. W.; Muhd Amir, A. N.; Nor Aimuni, A. A.; Noorasmin, M. A.; Awang, A. S. A. H. Comparative Studies on Physicochemical Characterisation, Antioxidant and Antibacterial Activity of Chitosan Extracted from Scylla Paramamosain and Penaeus Monodon Shells. Malaysian Appl. Biol. 2019, 48(5), 39–48.
  • Sun, T.; Zhou, D.; Mao, F.; Zhu, Y. Preparation of Low-Molecular-Weight Carboxymethyl Chitosan and Their Superoxide Anion Scavenging Activity. Eur. Polym. J. 2007, 43(2), 652–656. DOI: 10.1016/j.eurpolymj.2006.11.014.
  • Guerini, M.; Condrò, G.; Friuli, V.; Maggi, L.; Perugini, P. N-Acetylcysteine (NAC) and Its Role in Clinical Practice Management of Cystic Fibrosis (CF): A Review. Pharmaceuticals. 2022, 15(2), 1–16. DOI: 10.3390/ph15020217.
  • Lai, S. K.; Wang, Y. Y.; Hanes, J. Mucus-Penetrating Nanoparticles for Drug and Gene Delivery to Mucosal Tissues. Adv. Drug Deliv. Rev. 2009, 61(2), 158–171. DOI: 10.1016/j.addr.2008.11.002.
  • Abueva, C.; Ryu, H. S.; Min, J. W.; Chung, P. S.; You, H. S.; Yang, M. S.; Woo, S. H. Quaternary Ammonium N,N,N-Trimethyl Chitosan Derivative and Povidone‑Iodine Complex as a Potent Antiseptic with Enhanced Wound Healing Property. Int. J. Biol. Macromol. 2021, 182, 1713–1723. DOI: 10.1016/j.ijbiomac.2021.05.153.
  • Manimohan, M.; Paulpandiyan, R.; Pugalmani, S.; Sithique, M. A. Biologically Active Co (II), Cu (II), Zn (II) Centered Water Soluble Novel Isoniazid Grafted O-Carboxymethyl Chitosan Schiff Base Ligand Metal Complexes: Synthesis, Spectral Characterisation and DNA Nuclease Activity. Int. J. Biol. Macromol. 2020, 163, 801–816. DOI: 10.1016/j.ijbiomac.2020.06.278.
  • Barbosa, H. F. G.; Attjioui, M.; Leitão, A.; Moerschbacher, B. M.; Cavalheiro, É. T. G. C. Solubility and Biological Activity of Amphihilic Biopolymeric Schiff Bases Synthesized Using Chitosans. Carbohydr. Polym. 2019, 220(2019), 1–11. DOI: 10.1016/j.carbpol.2019.05.037.
  • Yi, J.; Huang, H.; Wen, Z.; Fan, Y. Fabrication of Chitosan-Gallic Acid Conjugate for Improvement of Physicochemical Stability of β-Carotene Nanoemulsion: Impact of Mw of Chitosan. Food Chem. 2021, 362(May), 130218. DOI: 10.1016/j.foodchem.2021.130218.
  • Lin, P.; Liu, L.; He, G.; Zhang, T.; Yang, M.; Cai, J.; Fan, L.; Tao, S. Preparation and Properties of Carboxymethyl Chitosan/Oxidized Hydroxyethyl Cellulose Hydrogel. Int. J. Biol. Macromol. 2020, 162, 1692–1698. DOI: 10.1016/j.ijbiomac.2020.07.282.
  • Lal, S.; Arora, S.; Rani, S.; Kumar, P.; Dabas, P.; Malik, J. Synthesis and Characterization of Water-Soluble Chitosan Derivatives: Spectral, Thermal and Biological Studies. J. Macromol. Sci. Part A Pure Appl. Chem. 2020, 57(12), 791–799. DOI: 10.1080/10601325.2020.1784756.
  • Wei, L.; Zhang, J.; Tan, W.; Wang, G.; Li, Q.; Dong, F.; Guo, Z. Antifungal Activity of Double Schiff Bases of Chitosan Derivatives Bearing Active Halogeno-Benzenes. Int. J. Biol. Macromol. 2021, 179, 292–298. DOI: 10.1016/j.ijbiomac.2021.02.184.
  • Jiang, Z.; Dou, G. Preparation and Characterization of Chitosan Grafting Hydrogel for Mine-Fire Fighting. ACS Omega. 2020, 5(5), 2303–2309. DOI: 10.1021/acsomega.9b03551.
  • Nagy, V.; Sahariah, P.; Hjálmarsdóttir, M.; Másson, M. Chitosan-Hydroxycinnamic Acid Conjugates: Optimization of the Synthesis and Investigation of the Structure Activity Relationship. Carbohydr. Polym. 2022, 277(November 2021), 118896. DOI: 10.1016/j.carbpol.2021.118896.
  • Liu, X.; Li, X.; Zhang, R.; Wang, L.; Feng, Q. A Novel Dual Microsphere Based on Water-Soluble Thiolated Chitosan/Mesoporous Calcium Carbonate for Controlled Dual Drug Delivery. Mater. Lett. 2021, 285, 129142. DOI: 10.1016/j.matlet.2020.129142.
  • Hu, Q.; Wang, T.; Zhou, M.; Xue, J.; Luo, Y. In vitro Antioxidant-Activity Evaluation of Gallic-Acid-Grafted Chitosan Conjugate Synthesized by Free-Radical-Induced Grafting Method. J. Agric. Food. Chem. 2016, 64(29), 5893–5900. DOI: 10.1021/acs.jafc.6b02255.
  • Thao, N. T. T.; Wijerathna, H. M. S. M.; Kumar, R. S.; Choi, D.; Dananjaya, S. H. S.; Attanayake, A. P. Preparation and Characterization of Succinyl Chitosan and Succinyl Chitosan Nanoparticle Film: In Vitro and in vivo Evaluation of Wound Healing Activity. Int. J. Biol. Macromol. 2021, 193(2021), 1823–1834. DOI: 10.1016/j.ijbiomac.2021.11.015.
  • Guaresti, O.; Basasoro, S.; González, K.; Eceiza, A.; Gabilondo, N. In situ Cross–Linked Chitosan Hydrogels via Michael Addition Reaction Based on Water–Soluble Thiol–Maleimide Precursors. Eur. Polym. J. 2019, 119(May), 376–384. DOI: 10.1016/j.eurpolymj.2019.08.009.
  • Cho, I. S.; Oh, H. M.; Cho, M. O.; Jang, B. S.; Cho, J. K.; Park, K. H.; Kang, S. W.; Huh, K. M. Synthesis and Characterization of Thiolated Hexanoyl Glycol Chitosan as a Mucoadhesive Thermogelling Polymer. Biomater. Res. 2018, 22(1), 1–10. DOI: 10.1186/s40824-018-0137-7.
  • Hauptstein, S.; Bonengel, S.; Griessinger, J.; Bernkop-Schnürch, A. Synthesis and Characterization of pH tolerant and Mucoadhesive (Thiol-Polyethylene Glycol) Chitosan Graft Polymer for Drug Delivery. J. Pharm. Sci. 2014, 103(2), 594–601. DOI: 10.1002/jps.23832.
  • Panda, P. K.; Yang, J. M.; Chang, Y. H.; Su, W. W. Modification of Different Molecular Weights of Chitosan by P-Coumaric Acid: Preparation, Characterization and Effect of Molecular Weight on Its Water Solubility and Antioxidant Property. Int. J. Biol. Macromol. 2019, 136, 661–667. DOI: 10.1016/j.ijbiomac.2019.06.082.
  • Yang, T. C.; Li, C. F.; Chou, S. S.; Chou, C. C. Adsorption of Metal Cations by Water-Soluble N-Alkylated Disaccharide Chitosan Derivatives. J. Appl. Polym. Sci. 2005, 98(2), 564–570. DOI: 10.1002/app.22000.
  • Pei, L.; Cai, Z.; Shang, S.; Song, Z. Synthesis and Antibacterial Activity of Alkylated Chitosan Under Basic Ionic Liquid Conditions. J. Appl. Polym. Sci. 2014, 131(7), 1–7. DOI: 10.1002/app.40052.
  • Eweida, B. Y.; Omer, A. M.; Tamer, T. M.; Soliman, H. A. E. M.; Zaatot, A. A.; Mohy-Eldin, M. S. K. Kinetics, Isotherms and Thermodynamics of Oil Spills Removal by Novel Amphiphilic Chitosan-G-Octanal Schiff Base Polymer Developed by Click grafting Technique. Polym. Bull. 2022, 80(5), 4813–4840. DOI: 10.1007/s00289-022-04260-9.
  • Li, D. H.; Liu, L. M.; Tian, K. L.; Liu, J. C.; Fan, X. Q. S. Synthesis, Biodegradability and Cytotoxicity of Water-Soluble Isobutylchitosan. Carbohydr. Polym. 2007, 67(1), 40–45. DOI: 10.1016/j.carbpol.2006.04.022.
  • Sajomsang, W.; Gonil, P.; Ruktanonchai, U. R.; Petchsangsai, M.; Opanasopit, P.; Puttipipatkhachorn, S. Effects of Molecular Weight and Pyridinium Moiety on Water-Soluble Chitosan Derivatives for Mediated Gene Delivery. Carbohydr. Polym. 2013, 91(2), 508–517. DOI: 10.1016/j.carbpol.2012.08.053.
  • Hafsa, J.; Smach, M. A.; Mrid, R. B.; Sobeh, M.; Majdoub, H.; Yasri, A. Functional Properties of Chitosan Derivatives Obtained Through Maillard Reaction: A Novel Promising Food Preservative. Food Chem. 2021, 349(November 2020), 129072. DOI: 10.1016/j.foodchem.2021.129072.
  • Mochalova, A. E.; Smirnova, L. A. State of the Art in the Targeted Modification of Chitosan. Polym. Sci. Ser. B. 2018, 60(2), 131–161. DOI: 10.1134/S1560090418020045.
  • de Araújo, E. L.; Barbosa, H. F. G.; Dockal, E. R.; Cavalheiro, É. T. G. S. Characterization and Biological Activity of Cu(ii), Ni(ii) and Zn(ii) Complexes of Biopolymeric Schiff Bases of Salicylaldehydes and Chitosan. Int. J. Biol. Macromol. 2017, 95, 168–176. DOI: 10.1016/j.ijbiomac.2016.10.109.
  • Barbosa, H. F. G.; Attjioui, M.; Ferreira, A. P. G.; Moerschbacher, B. M.; Cavalheiro, É. T. G. New Series of Metal Complexes by Amphiphilic Biopolymeric Schiff Bases from Modified Chitosans: Preparation, Characterization and Effect of Molecular Weight on Its Biological Applications. Int. J. Biol. Macromol. 2020, 145, 417–428. DOI: 10.1016/j.ijbiomac.2019.12.153.
  • Kurita, K. Chitin and Chitosan: Functional Biopolymers from Marine Crustaceans. Mar. Biotechnol. 2006, 8(3), 203–226. DOI: 10.1007/s10126-005-0097-5.
  • Alkabli, J. Progress in Preparation of Thiolated, Crosslinked, and Imino-Chitosan Derivatives Targeting Specific Applications. Eur. Polym. J. 2022, 165, 110998. DOI: 10.1016/j.eurpolymj.2022.110998.
  • Piegat, A.; Goszczyńska, A.; Idzik, T.; Niemczyk, A. The Importance of Reaction Conditions on the Chemical Structure of N,O-Acylated Chitosan Derivatives. Mol. 2019, 24(17), 17. DOI: 10.3390/molecules24173047.
  • Madera-Santana, T. J.; Herrera-Méndez, C. H.; Rodríguez-Núñez, J. R. An Overview of the Chemical Modifications of Chitosan and Their Advantages. Green Mater. 2018, 6(4), 131–142. DOI: 10.1680/jgrma.18.00053.
  • Ellina, N.; Salehuddin, A.; Rodzali, N. A.; Halim, K.; Bulat, K.; Mobarak, N. N. Site-Selective Carboxymethylation of Chitosan Under Heterogeneous Conditions. Malaysian J. Anal. Sci. 2021, 25(3), 376–387.
  • Feng, Y.; Xia, W. P. Characterization and Antibacterial Activity of Water-Soluble O-Fumaryl-Chitosan. Carbohydr. Polym. 2011, 83(3), 1169–1173. DOI: 10.1016/j.carbpol.2010.09.026.
  • Sayed, S.; Millard, T.; Jardine, A. Expedient Synthesis and Properties of 6-Deoxy-6-Amino Chitosan. Carbohydr. Polym. 2018, 196(May), 187–198. DOI: 10.1016/j.carbpol.2018.05.030.
  • Patel, N. K.; Sinha, V. K. S. Synthesis, Characterization and Optimization of Water-Soluble Chitosan Derivatives. Int. J. Polym. Mater. Polym. Biomater. 2009, 58(11), 548–560. DOI: 10.1080/00914030903035394.
  • Soubaneh, Y. D.; Ouellet, S.; Dion, C.; Gagnon, J. Formation of Highly Quaternized N. N,N-Trimethylchitosan: A Chemoselective Methodology In Aqueous Media. Pure Appl. Chem. 2019, 91(3), 489–496. DOI: 10.1515/pac-2018-0924.
  • Freitas, E. D.; Moura Jr., C. F.; Kerwald, J.; Beppu, M. M. An Overview of Current Knowledge on the Properties, Synthesis and Applications of Quaternary Chitosan Derivatives. Polym. 2020, 12(12), 1–41. DOI: 10.3390/polym12122878.
  • Wang, C. H.; Liu, W. S.; Sun, J. F.; Hou, G. G.; Chen, Q.; Cong, W.; Zhao, F. Non-Toxic O-Quaternized Chitosan Materials with Better Water Solubility and Antimicrobial Function. Int. J. Biol. Macromol. 2016, 84, 418–427. DOI: 10.1016/j.ijbiomac.2015.12.047.
  • Pathak, K.; Misra, S. K.; Sehgal, A.; Singh, S.; Bungau, S.; Najda, A.; Gruszecki, R.; Behl, T. Biomedical Applications of Quaternized Chitosan. Polym. 2021, 13(15), 1–31. DOI: 10.3390/polym13152514.
  • Ruihua, H.; Bingchao, Y.; Zheng, D.; Wang, B. Preparation and Characterization of a Quaternized Chitosan. J. Mater. Sci. 2012, 47(2), 845–851. DOI: 10.1007/s10853-011-5862-4.
  • Phuangkaew, T.; Booranabunyat, N.; Kiatkamjornwong, S.; Thanyasrisung, P.; Hoven, V. P. Amphiphilic Quaternized Chitosan: Synthesis, Characterization, and Anti-Cariogenic Biofilm Property. Carbohydr. Polym. 2022, 277(November 2021), 118882. DOI: 10.1016/j.carbpol.2021.118882.
  • Andreica, B. I.; Cheng, X.; Marin, L. Quaternary Ammonium Salts of Chitosan. A Critical Overview on the Synthesis and Properties Generated by Quaternization. Eur. Polym. J. 2020, 139(August), 110016. DOI: 10.1016/j.eurpolymj.2020.110016.
  • Tan, W.; Li, Q.; Dong, F.; Chen, Q.; Guo, Z. Preparation and Characterization of Novel Cationic Chitosan Derivatives Bearing Quaternary Ammonium and Phosphonium Salts and Assessment of Their Antifungal Properties. Mol. 2017, 22(9), 1438. DOI: 10.3390/molecules22091438.
  • Hemming, E. B.; Masters, A. F.; Perosa, A.; Selva, M.; Maschmeyer, T. Single-Step Methylation of Chitosan Using Dimethyl Carbonate as a Green Methylating Agent. Mol. 2019, 24(21), 6–8. DOI: 10.3390/molecules24213986.
  • Chatterjee, N. S.; Panda, S. K.; Navitha, M.; Asha, K. K.; Anandan, R.; Mathew, S. Vanillic Acid and Coumaric Acid Grafted Chitosan Derivatives: Improved Grafting Ratio and Potential Application in Functional Food. J. Food Sci. Technol. 2015, 52(11), 7153–7162. DOI: 10.1007/s13197-015-1874-4.
  • Malhotra, M.; Lane, C.; Tomaro-Duchesneau, C.; Saha, S.; Prakash, S. A Novel Method for Synthesizing PEGylated Chitosan Nanoparticles: Strategy, Preparation, and in vitro Analysis. Int. J. Nanomed. 2011, 6, 485–494. DOI: 10.2147/ijn.s17190.
  • Campos, E. V. R.; Oliveira, J. L.; Fraceto, L. F. Poly(ethylene Glycol) and Cyclodextrin-Grafted Chitosan: From Methodologies to Preparation and Potential Biotechnological Applications. Front. Chem. 2017, 5(NOV), 1–15. DOI: 10.3389/fchem.2017.00093.
  • Sorokin, A. V.; Olshannikova, S. S.; Lavlinskaya, M. S.; Holyavka, M. G.; Faizullin, D. A.; Zuev, Y. F.; Artukhov, V. G. Chitosan Graft Copolymers with N-Vinylimidazole as Promising Matrices for Immobilization of Bromelain, Ficin, and Papain. Polym. 2022, 14(11), 2279. DOI: 10.3390/polym14112279.
  • Bernkop-Schnürch, A.; Hornof, M.; Zoidl, T. Thiolated Polymers - Thiomers: Synthesis and in vitro Evaluation of Chitosan-2-Iminothiolane Conjugates. Int. J. Pharm. 2003, 260(2), 229–237. DOI: 10.1016/S0378-5173(03)00271-0.
  • Federer, C.; Kurpiers, M.; Bernkop-Schnürch, A. Thiolated Chitosans: A Multi-Talented Class of Polymers for Various Applications. Biomacromol. 2021, 22(1), 24–56. DOI: 10.1021/acs.biomac.0c00663.
  • Liu, J.; Yu, S.; Qu, W.; Jin, Z.; Zhao, K. Self-Assembly of Soluble Chitosan Derivatives Nanoparticles for Vaccine: Synthesis, Characterization and Evaluation. Polym. 2021, 13(23), 1–16. DOI: 10.3390/polym13234097.
  • Harmami, H.; Ulfin, I.; Sakinah, A. H.; Ni’mah, Y. L. Water-Soluble Chitosan from Shrimp and Mussel Shells as Corrosion Inhibitor on Tinplate in 2% NaCl. Malaysian J. Fundam. Appl. Sci. 2019, 15(2), 212–217. DOI: 10.11113/mjfas.v15n2.972.
  • Aljbour, N. D.; Beg, M. D. H.; Gimbun, J. Acid Hydrolysis of Chitosan to Oligomers Using Hydrochloric Acid. Chem. Eng. Technol. 2019, 42(9), 1741–1746. DOI: 10.1002/ceat.201800527.
  • Chokradjaroen, C.; Rujiravanit, R.; Watthanaphanit, A.; Theeramunkong, S.; Saito, N.; Yamashita, K.; Arakawa, R. Enhanced Degradation of Chitosan by Applying Plasma Treatment in Combination with Oxidizing Agents for Potential Use as an Anticancer Agent. Carbohydr. Polym. 2017, 167, 1–11. DOI: 10.1016/j.carbpol.2017.03.006.
  • Qin, C.; Du, Y.; Zong, L.; Zeng, F.; Liu, Y.; Zhou, B. Effect of Hemicellulase on the Molecular Weight and Structure of Chitosan. Polym. Degrad. Stab. 2003, 80(3), 435–441. DOI: 10.1016/S0141-3910(03)00027-2.
  • Arata Badano, J.; Vanden Braber, N.; Rossi, Y.; Díaz Vergara, L.; Bohl, L.; Porporatto, C.; Falcone, R. D.; Montenegro, M. Physicochemical, in vitro Antioxidant and Cytotoxic Properties of Water-Soluble Chitosan-Lactose Derivatives. Carbohydr. Polym. 2019, 224(August), 115158. DOI: 10.1016/j.carbpol.2019.115158.
  • Hai, N. T. T.; Thu, L. H.; Nga, N. T. T.; Hoa, T. T.; Tuan, L. N. A.; Van Phu, D.; Hien, N. Q. Preparation of Chitooligosaccharide by Hydrogen Peroxide Degradation of Chitosan and Its Effect on Soybean Seed Germination. J. Polym. Environ. 2019, 27(9), 2098–2104. DOI: 10.1007/s10924-019-01479-y.
  • Jin, Q.; Yu, H.; Wang, X.; Li, K.; Li, P. Effect of the Molecular Weight of Water-Soluble Chitosan on Its Fat/cholesterol-Binding Capacities and Inhibitory Activities to Pancreatic Lipase. Peer J. 2017, 2017, 5. DOI: 10.7717/peerj.3279.
  • Tran, T. N.; Doan, C. T.; Nguyen, V. B.; Nguyen, A. D.; Wang, S. L. The Isolation of Chitinase from Streptomyces Thermocarboxydus and Its Application in the Preparation of Chitin Oligomers. Res. Chem. Intermed. 2019, 45(2), 727–742. DOI: 10.1007/s11164-018-3639-y.
  • Vanden Braber, N. L.; Díaz Vergara, L. I.; Morán Vieyra, F. E.; Borsarelli, C. D.; Yossen, M. M.; Vega, J. R.; Correa, S. G.; Montenegro, M. A. Physicochemical Characterization of Water-Soluble Chitosan Derivatives with Singlet Oxygen Quenching and Antibacterial Capabilities. Int. J. Biol. Macromol. 2017, 102, 200–207. DOI: 10.1016/j.ijbiomac.2017.04.028.
  • Fahmiati, S.; Triwulandari, E.; Umam, E. F.; Ghozali, M.; Devi, Y. A.; Sondari, D. Pembuatan Kitosan Termodifikasi Melalui Reaksi Maillard. J. Kim. Kemasan. 2019, 41(2), 105–109. DOI: 10.24817/jkk.v41i2.4382.
  • Singh, K.; Tripathi, S.; Chandra, R. Maillard Reaction Product and Its Complexation with Environmental Pollutants: A Comprehensive Review of Their Synthesis and Impact. Bioresour. Technol. Rep. 2021, 15(May), 100779. DOI: 10.1016/j.biteb.2021.100779.
  • Bonilla, F.; Chouljenko, A.; Lin, A.; Young, B. M.; Goribidanur, T. S.; Blake, J. C.; Bechtel, P. J.; Sathivel, S. Chitosan and Water-Soluble Chitosan Effects on Refrigerated Catfish Fillet Quality. Food Biosci. July, 2019, 31, 100426. DOI: 10.1016/j.fbio.2019.100426.
  • Aktuganov, G. E.; Melentiev, A. I.; Varlamov, V. P. Biotechnological Aspects of the Enzymatic Preparation of Bioactive Chitooligosaccharides (Review). Appl. Biochem. Microbiol. 2019, 55(4), 323–343. DOI: 10.1134/S0003683819040021.
  • Safina, V. R.; Melentiev, A. I.; Galimzianova, N. F.; Gilvanova, E. A.; Kuzmina, L. Y.; Lopatin, S. A.; Varlamov, V. P.; Baymiev, A. H.; Aktuganov, G. E. Efficiency of Chitosan Depolymerization by Microbial Chitinases and Chitosanases with Respect to the Antimicrobial Activity of Generated Chitooligomers. Appl. Biochem. Microbiol. 2021, 57(5), 626–635. DOI: 10.1134/S0003683821050124.
  • Qian, J.; Shi, B.; Mo, L.; Shu, D.; Guo, H. Preparation of Chitooligosaccharides by α-Amylase from Chitosan with Oxidative Pretreatment. J. Chem. Technol. Biotechnol. 2021, 96(12), 3408–3413. DOI: 10.1002/jctb.6901.
  • Pan, S.; Wu, S. Preparation of Water-Soluble Chitosan by Hydrolysis with Commercial Glucoamylase Containing Chitosanase Activity. Eur. Food Res. Technol. 2011, 233(2), 325–329. DOI: 10.1007/s00217-011-1524-7.
  • Wu, S. Preparation of Water Soluble Chitosan by Hydrolysis with Commercial α-Amylase Containing Chitosanase Activity. Food Chem. 2011, 128(3), 769–772. DOI: 10.1016/j.foodchem.2011.03.111.
  • Botelho da Silva, S.; Krolicka, M.; van den Broek, L. A. M.; Frissen, A. E.; Boeriu, C. G. Water-Soluble Chitosan Derivatives and PH-Responsive Hydrogels by Selective C-6 Oxidation Mediated by TEMPO-Laccase Redox System. Carbohydr. Polym. 2018, 186(February), 299–309. DOI: 10.1016/j.carbpol.2018.01.050.
  • Yue, L.; Zheng, M.; Wang, M.; Khan, I. M.; Ding, X.; Zhang, Y.; Wang, Z. Water-Soluble Chlorin E6-Hydroxypropyl Chitosan as a High-Efficiency Photoantimicrobial Agent Against Staphylococcus Aureus. Int. J. Biol. Macromol. 2022, 208(December 2021), 669–677. DOI: 10.1016/j.ijbiomac.2022.03.140.
  • Elshaarawy, R. F. M.; Ismail, L. A.; Alfaifi, M. Y.; Rizk, M. A.; Eltamany, E. E.; Janiak, C. Inhibitory Activity of Biofunctionalized Silver-Capped N-Methylated Water-Soluble Chitosan Thiomer for Microbial and Biofilm Infections. Int. J. Biol. Macromol. 2020, 152, 709–717. DOI: 10.1016/j.ijbiomac.2020.02.284.
  • Piras, A. M.; Esin, S.; Benedetti, A.; Maisetta, G.; Fabiano, A.; Zambito, Y.; Batoni, G. A. Antibiofilm, and Antiadhesive Properties of Different Quaternized Chitosan Derivatives. Int. J. Mol. Sci. 2019, 20(24), 24. DOI: 10.3390/ijms20246297.
  • Abueva, C. D.; Ryu, H. S.; Park, S. Y.; Lee, H.; Padalhin, A. R.; Min, J. W.; Chung, P. S.; Woo, S. H. Trimethyl Chitosan Postoperative Irrigation Solution Modulates Inflammatory Cytokines Related to Adhesion Formation. Carbohydr. Polym. 2022, 288(March), 119380. DOI: 10.1016/j.carbpol.2022.119380.
  • Liu, Y.; Jiang, Y.; Zhu, J.; Huang, J.; Zhang, H. Inhibition of Bacterial Adhesion and Biofilm Formation of Sulfonated Chitosan Against Pseudomonas aeruginosa. Carbohydr. Polym. 2019, 206(October 2018), 412–419. DOI: 10.1016/j.carbpol.2018.11.015.
  • Li, J.; Zhuang, S. Antibacterial Activity of Chitosan and Its Derivatives and Their Interaction Mechanism with Bacteria: Current State and Perspectives. Eur. Polym. J. 2020, 138(August), 109984. DOI: 10.1016/j.eurpolymj.2020.109984.
  • Xie, W.; Xu, P.; Liu, Q. Antioxidant Activity of Water-Soluble Chitosan Derivatives. Bioorg. Med. Chem. Lett. 2001, 11(13), 1699–1701. DOI: 10.1016/S0960-894X(01)00285-2.
  • Luan, F.; Wei, L.; Zhang, J.; Mi, Y.; Dong, F.; Li, Q.; Guo, Z. Antioxidant Activity and Antifungal Activity of Chitosan Derivatives with Propane Sulfonate Groups. Polym. 2018, 10(4), 1–13. DOI: 10.3390/polym10040395.
  • Mesas, F. A.; Terrile, M. C.; Silveyra, M. X.; Zuñiga, A.; Rodriguez, M. S.; Casalongué, C. A.; Mendieta, J. R. The Water-Soluble Chitosan Derivative, N-Methylene Phosphonic Chitosan, is an Effective Fungicide Against the Phytopathogen Fusarium Eumartii. Plant Pathol. J. 2021, 37(6), 533–542. DOI: 10.5423/PPJ.OA.06.2021.0090.
  • Long, L. T.; Tan, L. V.; Boi, V. N.; Trung, T. S. Antifungal Activity of Water-Soluble Chitosan Against Colletotrichum Capsici in Postharvest Chili Pepper. J. Food Process. Preserv. 2018, 42(1), 1–8. DOI: 10.1111/jfpp.13339.
  • Kashif, S. A.; Park, J. K. Enzymatically Hydrolyzed Water-Soluble Chitosan as a Potent Anti-Microbial Agent. Macromol. Res. 2019, 27(6), 551–557. DOI: 10.1007/s13233-019-7095-3.
  • Abedia, Z.; Moghadamnia, A. A.; Zabihi, E.; Pourbagher, R.; Ghasemi, M.; Nouri, H. R.; Tashakorian, H.; Jenabian, N. Anticancer Properties of Chitosan Against Osteosarcoma, Breast Cancer and Cervical Cancer Cell Lines. Casp. J. Intern. Med. 2019, 10(4), 439–446. DOI: 10.22088/cjim.10.4.439.
  • Jiang, Z.; Han, B.; Li, H.; Yang, Y.; Liu, W. Carboxymethyl Chitosan Represses Tumor Angiogenesis in vitro and in vivo. Carbohydr. Polym. 2015, 129, 1–8. DOI: 10.1016/j.carbpol.2015.04.040.
  • Tangthong, T.; Piroonpan, T.; Thipe, V. C.; Khoobchandani, M.; Katti, K.; Katti, K. V.; Pasanphan, W. Water-Soluble Chitosan Conjugated DOTA-Bombesin Peptide Capped Gold Nanoparticles as a Targeted Therapeutic Agent for Prostate Cancer. Nanotechnol. Sci. Appl. 2021, 14, 69–89. DOI: 10.2147/NSA.S301942.
  • Liu, X. P.; Zhou, S. T.; Li, X. Y.; Chen, X. C.; Zhao, X.; Qian, Z. Y.; Zhou, L. N.; Li, Z. Y.; Wang, Y. M.; Zhong, Q., et al. Anti-Tumor Activity of N-Trimethyl Chitosan-Encapsulated Camptothecin in a Mouse Melanoma Model. J. Exp. Clin. Cancer Res. 2010, 29(1), 1–9. DOI: 10.1186/1756-9966-29-76.
  • Khazaei, S.; Esa, N. M.; Ramachandran, V.; Hamid, R. A.; Pandurangan, A. K.; Etemad, A.; Ismail, P. In vitro Antiproliferative and Apoptosis Inducing Effect of Allium Atroviolaceum Bulb Extract on Breast, Cervical, and Liver Cancer Cells. Front Pharmacol. 2017, 8(JAN), 1–16. DOI: 10.3389/fphar.2017.00005.
  • Zeng, H.; Zhu, X.; Tian, Q.; Yan, Y.; Zhang, L.; Yan, M.; Li, R.; Li, X.; Wang, G.; Ma, J., et al. In vivo Antitumor Effects of Carboxymethyl Chitosan-Conjugated Triptolide After Oral Administration. Drug. Deliv. 2020, 27(1), 848–854. DOI: 10.1080/10717544.2020.1770370.
  • Tran, T. N.; Doan, C. T.; Nguyen, V. B.; Nguyen, A. D.; Wang, S. L. Anti-Oxidant and Anti-Diabetes Potential of Water-Soluble Chitosan-Glucose Derivatives Produced by Maillard Reaction. Polym. 2019, 11(10), 1–12. DOI: 10.3390/polym11101714.
  • Wu, S.; Lu, M.; Wang, S. Antiageing Activities of Water-Soluble Chitosan from Clanis Bilineata Larvae. Int. J. Biol. Macromol. 2017, 102, 376–379. DOI: 10.1016/j.ijbiomac.2017.04.038.
  • Chen, M.; Chen, X. Q.; Tian, L. X.; Liu, Y. J.; Niu, J. Improvement of Growth, Intestinal Short-Chain Fatty Acids, Non-Specific Immunity and Ammonia Resistance in Pacific White Shrimp (Litopenaeus vannamei) Fed Dietary Water-Soluble Chitosan and Mixed Probiotics. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 236(February), 108791. DOI: 10.1016/j.cbpc.2020.108791.
  • Velasco, J.; Dobarganes, C.; Márquez-Ruiz, G. Oxidative Rancidity in Foods and Food Quality; Woodhead Publishing Limited, 2010. DOI: 10.1533/9781845699260.1.3.
  • Gomes, L. C.; Faria, S. I.; Valcarcel, J.; Vázquez, J. A.; Cerqueira, M. A.; Pastrana, L.; Bourbon, A. I.; Mergulhão, F. J. The Effect of Molecular Weight on the Antimicrobial Activity of Chitosan from Loligo Opalescens for Food Packaging Applications. Mar. Drugs. 2021, 19(7), 384. DOI: 10.3390/md19070384.
  • Kumarihami, H. M. P. C.; Kim, Y. H.; Kwack, Y. B.; Kim, J.; Kim, J. G. Application of Chitosan as Edible Coating to Enhance Storability and Fruit Quality of Kiwifruit: A Review. Sci. Hortic. 2022, 292(September 2021), 110647. DOI: 10.1016/j.scienta.2021.110647.
  • Zhou, Y.; Zhong, Y.; Li, L.; Jiang, K.; Gao, J.; Zhong, K.; Pan, M.; Yan, B. A Multifunctional Chitosan-Derived Conformal Coating for the Preservation of Passion Fruit. LWT Food Sci. Technol. 2022, 163(March), 113584. DOI: 10.1016/j.lwt.2022.113584.
  • Li, N.; Xiong, X.; Ha, X.; Wei, X. Comparative Preservation Effect of Water-Soluble and Insoluble Chitosan from Tenebrio Molitor Waste. Int. J. Biol. Macromol. 2019, 133, 165–171. DOI: 10.1016/j.ijbiomac.2019.04.094.
  • Lee, B. N.; Hong, S. J.; Yu, M. H.; Shin, G. H.; Kim, J. T. Enhancement of Storage Stability and Masking Effect of Curcumin by Turmeric Extract-Loaded Nanoemulsion and Water-Soluble Chitosan Coating. Pharmaceutics. 2022, 14(8), 1547. DOI: 10.3390/pharmaceutics14081547.
  • Chouljenko, A.; Chotiko, A.; Reyes, V.; Alfaro, L.; Liu, C.; Dzandu, B.; Sathivel, S. Application of Water-Soluble Chitosan to Shrimp for Quality Retention. LWT. 2016, 74, 571–579. DOI: 10.1016/j.lwt.2016.08.024.
  • Jiang, W.; Hu, S.; Li, S.; Liu, Y. Evaluation of the Preservation Effect of Gelatin-Water Soluble Chitosan Film Incorporated with Maillard Peptides on Bluefin Tuna (Thunnus thynnus) Slices Packaging. LWT Food Sci. Technol. 2019, 113(June), 108294. DOI: 10.1016/j.lwt.2019.108294.
  • Yu, D.; Zhao, W.; Dong, J.; Zang, J.; Regenstein, J. M.; Jiang, Q.; Xia, W. Multifunctional Bioactive Coatings Based on Water-Soluble Chitosan with Pomegranate Peel Extract for Fish Flesh Preservation. Food Chem. 2022, 374(September 2021), 131619. DOI: 10.1016/j.foodchem.2021.131619.
  • Bi, J.; Tian, C.; Zhang, G. L.; Hao, H.; Hou, H. M. Novel Procyanidins-Loaded Chitosan-Graft-Polyvinyl Alcohol Film with Sustained Antibacterial Activity for Food Packaging. Food Chem. 2021, 365(1), 130534. DOI: 10.1016/j.foodchem.2021.130534.
  • Baek, E. J.; Garcia, C. V.; Shin, G. H.; Kim, J. T. Improvement of Thermal and UV-Light Stability of β-Carotene-Loaded Nanoemulsions by Water-Soluble Chitosan Coating. Int. J. Biol. Macromol. 2020, 165, 1156–1163. DOI: 10.1016/j.ijbiomac.2020.10.008.
  • Vanden Braber, N. L.; Novotny Nuñez, I.; Bohl, L.; Porporatto, C.; Nazar, F. N.; Montenegro, M. A.; Correa, S. G. Soy Genistein Administered in Soluble Chitosan Microcapsules Maintains Antioxidant Activity and Limits Intestinal Inflammation. J. Nutr Biochem. 2018, 62, 50–58. DOI: 10.1016/j.jnutbio.2018.08.009.
  • Zhang, X.; Zhao, X.; Tie, S.; Li, J.; Su, W.; Tan, M. A Smart Cauliflower-Like Carrier for Astaxanthin Delivery to Relieve Colon Inflammation. J. Control Release. 2022, 342(January), 372–387. DOI: 10.1016/j.jconrel.2022.01.014.
  • İ̇lyasoğlu, H.; Guo, Z. Water Soluble Chitosan-Caffeic Acid Conjugates as a Dual Functional Polymeric Surfactant. Food Biosci. 2019, 29(September 2018), 118–125. DOI: 10.1016/j.fbio.2019.04.007.
  • Lichtfouse, E.; Morin-Crini, N.; Fourmentin, M.; Zemmouri, H.; Do Carmo Nascimento, I. O.; Queiroz, L. M.; Tadza, M. Y. M.; Picos-Corrales, L. A.; Pei, H.; Wilson, L. D., et al. Chitosan for Direct Bioflocculation of Wastewater. Environ. Chem. Lett. 2019, 17(4), 1603–1621.
  • Palacio, D. A.; Vásquez, V.; Rivas, B. L. Chromate Ion Removal by Water-Soluble Functionalized Chitosan. Polym. Adv. Technol. 2021, 32(7), 2690–2699. DOI: 10.1002/pat.5170.
  • Triana-Guzmán, V. L.; Ruiz-Cruz, Y.; Romero-Peñaloza, E. L.; Zuluaga-Corrales, H. F.; Chaur-Valencia, M. N. New Chitosan-Imine Derivatives: From Green Chemistry to Removal of Heavy Metals from Water. Rev. Fac. Ing. 2018, 2018(89), 9–18. DOI: 10.17533/udea.redin.n89a05.
  • Prabu, K.; Natarajan, E. Bioprospecting of Shells of Crustaceans. Int. J. Pharm. Pharm. Sci. 2012, 4(SUPPL. 4), 1–3. DOI: 10.4103/0975-7406.100218.
  • Sillanpää, M.; Ncibi, M. C.; Matilainen, A.; Vepsäläinen, M. Removal of Natural Organic Matter in Drinking Water Treatment by Coagulation: A Comprehensive Review. Chemosphere. 2018, 190, 54–71. DOI: 10.1016/j.chemosphere.2017.09.113.
  • Maria, A.; Mayasari, E.; Irawati, U.; Zulfikurrahman, Z. Comparing the Effectiveness of Chitosan and Conventional Coagulants for Coal Wastewater Treatment. IOP Conf. Ser Mater. Sci. Eng. 2020, 980(1), 1. DOI: 10.1088/1757-899X/980/1/012077.
  • Bergamasco, R.; Konradt-Moraes, L. C.; Vieira, M. F.; Fagundes-Klen, M. R.; Vieira, A. M. S. Performance of a Coagulation-Ultrafiltration Hybrid Process for Water Supply Treatment. Chem. Eng. J. 2011, 166(2), 483–489. DOI: 10.1016/j.cej.2010.10.076.
  • Sun, G. Z.; Chen, X. G.; Li, Y. Y.; Zheng, B.; Gong, Z. H.; Sun, J. J.; Chen, H.; Li, J.; Lin, W. X. Preparation of H-Oleoyl-Carboxymethyl-Chitosan and the Function as a Coagulation Agent for Residual Oil in Aqueous System. Front. Mater. Sci. China. 2008, 2(1), 105–112. DOI: 10.1007/s11706-008-0019-3.
  • Jin, Y.; Pei, H.; Hu, W.; Zhu, Y.; Xu, H.; Ma, C.; Sun, J.; Li, H. A Promising Application of Chitosan Quaternary Ammonium Salt to Removal of Microcystis aeruginosa Cells from Drinking Water. Sci. Total Environ. 2017, 583, 496–504. DOI: 10.1016/j.scitotenv.2017.01.104.
  • Lu, X.; Xu, Y.; Sun, W.; Sun, Y.; Zheng, H. UV-Initiated Synthesis of a Novel Chitosan-Based Flocculant with High Flocculation Efficiency for Algal Removal. Sci. Total Environ. 2017, 609, 410–418. DOI: 10.1016/j.scitotenv.2017.07.192.
  • Chen, C. Y.; Chung, Y. C. Comparison of Acid-Soluble and Water-Soluble Chitosan as Coagulants in Removing Bentonite Suspensions. Water Air Soil Pollut. 2011, 217(1–4), 603–610. DOI: 10.1007/s11270-010-0613-8.
  • Ding, S.; Wang, Y.; Li, J.; Chen, S. Progress and Prospects in Chitosan Derivatives: Modification Strategies and Medical Applications. J. Mater. Sci. Technol. 2021, 89, 209–224. DOI: 10.1016/j.jmst.2020.12.008.
  • Abdel-Samad, M. R. K.; Taher, F. A. Wound Healing and Antibacterial Activities of Water-Soluble Chitosan Nanoparticles and Excretion/Secretion as a Natural Combination from Medicinal Maggots, Lucilia Cuprina. J. Bioact. Compat. Polym. 2021, 36(6), 510–519. DOI: 10.1177/08839115211053921.
  • Hajji, S.; Ktari, N.; Ben Salah, R.; Boufi, S.; Debeaufort, F.; Nasri, M. Development of Nanocomposite Films Based on Chitosan and Gelatin Loaded with Chitosan-Tripolyphosphate Nanoparticles: Antioxidant Potentials and Applications in Wound Healing. J Polym. Environ. 2022, 30(3), 833–854. DOI: 10.1007/s10924-021-02239-7.
  • Rozman, N. A. S.; Yenn, T. W.; Ring, L. C.; Nee, T. W.; Hasanolbasori, M. A.; Abdullah, S. Z. Potential Antimicrobial Applications of Chitosan Nanoparticles (ChNp). J. Microbiol. Biotechnol. 2019, 29(7), 1009–1013. DOI: 10.4014/jmb.1904.04065.
  • Nivethaa, E. A. K.; Baskar, S.; Catherine, A. M.; Ramana, R. J.; Stephen, A.; Narayanan, V.; Laskhmi, B. S.; Olga, V. F.-K.; Subathra, R.; Narayana, K. S. A Competent Bidrug Loaded Water Soluble Chitosan Derivative for the Effective Inhibition of Breast Cancer. Sci. Rep. 2020, 10(1), 1–12. DOI: 10.1038/s41598-020-60888-5.
  • Sharifi-Rad, J.; Quispe, C.; Butnariu, M.; Rotariu, L. S.; Sytar, O.; Sestito, S.; Rapposelli, S.; Akram, M.; Iqbal, M.; Krishna, A., et al. Chitosan Nanoparticles as a Promising Tool in Nanomedicine with Particular Emphasis on Oncological Treatment. Cancer Cell Int. 2021, 21(1), 1–21. DOI: 10.1186/s12935-021-02025-4.
  • Yoon, H. M.; Kang, M. S.; Choi, G. E.; Kim, Y. J.; Bae, C. H.; Yu, Y. B.; Jeong, Y. I. Stimuli-Responsive Drug Delivery of Doxorubicin Using Magnetic Nanoparticle Conjugated Poly(ethylene Glycol)-G-Chitosan Copolymer. Int. J. Mol. Sci. 2021, 22(23), 1–12. DOI: 10.3390/ijms222313169.
  • Jing, F.; Li, G.; Wang, Y.; Zhu, S.; Liu, R.; He, J.; Lei, J. Synthesis and Characterization of Folic Acid-Modified Carboxymethyl Chitosan-Ursolic Acid Targeted Nano-Drug Carrier for the Delivery of Ursolic Acid and 10-Hydroxycamptothecin. Polym. Adv. Technol. 2021, 32(1), 343–354. DOI: 10.1002/pat.5090.
  • Dang, N. T. T.; Chau, T. T. L.; Duong, H. V.; Le, H. T.; Tran, T. T. V.; Le, T. Q.; Vu, T. P.; Nguyen, C. D.; Nguyen, L. V.; Nguyen, T. D. Water-Soluble Chitosan-Derived Sustainable Materials: Towards Filaments, Aerogels, Microspheres, and Plastics. Soft Matter. 2017, 13(40), 7292–7299. DOI: 10.1039/c7sm01292f.
  • Safari, J. B.; Bapolisi, A. M.; Krause, W. M. R. Development of PH-Sensitive Chitosan-G-Poly (Acrylamide-Co-Acrylic Acid) Hydrogel for Controlled Drug Delivery of Tenofovir Disoproxil Fumarate. Polym. 2021, 13(3571), 1–17. DOI: 10.3390/polym13203571.
  • Junaid, A.; Najabat Ali, M.; Mir, M.; Hassan, S. A Study on the Thermal Responsive Behavior of Hydrogel-Based Materials and Their Potential Use in Medical Applications. Sens. Rev. 2022, 42(6), 657–668. DOI: 10.1108/SR-10-2021-0366.
  • Rafiee, F.; Rezaee, M. Different Strategies for the Lipase Immobilization on the Chitosan Based Supports and Their Applications. Int. J. Biol. Macromol. 2021, 179, 170–195. DOI: 10.1016/j.ijbiomac.2021.02.198.
  • Strzałka, A. M.; Lubczak, J. Polyols and Polyurethane Foams Based on Water-Soluble Chitosan. Polym. 2023, 15(6), 6. DOI: 10.3390/polym15061488.
  • Vejan, P.; Khadiran, T.; Abdullah, R.; Ahmad, N. Controlled Release Fertilizer: A Review on Developments, Applications and Potential in Agriculture. J. Control Release. 2021, 339(October), 321–334. DOI: 10.1016/j.jconrel.2021.10.003.
  • Saberi, R.; Hassanisaadi, M.; Vatankhah, M. Chitosan as a Potential Natural Compound to Manage Plant Diseases. Int. J. Biol. Macromol. 2022, 220(August), 998–1009. DOI: 10.1016/j.ijbiomac.2022.08.109.
  • Balusamy, S. R.; Rahimi, S.; Sukweenadhi, J.; Sunderraj, S.; Shanmugam, R.; Thangavelu, L.; Mijakovic, I.; Perumalsamy, H. C. Chitosan Nanoparticles and Modified Chitosan Biomaterials, a Potential Tool to Combat Salinity Stress in Plants. Carbohydr. Polym. 2022, 284(October 2021), 119189. DOI: 10.1016/j.carbpol.2022.119189.
  • Ibrahim, A. M.; Morad, M. Y.; Hamdi, S. A. H.; Fol, M. F. Biocontrol Potential of Chitosan Extracted from Procambarus Clarkii (Crustacea: Cambaridae) Against Eobania Vermiculata Snails (Muller 1774) in Egypt. Egypt. J. Biol. Pest Control. 2022, 32(1). DOI: 10.1186/s41938-022-00521-x.
  • Guo, J.; Yang, J.; Yang, J.; Zheng, G.; Chen, T.; Huang, J.; Bian, J.; Meng, X. Water-Soluble Chitosan Enhances Phytoremediation Efficiency of Cadmium by Hylotelephium Spectabile in Contaminated Soils. Carbohydr. Polym. 2020, 246(May), 116559. DOI: 10.1016/j.carbpol.2020.116559.
  • Hu, W.; Niu, Y.; Zhu, H.; Dong, K.; Wang, D.; Liu, F. Remediation of Zinc-Contaminated Soils by Using the Two-Step Washing with Citric Acid and Water-Soluble Chitosan. Chemosphere. 2021, 282(January), 131092. DOI: 10.1016/j.chemosphere.2021.131092.
  • Kim, H. S.; Kim, J. E.; Frailey, D.; Nohe, A.; Duncan, R.; Czymmek, K. J.; Kang, S. Roles of Three Fusarium oxysporum Calcium Ion (Ca2+) Channels in Generating Ca2+ Signatures and Controlling Growth. Fungal Genet. Biol. 2015, 82, 145–157. DOI: 10.1016/j.fgb.2015.07.003.
  • Prasannath, K. Plant Defense-Related Enzymes Against Pathogens: A Review. AGRIEAST J. Agric. Sci. 2017, 11(1), 38. DOI: 10.4038/agrieast.v11i1.33.
  • Li, Y.; Qin, Y.; Liu, S.; Xing, R.; Yu, H.; Li, K.; Li, P. P. Characterization, and Insecticidal Activity of Avermectin-Grafted-Carboxymethyl Chitosan. Biomed Res. Int. 2016, 2016(Article ID 9805675), 1–8. DOI: 10.1155/2016/9805675.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.