198
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The fabrication strategies for chitosan/poly(vinyl pyrrolidone) based hydrogels and their biomedical applications: A focused review

, , , &
Pages 2255-2271 | Received 23 Aug 2023, Accepted 24 Aug 2023, Published online: 04 Sep 2023

References

  • Ullah, F.; Othman, M. B. H.; Javed, F.; Ahmad, Z.; Akil, H. M. Classification, Processing and Application of Hydrogels: A Review. Mater. Sci. Eng. C. 2015, 57, 414–433. DOI: 10.1016/j.msec.2015.07.053.
  • Rosiak, J. M.; Yoshii, F. Hydrogels and Their Medical Applications. Nucl. Instrum. Methods Phys. Res. B. 1999, 151(1), 56–64. DOI: 10.1016/S0168-583X(99)00118-4.
  • Fu, J.; In Het Panhuis, M. Hydrogel Properties and Applications. J. Mater Chem. B. 2019, 7(10), 1523–1525. DOI: 10.1039/C9TB90023C.
  • Sharma, S.; Tiwari, S. RETRACTED: A Review on Biomacromolecular Hydrogel Classification and Its Applications. Int J Biol Macromol. 2020, 162, 737–747. DOI: 10.1016/j.ijbiomac.2020.06.110.
  • Hoffman, A. S. Hydrogels for Biomedical Applications. Adv. Drug Delivery Rev. 2012, 64, 18–23. DOI: 10.1016/j.addr.2012.09.010.
  • Ranjha, N. M, and Khan, S. Chitosan/Poly (Vinyl Alcohol) Based Hydrogels for Biomedical Applications: A Review. J. Pharm. Altern. Med. 2013, 2(1), 30–41.
  • Villalba-Rodriguez, A. M.; Dhama, K.; Iqbal, H. Biomaterials-Based Hydrogels and Their Drug Delivery Potentialities. Int. J. Pharm. 2017, 13(7), 864–873. DOI: 10.3923/ijp.2017.864.873.
  • Ressler, A. Chitosan-Based Biomaterials for Bone Tissue Engineering Applications: A Short Review. Polymers (Basel). 2022, 14(16), 3430. DOI: 10.3390/polym14163430.
  • Roy, N.; Saha, N. PVP-Based Hydrogels: Synthesis, Properties and Applications. Hydrogels Synth. Charact. Appl. 2012, 227–252.
  • Abashzadeh, S.; Hajimiri, M. H.; Atyabi, F.; Amini, M.; Dinarvand, R. Novel Physical Hydrogels Composed of Opened‐Ring Poly (vinyl Pyrrolidone) and Chitosan Derivatives: Preparation and Characterization. J. Appl. Polym. Sci. 2011, 121( 5), 2761–2771.
  • Makuuchi, K. Critical Review of Radiation Processing of Hydrogel and Polysaccharide. Radiat. Phys. Chem. 2010, 79(3), 267–271. DOI: 10.1016/j.radphyschem.2009.10.011.
  • Dergunov, S.; Mun, G. γ-Irradiated Chitosan-Polyvinyl Pyrrolidone Hydrogels as pH-Sensitive Protein Delivery System. Radiat. Phys. Chem. 2009, 78(1), 65–68. DOI: 10.1016/j.radphyschem.2008.07.003.
  • Risbud, M. V.; Hardikar, A. A.; Bhat, S. V.; Bhonde, R. R. pH-Sensitive Freeze-Dried Chitosan–Polyvinyl Pyrrolidone Hydrogels as Controlled Release System for Antibiotic Delivery. J. Controlled Release. 2000, 68(1), 23–30. DOI: 10.1016/S0168-3659(00)00208-X.
  • Salva, E.; Akbuga, J. The Effects to GM-CSF Expression and Fibroblast Proliferation of PGM-CSF Containing Chitosan/PVP Hydrogels. Marmara Pharm. J. 2016, 21(2), 223. DOI: 10.12991/marupj.278854.
  • Poonguzhali, R.; Basha, S. K.; Kumari, V. S. Nanostarch Reinforced with Chitosan/Poly (Vinyl Pyrrolidone) Blend for in vitro Wound Healing Application. Polym. Plast. Technol. Eng. 2018, 57(14), 1400–1410. DOI: 10.1080/03602559.2017.1381255.
  • Patrulea, V.; Ostafe, V.; Borchard, G.; Jordan, O. Chitosan as a Starting Material for Wound Healing Applications. Eur. J. Pharm. Biopharm. 2015, 97, 417–426. DOI: 10.1016/j.ejpb.2015.08.004.
  • David, G.-R. Comparison of Process Technologies for Chitosan Production from Shrimp Shell Waste: A Techno-Economic Approach Using Aspen Plus®. Food Bioprod. Process. 2017, 103, 49–57. DOI: 10.1016/j.fbp.2017.02.010.
  • Dünnhaupt, S.; Barthelmes, J.; Rahmat, D.; Leithner, K.; Thurner, C. C.; Friedl, H. S-Protected Thiolated Chitosan for Oral Delivery of Hydrophilic Macromolecules: Evaluation of Permeation Enhancing and Efflux Pump Inhibitory Properties. Mol. Pharm. 2012, 9(5), 1331–1341. DOI: 10.1021/mp200598j.
  • Rinaudo, M. Chitin and Chitosan: Properties and Applications. Prog. Polym. Sci. 2006, 31(7), 603–632. DOI: 10.1016/j.progpolymsci.2006.06.001.
  • Di Martino, A.; Sittinger, M.; Risbud, M. V. Chitosan: A Versatile Biopolymer for Orthopaedic Tissue-Engineering. Biomaterials. 2005, 26(30), 5983–5990. DOI: 10.1016/j.biomaterials.2005.03.016.
  • Fei Liu, X.; Lin Guan, Y.; Zhi Yang, D.; Li, Z.; De Yao, K. Antibacterial Action of Chitosan and Carboxymethylated Chitosan. J. Appl. Polym. Sci. 2001, 79(7), 1324–1335. DOI: 10.1002/1097-4628(20010214)79:7<1324:AID-APP210>3.0.CO;2-L.
  • Chung, Y. C.; Su, Y. P.; Chen, C. C.; Jia, G.; Wang, H. L.; Wu, J. C.; Lin, J.-G. Relationship Between Antibacterial Activity of Chitosan and Surface Characteristics of Cell Wall. Acta. Pharmacol. Sin. 2004, 25(7), 932–936.
  • Mazeau, K.; Pérez, S.; Rinaudo, M. Predicted Influence of N-Acetyl Group Content on the Conformational Extension of Chitin and Chitosan Chains. J. Carbohydr. Chem. 2000, 19(9), 1269–1284. DOI: 10.1080/07328300008544150.
  • Berger, J.; Reist, M.; Mayer, J. M.; Felt, O.; Gurny, R. Structure and Interactions in Chitosan Hydrogels Formed by Complexation or Aggregation for Biomedical Applications. Eur. J. Pharm. Biopharm. 2004, 57(1), 35–52. DOI: 10.1016/s0939-6411(03)00160-7.
  • Makarand, V.; Risbud, R. R. B. Polyacrylamide-Chitosan Hydrogels: In Vitro Biocompatibility and Sustained Antibiotic Release Studies. Drug Delivery. 2000, 7(2), 69–75. DOI: 10.1080/107175400266623.
  • Kokabi, M.; Sirousazar, M.; Hassan, Z. M. PVA–Clay Nanocomposite Hydrogels for Wound Dressing. European Polymer Journal. 2007, 43(3), 773–781. DOI: 10.1016/j.eurpolymj.2006.11.030.
  • Purohit, S. D.; Priyadarshi, R.; Bhaskar, R.; Han, S. S. Chitosan-Based Multifunctional Films Reinforced with Cerium Oxide Nanoparticles for Food Packaging Applications. Food. Hydrocoll. 2023, 143, 108910. DOI: 10.1016/j.foodhyd.2023.108910.
  • Park, J. H.; Saravanakumar, G.; Kim, K.; Kwon, I. C. Targeted Delivery of Low Molecular Drugs Using Chitosan and Its Derivatives. Adv. Drug Delivery Rev. 2010, 62(1), 28–41. DOI: 10.1016/j.addr.2009.10.003.
  • Wimardhani, Y. S.; Suniarti, D. F.; Freisleben, H. J.; Wanandi, S. I.; Siregar, N. C.; Ikeda, M. A. Chitosan Exerts Anticancer Activity Through Induction of Apoptosis and Cell Cycle Arrest in Oral Cancer Cells. J. Oral Sci. 2014, 56(2), 119–126. DOI: 10.2334/josnusd.56.119.
  • Han, H. D.; Song, C. K.; Park, Y. S.; Noh, K. H.; Kim, J. H.; Hwang, T. A Chitosan Hydrogel-Based Cancer Drug Delivery System Exhibits Synergistic Antitumor Effects by Combining with a Vaccinia Viral Vaccine. Int. J. Pharm. 2008, 350(1–2), 27–34. DOI: 10.1016/j.ijpharm.2007.08.014.
  • Zhang, Y. J.; Gao, B.; Liu, X. W. Topical and Effective Hemostatic Medicines in the Battlefield. Int. J. Clin. Exp. Med. 2015, 8(1), 10–19.
  • Haaf, F.; Sanner, A.; Straub, F. Polymers of N-Vinylpyrrolidone: Synthesis, Characterization and Uses. Polym. j. 1985, 17(1), 143–152. DOI: 10.1295/polymj.17.143.
  • Awasthi, R.; Manchanda, S.; Das, P.; Velu, V.; Malipeddi, H.; Pabreja, K.; Pinto, T. D. J. A.; Gupta, G.; Dua, K. 9 - Poly(vinylpyrrolidone). In Engineering of Biomaterials for Drug Delivery Systems, Parambath, A. Ed.;Woodhead Publishing, 2018; pp. 255–272. DOI: 10.1016/B978-0-08-101750-0.00009-X
  • Kausar, A. Effect of Nanofillers on Polyurethane/Polystyrene Matrix Nanocomposites: Characteristics and Forthcoming Developments. J. Plast. Film Sheeting. 2022, 38(3), 438–457. DOI: 10.1177/87560879211059859.
  • Bühler, V. Polyvinylpyrrolidone Excipients for Pharmaceuticals : Povidone, Crospovidone, and Copovidone; Springer E-Books: Berlin; New York, 2005.
  • Panda, H. Herbal Cosmetics Handbook, 3rd Revised ed.; India: Asia Pacific Business Press Inc., 2015.
  • Kurakula, M.; Rao, G. Pharmaceutical Assessment of Polyvinylpyrrolidone (PVP): As Excipient from Conventional to Controlled Delivery Systems with a Spotlight on COVID-19 Inhibition. J. Drug Deliv. Sci. Technol. 2020, 60, 102046. DOI: 10.1016/j.jddst.2020.102046.
  • Ming, Z.; Ruan, X.; Bao, C.; Lin, Q.; Yang, Y.; Zhu, L. Micropatterned Protein for Cell Adhesion Through Phototriggered Charge Change in a Polyvinylpyrrolidone Hydrogel. Adv. Funct. Mater. 2017, 27(25), 1606258. DOI: https://doi.org/10.1002/adfm.201606258.
  • Saeedi Garakani, S.; Davachi, S. M.; Bagher, Z.; Heraji Esfahani, A.; Jenabi, N.; Atoufi, Z.; Khanmohammadi, M.; Abbaspourrad, A.; Rashedi, H.; Jalessi, M.; et al. Fabrication of Chitosan/Polyvinylpyrrolidone Hydrogel Scaffolds Containing PLGA Microparticles Loaded with Dexamethasone for Biomedical Applications. Int J Biol Macromol. 2020, 164, 356–370. DOI: 10.1016/j.ijbiomac.2020.07.138.
  • López-Calderón, H. D.; Avilés-Arnaut, H.; Galán-Wong, L. J.; Almaguer-Cantú, V.; Laguna-Camacho, J. R.; Calderón-Ramón, C.; Escalante-Martínez, J. E.; Arévalo-Niño, K. Electrospun Polyvinylpyrrolidone-Gelatin and Cellulose Acetate Bi-Layer Scaffold Loaded with Gentamicin as Possible Wound Dressing. Polymers (Basel). 2020, 12(10), 2311. DOI: 10.3390/polym12102311.
  • Yu, D.-G.; Li, X.-Y.; Wang, X.; Yang, J.-H.; Bligh, S. W. A.; Williams, G. R. Nanofibers Fabricated Using Triaxial Electrospinning as Zero Order Drug Delivery Systems. ACS Appl. Mater. Interfaces. 2015, 7(33), 18891–18897. DOI: 10.1021/acsami.5b06007.
  • Bian, F.; Jia, L.; Yu, W.; Liu, M. Self-Assembled Micelles of N-Phthaloylchitosan-G-Polyvinylpyrrolidone for Drug Delivery. Carbohydr. Polym. 2009, 76(3), 454–459. DOI: 10.1016/j.carbpol.2008.11.008.
  • Khataei, S. H.; Al-Musawi, M.; Asadi, K.; Ramezani, S.; Abbasian, M.; Ghorbani, M. Effect of Molecular Weight and Content of Polyvinylpyrrolidone on Cell Proliferation, Loading Capacity and Properties of Electrospun Green Tea Essential Oil-Incorporated Polyamide-6/polyvinylpyrrolidone Nanofibers. J. Drug Delivery Sci. Technol. 2023, 82, 104310. DOI: 10.1016/j.jddst.2023.104310.
  • Kesici Güler, H.; Cengiz Çallıoğlu, F.; Sesli Çetin, E. Antibacterial PVP/Cinnamon Essential Oil Nanofibers by Emulsion Electrospinning. The Journal Of The Textile Institute. 2019, 110(2), 302–310. DOI: 10.1080/00405000.2018.1477237.
  • Hasan, A.; Waibhaw, G.; Tiwari, S.; Dharmalingam, K.; Shukla, I.; Pandey, L. M. Fabrication and Characterization of Chitosan, Polyvinylpyrrolidone, and Cellulose Nanowhiskers Nanocomposite Films for Wound Healing Drug Delivery Application. J. Biomed. Mater. Res. A. 2017, 105(9), 2391–2404. DOI: 10.1002/jbm.a.36097.
  • Dai, X. Y.; Nie, W.; Wang, Y. C.; Shen, Y.; Li, Y.; Gan, S. J. Electrospun Emodin Polyvinylpyrrolidone Blended Nanofibrous Membrane: A Novel Medicated Biomaterial for Drug Delivery and Accelerated Wound Healing. J. Mater. Sci. Mater. Med. 2012, 23(11), 2709–2716. DOI: 10.1007/s10856-012-4728-x.
  • Ahmed, E. M. Hydrogel: Preparation, Characterization, and Applications: A Review. J. Adv. Res. 2015, 6(2), 105–121. DOI: 10.1016/j.jare.2013.07.006.
  • Wang, B.; Zhu, W.; Zhang, Y.; Yang, Z.; Ding, J. Synthesis of a Chemically-Crosslinked Thermo-Sensitive Hydrogel Film and in situ Encapsulation of Model Protein Drugs. React. Funct. Polym. 2006, 66(5), 509–518. DOI: 10.1016/j.reactfunctpolym.2005.10.003.
  • Gull, N.; Khan, S. M.; Butt, M. T. Z.; Zia, S.; Khalid, S.; Islam, A.; Sajid, I.; Khan, R. U.; King, M. W. Hybrid Cross-Linked Hydrogels as a Technology Platform for in vitro Release of Cephradine. Polym. Adv. Technol. 2019, 30(9), 2414–2424. DOI: https://doi.org/10.1002/pat.4688.
  • Veiga, A. S.; Schneider, J. P. Antimicrobial Hydrogels for the Treatment of Infection. Biopolymers. 2013, 100(6), 637–644. DOI: 10.1002/bip.22412.
  • Gupta, B.; Agarwal, R.; Sarwar Alam, M. Preparation and Characterization of Polyvinyl Alcohol-Polyethylene Oxide-Carboxymethyl Cellulose Blend Membranes. J. Appl. Polym. Sci. 2013, 127(2), 1301–1308. DOI: 10.1002/app.37665.
  • Zhang, M.; Li, X. H.; Gong, Y. D.; Zhao, N. M.; Zhang, X. F. Properties and Biocompatibility of Chitosan Films Modified by Blending with PEG. Biomaterials. 2002, 23(13), 2641–2648. DOI: 10.1016/S0142-9612(01)00403-3.
  • Sarasam, A. R.; Krishnaswamy, R. K.; Madihally, S. V. Blending Chitosan with Polycaprolactone: Effects on Physicochemical and Antibacterial Properties. Biomacromolecules. 2006, 7(4), 1131–1138. DOI: 10.1021/bm050935d.
  • Yang, X.; Tu, Y.; Li, L.; Shang, S.; Tao, X. Well-Dispersed Chitosan/Graphene Oxide Nanocomposites. ACS Appl. Mater. Interfaces. 2010, 2(6), 1707–1713. DOI: 10.1021/am100222m.
  • Hashemi Doulabi, A.; Mirzadeh, H.; Imani, M.; Samadi, N. Chitosan/Polyethylene Glycol Fumarate Blend Film: Physical and Antibacterial Properties. Carbohydr. Polym. 2013, 92(1), 48–56. DOI: 10.1016/j.carbpol.2012.09.002.
  • Lanjhiyana, S. K.; Bajpayee, P.; Kesavan, K.; Lanjhiyana, S.; Muthu, M. S. Chitosan-Sodium Alginate Blended Polyelectrolyte Complexes as Potential Multiparticulate Carrier System: Colon-Targeted Delivery and Gamma Scintigraphic Imaging. Expert Opin. Drug Deliv. 2013, 10(1), 5–15. DOI: 10.1517/17425247.2013.734805.
  • Geanaliu-Nicolae, R.-E.; Andronescu, E. Blended Natural Support Materials—Collagen Based Hydrogels Used in Biomedicine. Materials. 2020, 13(24), 5641. DOI: 10.3390/ma13245641.
  • Li, J.; Zivanovic, S.; Davidson, P. A.; Kit, K. Characterization and Comparison of Chitosan/PVP and Chitosan/PEO Blend Films. Carbohydr. Polym. 2010, 79(3), 786–791. DOI: 10.1016/j.carbpol.2009.09.028.
  • Khoo, C. G.; Frantzich, S.; Rosinski, A.; Sjöström, M.; Hoogstraate, J. Oral Gingival Delivery Systems from Chitosan Blends with Hydrophilic Polymers. Eur. J. Pharm. Biopharm. 2003, 55(1), 47–56. DOI: 10.1016/S0939-6411(02)00155-8.
  • Rafieian, S.; Mirzadeh, H.; Mahdavi, H.; Masoumi, M. E. A Review on Nanocomposite Hydrogels and Their Biomedical Applications. Sci. Eng. Compos. Mater. 2019, 26(1), 154–174. DOI: 10.1515/secm-2017-0161.
  • Merino, S.; Martín, C.; Kostarelos, K.; Prato, M.; Vázquez, E. Nanocomposite Hydrogels: 3D Polymer–Nanoparticle Synergies for On-Demand Drug Delivery. ACS Nano. 2015, 9(5), 4686–4697. DOI: 10.1021/acsnano.5b01433.
  • El Achaby, M.; Essamlali, Y.; El Miri, N.; Snik, A.; Abdelouahdi, K.; Fihri, A.; Zahouily, M.; Solhy, A. Graphene Oxide Reinforced Chitosan/Polyvinylpyrrolidone Polymer Bio-Nanocomposites. J. Appl. Polym. Sci. 2014, 131(22). DOI: 10.1002/app.41042.
  • Awadallah, A.; Ali, H.; Hosni, H.; Nada, H. Gamma-Rays Synthesis, Characterization, Electrical Conductivity, and Antimicrobial Activity of Polyvinylpyrrolidone/Chitosan/Silver Nanoparticles Composite Films. Polym. Plast. Technol. Eng. 2022, 61, 888–908. DOI: 10.1080/25740881.2022.2029889.
  • Oliveira, M. J.; Estefânia, O.; Braz, L. M.; Regina, M.; Amato, V.; Lugao, A.; Parra, D. F. Influence of Chitosan/Clay in Drug Delivery of Glucantime from PVP Membranes. Radiat. Phys. Chem. 2014, 94, 194–198. DOI: 10.1016/j.radphyschem.2013.05.050.
  • Poonguzhali, R.; Khaleel Basha, S.; Sugantha Kumari, V. Fabrication of Asymmetric Nanostarch Reinforced Chitosan/PVP Membrane and Its Evaluation as an Antibacterial Patch for in vivo Wound Healing Application. Int J Biol Macromol. 2018, 114, 204–213. DOI: 10.1016/j.ijbiomac.2018.03.092.
  • Su, C.-Y.; Ho, H.-O.; Chen, Y.-C.; Yu, Y.-T.; Liu, D.-Z.; Chao, F.-C.; Sheu, M.-T. Complex Hydrogels Composed of Chitosan with Ring-Opened Polyvinyl Pyrrolidone as a Gastroretentive Drug Dosage Form to Enhance the Bioavailability of Bisphosphonates. Sci. Rep. 2018, 8(1), 8092. DOI: 10.1038/s41598-018-26432-2.
  • Zhang, Q.-Q.; Hu, W.; Zhu, A.; Liu, Q. L. UV-Crosslinked Chitosan/Polyvinylpyrrolidone Blended Membranes for Pervaporation. R.S.C. Adv. 2013, 3(6), 1855–1861. DOI: 10.1039/C2RA21827E.
  • Gull, N.; Khan, S. M.; Khalid, S.; Zia, S.; Islam, A.; Sabir, A.; Sultan, M.; Hussain, F.; Khan, R. U.; Butt, M. T. Z., et al. Designing of Biocompatible and Biodegradable Chitosan Based Crosslinked Hydrogel for in vitro Release of Encapsulated Povidone-Iodine: A Clinical Translation. Int. J. Biol. Macromol. 2020, 164, 4370–4380. DOI: 10.1016/j.ijbiomac.2020.09.031.
  • Ipate, A.-M.; Serbezeanu, D.; Bargan, A.; Corneliu, H.; Ochiuz, L.; Gherman, S. Poly(vinylpyrrolidone)-Chitosan Hydrogels as Matrices for Controlled Drug Release. Cellulose Chem. Technol. 2021, 55(1–2), 63–73. DOI: 10.35812/CelluloseChemTechnol.2021.55.07.
  • Sizílio, R. H.; Galvão, J.; Trindade, G.; Lts, P.; Andrade, L. N.; Gonsalves, J. K. Chitosan/pvp-Based Mucoadhesive Membranes as a Promising Delivery System of Betamethasone-17-Valerate for Aphthous Stomatitis. Carbohydr. Polym. 2018, 190, 339–345. DOI: 10.1016/j.carbpol.2018.02.079.
  • Sampath, U. G. T. M.; Ching, Y. C.; Chuah, C. H.; Singh, R.; Lin, P.-C. Preparation and Characterization of Nanocellulose Reinforced Semi-Interpenetrating Polymer Network of Chitosan Hydrogel. Cellulose. 2017, 24(5), 2215–2228. DOI: 10.1007/s10570-017-1251-8.
  • Yasin, T.; Rasool, N.; Akhter, Z. Synthesis of Carboxymethyl-Chitosan/acrylic Acid Hydrogel Using Silane Crosslinker. e-Polymers. 2008, 8(1). DOI: 10.1515/epoly.2008.8.1.1636.
  • Nwosu, C. J.; Hurst, G. A.; Novakovic, K. Genipin Cross-Linked Chitosan-Polyvinylpyrrolidone Hydrogels: Influence of Composition and Postsynthesis Treatment on pH responsive Behaviour. Adv. Mater. Sci. Eng. 2015, 2015, 1–10. DOI: 10.1155/2015/621289.
  • Gull, N.; Khan, S. M.; Butt, O. M.; Islam, A.; Shah, A.; Jabeen, S.; Khan, S. U.; Khan, A.; Khan, R. U.; Butt, M. T. Z., et al. Inflammation Targeted Chitosan-Based Hydrogel for Controlled Release of Diclofenac Sodium. Int. J. Biol. Macromol. 2020, 162, 175–187. DOI: 10.1016/j.ijbiomac.2020.06.133.
  • Gull, N.; Khan, S. M.; Zahid Butt, M. T.; Khalid, S.; Shafiq, M.; Islam, A.; Asim, S.; Hafeez, S.; Khan, R. U. In vitro Study of Chitosan-Based Multi-Responsive Hydrogels as Drug Release Vehicles: A Preclinical Study. Rsc. Adv. 2019, 9(53), 31078–31091. DOI: 10.1039/C9RA05025F.
  • Raza, M. A.; Gull, N.; Lee, S.-W.; Seralathan, K.-K.; Park, S. H. Development of Stimuli-Responsive Chitosan Based Hydrogels with Anticancer Efficacy, Enhanced Antibacterial Characteristics, and Applications for Controlled Release of Benzocaine. J. Ind. Eng. Chem. 2022, 109, 210–220. DOI: 10.1016/j.jiec.2022.02.004.
  • Ata, S.; Rasool, A.; Islam, A.; Bibi, I.; Rizwan, M.; Azeem, M. K.; Qureshi, A. U. R.; Iqbal, M. Loading of Cefixime to pH sensitive Chitosan Based Hydrogel and Investigation of Controlled Release Kinetics. Int. J. Biol. Macromol. 2020, 155, 1236–1244. DOI: 10.1016/j.ijbiomac.2019.11.091.
  • Rasool, A.; Ata, S.; Islam, A. Stimuli Responsive Biopolymer (Chitosan) Based Blend Hydrogels for Wound Healing Application. Carbohydr. Polym. 2019, 203, 423–429. DOI: 10.1016/j.carbpol.2018.09.083.
  • Mi, F.-L.; Sung, H.-W.; Shyu, S.-S. Synthesis and Characterization of a Novel Chitosan-Based Network Prepared Using Naturally Occurring Crosslinker. J. Polym. Sci. A Polym. Chem. 2000, 38(15), 2804–2814. DOI: 10.1002/1099-0518(20000801)38:15<2804:AID-POLA210>3.0.CO;2-Y.
  • Cai, H.; Zhang, Z. P.; Chuan Sun, P.; Lin He, B.; Xia Zhu, X. Synthesis and Characterization of Thermo- and pH- Sensitive Hydrogels Based on Chitosan-Grafted N-Isopropylacrylamide via γ-Radiation. Radiat. Phys. Chem. 2005, 74(1), 26–30. DOI: 10.1016/j.radphyschem.2004.10.007.
  • Casimiro, M. H.; Leal, J. P.; Gil, M. H. Characterisation of Gamma Irradiated Chitosan/pHEMA membranes for Biomedical Purposes. Nucl. Instrum. Methods Phys. Res. B. 2005, 236(1), 482–487. DOI: 10.1016/j.nimb.2005.04.023.
  • Felinto, M. C. F. C.; Parra, D. F.; da Silva, C. C.; Angerami, J.; Oliveira, M. J. A.; Lugão, A. B. The Swelling Behavior of Chitosan Hydrogels Membranes Obtained by UV- and γ-Radiation. Nucl. Instrum. Methods Phys. Res. B. 2007, 265(1), 418–424. DOI: 10.1016/j.nimb.2007.09.025.
  • Kume, T.; Nagasawa, N.; Yoshii, F. Utilization of Carbohydrates by Radiation Processing. Radiat. Phys. Chem. 2002, 63(3), 625–627. DOI: 10.1016/S0969-806X(01)00558-8.
  • Myung, D.; Waters, D.; Wiseman, M.; Duhamel, P. E.; Noolandi, J.; Ta, C. N.; Frank, C. W. Progress in the Development of Interpenetrating Polymer Network Hydrogels. Polym. Adv. Technol. 2008, 19(6), 647–657. DOI: 10.1002/pat.1134.
  • Nho, Y. C.; Park, K. R. Preparation and Properties of PVA/PVP Hydrogels Containing Chitosan by Radiation. J. Appl. Polym. Sci. 2002, 85(8), 1787–1794. DOI: 10.1002/app.10812.
  • Shim, J. W.; Nho, Y.-C. Preparation of Poly(acrylic Acid)-Chitosan Hydrogels by Gamma Irradiation and in vitro Drug Release. J. Appl. Polym. Sci. 2003, 90(13), 3660–3667. DOI: 10.1002/app.13120.
  • Wasikiewicz, J. M.; Mitomo, H.; Nagasawa, N.; Yagi, T.; Tamada, M.; Yoshii, F. Radiation Crosslinking of Biodegradable Carboxymethylchitin and Carboxymethylchitosan. J. Appl. Polym. Sci. 2006, 102(1), 758–767. DOI: 10.1002/app.24203.
  • Yoshii, F.; Zhao, L.; Wach, R. A.; Nagasawa, N.; Mitomo, H.; Kume, T. Hydrogels of Polysaccharide Derivatives Crosslinked with Irradiation at Paste-Like Condition. Nucl. Instrum. Methods Phys. Res. B. 2003, 208, 320–324. DOI: 10.1016/S0168-583X(03)00624-4.
  • Zhao, L.; Mitomo, H.; Nagasawa, N.; Yoshii, F.; Kume, T. Radiation Synthesis and Characteristic of Hydrogels Based on Carboxymethylated Chitin Derivatives. Carbohydrate Polymers. 2003, 51(2), 169–175. DOI: 10.1016/S0144-8617(02)00210-2.
  • Mohamad, N.; Buang, F.; Mat Lazim, A.; Ahmad, N.; Martin, C.; Mohd Amin, M. C. I. Characterization and Biocompatibility Evaluation of Bacterial Cellulose‐Based Wound Dressing Hydrogel: Effect of Electron Beam Irradiation Doses and Concentration of Acrylic Acid. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017, 105(8), 2553–2564. DOI: 10.1002/jbm.b.33776.
  • Tavakol, M.; Dehshiri, S.; Vasheghani-Farahani, E. Electron Beam Irradiation Crosslinked Hydrogels Based on Tyramine Conjugated Gum Tragacanth. Carbohydr. Polym. 2016, 152, 504–509. DOI: 10.1016/j.carbpol.2016.07.044.
  • Glass, S.; Kühnert, M.; Abel, B.; Schulze, A. Controlled Electron-Beam Synthesis of Transparent Hydrogels for Drug Delivery Applications. Polymers. 2019, 11(3), 501. DOI: 10.3390/polym11030501.
  • Nho, Y.-C.; Park, J.-S.; Lim, Y.-M. Preparation of Poly(acrylic Acid) Hydrogel by Radiation Crosslinking and Its Application for Mucoadhesives. Polymers. 2014, 6(3), 890–898. DOI: 10.3390/polym6030890.
  • Dergunov, S. A.; Nam, I. K.; Mun, G. A.; Nurkeeva, Z. S.; Shaikhutdinov, E. M. Radiation Synthesis and Characterization of Stimuli-Sensitive Chitosan–Polyvinyl Pyrrolidone Hydrogels. Radiat. Phys. Chem. 2005, 72(5), 619–623. DOI: 10.1016/j.radphyschem.2004.03.011.
  • Zhao, L.; Xu, L.; Mitomo, H.; Yoshii, F. Synthesis of Ph-Sensitive PVP/CM-Chitosan Hydrogels with Improved Surface Property by Irradiation. Carbohydr. Polym. 2006, 64(3), 473–480. DOI: 10.1016/j.carbpol.2005.12.014.
  • Raza, M. A.; Lim, Y.-M.; Lee, S.-W.; Seralathan, K.-K.; Park, S. H. Synthesis and Characterization of Hydrogels Based on Carboxymethyl Chitosan and Poly(vinylpyrrolidone) Blends Prepared by Electron Beam Irradiation Having Anticancer Efficacy, and Applications as Drug Carrier for Controlled Release of Drug. Carbohydr. Polym. 2021, 258, 117718. DOI: 10.1016/j.carbpol.2021.117718.
  • Doğan, M. Preparation of Chitosan-Polyvinyl Prolidone (PVP) Hydrogels with Fibroblast Growth Factor (FGF) and Investigation of in vitro Characteristics. Clin. Exp. Health Sci. 2021. DOI: 10.33808/clinexphealthsci.972758.
  • Dragan, E. S. Design and Applications of Interpenetrating Polymer Network Hydrogels. A Review. Chem. Eng. J. 2014, 243, 572–590. DOI: 10.1016/j.cej.2014.01.065.
  • Özbaş, Z.; Gürdağ, G. Swelling Kinetics, Mechanical Properties, and Release Characteristics of Chitosan-Based Semi-IPN Hydrogels. J. Appl. Polym. Sci. 2015, 132(16). DOI: 10.1002/app.41886.
  • Coviello, T.; Matricardi, P.; Marianecci, C.; Alhaique, F. Polysaccharide Hydrogels for Modified Release Formulations. J. Controlled Release. 2007, 119(1), 5–24. DOI: 10.1016/j.jconrel.2007.01.004.
  • Kosmala, J. D.; Henthorn, D. B.; Brannon-Peppas, L. Preparation of Interpenetrating Networks of Gelatin and Dextran as Degradable Biomaterials. Biomaterials. 2000, 21(20), 2019–2023. DOI: 10.1016/s0142-9612(00)00057-0.
  • Ekici, S.; Saraydin, D. Synthesis, Characterization and Evaluation of IPN Hydrogels for Antibiotic Release. Drug. Deliv. 2004, 11(6), 381–388. DOI: 10.1080/10717540490884804.
  • Changez, M.; Burugapalli, K.; Koul, V.; Choudhary, V. The Effect of Composition of Poly(acrylic Acid)-Gelatin Hydrogel on Gentamicin Sulphate Release: In vitro. Biomaterials. 2003, 24(4), 527–536. DOI: 10.1016/s0142-9612(02)00364-2.
  • Hejazi, R.; Amiji, M. Chitosan-Based Gastrointestinal Delivery Systems. J. Control Release. 2003, 89(2), 151–165. DOI: 10.1016/s0168-3659(03)00126-3.
  • Selvan, N.; Shanmugarajan, T. S.; Uppuluri, V. Hydrogel Based Scaffolding Polymeric Biomaterials: Approaches Towards Skin Tissue Regeneration. J. Drug Delivery Sci. Technol. 2019, 55, 101456. DOI: 10.1016/j.jddst.2019.101456.
  • Wang, W.; Wang, Q.; Wang, A. pH-Responsive Carboxymethylcellulose-G-Poly(sodium Acrylate)/Polyvinylpyrrolidone Semi-IPN Hydrogels with Enhanced Responsive and Swelling Properties. Macromol. Res. 2011, 19(1), 57–65. DOI: 10.1007/s13233-011-0112-9.
  • Vaghani, S. S.; Patel, M. M. pH-Sensitive Hydrogels Based on Semi-Interpenetrating Network (Semi-IPN) of Chitosan and Polyvinyl Pyrrolidone for Clarithromycin Release. Drug. Dev. Ind. Pharm. 2011, 37(10), 1160–1169. DOI: 10.3109/03639045.2011.563422.
  • Vaghani, S. S.; Patel, M. M. Hydrogels Based on Interpenetrating Network of Chitosan and Polyvinyl Pyrrolidone for pH-Sensitive Delivery of Repaglinide. Curr. Drug Discovery Technol. 2011, 8(2), 126–135. DOI: 10.2174/157016311795563848.
  • Wang, Y.; Zhang, X.; Qiu, D.; Li, Y.; Yao, L.; Duan, J. Ultrasonic Assisted Microwave Synthesis of Poly (Chitosan-Co-Gelatin)/polyvinyl Pyrrolidone IPN Hydrogel. Ultrason. Sonochem. 2018, 40, 714–719. DOI: 10.1016/j.ultsonch.2017.08.003.
  • Guo, B.; Yuan, J.; Gao, Q. Preparation and Release Behavior of pH and Ionic Sensitive Chitosan/Poly(vinylpyrrolidone) Semi-IPN Beads for Coenzyme a. e-Polymers. 2006, 6(1). DOI: 10.1515/epoly.2006.6.1.1041.
  • Wu, Y.; Yang, Q.; Gi, Y.; Zhang, Y. Synthesis and Characterization of a Novel Wound Dressing by PVP/PAANa/Chitosan with Semi-Interpenetrating Polymer Network Structure. e-Polymers. 2012, 12(1). DOI: 10.1515/epoly.2012.12.1.674.
  • Ekici, S.; Saraydin, D. Interpenetrating Polymeric Network Hydrogels for Potential Gastrointestinal Drug Release. Polym. Int. 2007, 56(11), 1371–1377. DOI: https://doi.org/10.1002/pi.2271.
  • Wang, Y.; Zhang, X.; Qiu, D.; Li, Y.; Yao, L.; Duan, J. Ultrasonic Assisted Microwave Synthesis of Poly (Chitosan-Co-Gelatin)/polyvinyl Pyrrolidone IPN Hydrogel. Ultrason Sonochem. 2018, 40(Pt A), 714–719. DOI: 10.1016/j.ultsonch.2017.08.003.
  • Risbud, M.; Hardikar, A.; Bhonde, R. Chitosan–Polyvinyl Pyrrolidone Hydrogels as Candidate for Islet Immunoisolation: In Vitro Biocompatibility Evaluation. Cell Transplant. 2000, 9(1), 25–31. DOI: 10.1177/096368970000900104.
  • Qian, C.; Zhang, T.; Gravesande, J.; Baysah, C.; Song, X.; Xing, J. Injectable and Self-Healing Polysaccharide-Based Hydrogel for pH-Responsive Drug Release. Int. J. Biol. Macromol. 2019, 123, 140–148. DOI: 10.1016/j.ijbiomac.2018.11.048.
  • Le, T. M. D.; Duong, H. T. T.; Thambi, T.; Giang Phan, V.; Jeong, J. H.; Lee, D. S. Bioinspired pH-And Temperature-Responsive Injectable Adhesive Hydrogels with Polyplexes Promotes Skin Wound Healing. Biomacromolecules. 2018;19(8):3536–3548.
  • Karavas, E.; Georgarakis, E.; Bikiaris, D. Adjusting drug Release by Using Miscible Polymer Blends as Effective Drug Carries. J. Therm. Anal. Calorim. 2006, 84(1), 125–133. DOI: 10.1007/s10973-005-7193-7.
  • Gao, W.; Zhang, Y.; Zhang, Q.; Zhang, L. Nanoparticle-Hydrogel: A Hybrid Biomaterial System for Localized Drug Delivery. Ann Biomed Eng. 2016, 44(6), 2049–2061. DOI: 10.1007/s10439-016-1583-9.
  • Gerami, S.; Pourmadadi, M.; Fatoorehchi, H.; Yazdian, F.; Rashedi, H.; Navaei-Nigjeh, M. Preparation of pH-Sensitive chitosan/polyvinylpyrrolidone/α-Fe2O3 Nanocomposite for Drug Delivery Application: Emphasis on Ameliorating Restrictions. Int. J. Biol. Macromol. 2021, 173, 409–420. DOI: 10.1016/j.ijbiomac.2021.01.067.
  • Nematollahi, E.; Pourmadadi, M.; Yazdian, F.; Fatoorehchi, H.; Rashedi, H.; Navaei-Nigjeh, M. Synthesis and Characterization of Chitosan/Polyvinylpyrrolidone Coated Nanoporous γ-Alumina as a pH-Sensitive Carrier for Controlled Release of Quercetin. Int. J. Biol. Macromol. 2021, 183, 600–613. DOI: 10.1016/j.ijbiomac.2021.04.160.
  • Raina, N.; Rani, R.; Khan, A.; Nagpal, K.; Gupta, M. Interpenetrating Polymer Network as a Pioneer Drug Delivery System: A Review. Polym. Bull. 2020, 77(9), 5027–5050. DOI: 10.1007/s00289-019-02996-5.
  • Holland, T. A.; Tabata, Y.; Mikos, A. G. Dual Growth Factor Delivery from Degradable Oligo (Poly (Ethylene Glycol) Fumarate) Hydrogel Scaffolds for Cartilage Tissue Engineering. J. Controlled Release. 2005, 101(1–3), 111–125. DOI: 10.1016/j.jconrel.2004.07.004.
  • Singh, A.; Suri, S.; Roy, K. In-Situ Crosslinking Hydrogels for Combinatorial Delivery of Chemokines and siRna–DNA Carrying Microparticles to Dendritic Cells. Biomaterials. 2009, 30(28), 5187–5200. DOI: 10.1016/j.biomaterials.2009.06.001.
  • Lugao, A.; Machado, L.; Miranda, L.; Alvarez, M.; Rosiak, J. Study of Wound Dressing Structure and Hydration/Dehydration Properties. Radiat. Phys. Chem. 1998, 52(1–6), 319–322. DOI: 10.1016/S0969-806X(98)00160-1.
  • Roy, N.; Saha, N.; Humpolicek, P.; Saha, P. Permeability and Biocompatibility of Novel Medicated Hydrogel Wound Dressings. Soft Mater. 2010, 8(4), 338–357. DOI: 10.1080/1539445X.2010.502955.
  • Roy, N.; Saha, N.; Kitano, T.; Saha, P. Novel Hydrogels of PVP–CMC and Their Swelling Effect on Viscoelastic Properties. J. Appl. Polym. Sci. 2010, 117(3), 1703–1710. DOI: 10.1002/app.32056.
  • Roy, N.; Saha, N.; Kitano, T.; Saha, P. Development and Characterization of Novel Medicated Hydrogels for Wound Dressing. Soft Mater. 2010, 8(2), 130–148. DOI: 10.1080/15394451003756282.
  • Roy, N.; Saha, N.; Kitano, T.; Vitkova, E.; Saha, P. Effectiveness of Polymer Sheet Layer to Protect Hydrogel Dressings. In Trends in Colloid and Interface Sci. XXIV. Progress in Colloid and Polymer Science; Starov, V., Procházka, K., Eds.; Springer: Berlin, Heidelberg, 2011; Vol. 138. DOI: 10.1007/978-3-642-19038-4_22.
  • Casimiro, M.; Gomes, S.; Rodrigues, G.; Leal, J.; Ferreira, L. Chitosan/Poly(vinylpyrrolidone) Matrices Obtained by Gamma-Irradiation for Skin Scaffolds: Characterization and Preliminary Cell Response Studies. Materials. 2018, 11(12), 2535. DOI: 10.3390/ma11122535.
  • Zhang, J.; Chen, K.; Ding, C.; Sun, S.; Zheng, Y.; Ding, Q.; Hong, B.; Liu, W. Fabrication of Chitosan/PVP/Dihydroquercetin Nanocomposite Film for in vitro and in vivo Evaluation of Wound Healing. Int. J. Biol. Macromol. 2022, 206, 591–604. DOI: 10.1016/j.ijbiomac.2022.02.110.
  • Tavakoli, M.; Mirhaj, M.; Labbaf, S.; Varshosaz, J.; Taymori, S.; Jafarpour, F.; Salehi, S.; Abadi, S. A. M.; Sepyani, A. Fabrication and Evaluation of Cs/PVP Sponge Containing Platelet-Rich Fibrin as a Wound Healing Accelerator: An in vitro and in vivo Study. Int. J. Biol. Macromol. 2022, 204, 245–257. DOI: 10.1016/j.ijbiomac.2022.02.003.
  • Safarik, I.; Pospiskova, K.; Baldikova, E.; Savva, I.; Vekas, L.; Marinica, O.; Tanasa, E.; Krasia-Christoforou, T. Fabrication and Bioapplications of Magnetically Modified Chitosan-Based Electrospun Nanofibers. Electrospinning. 2018, 2(1), 29–39. DOI: 10.1515/esp-2018-0003.
  • Ribeiro, D.; Yuto, G.; Titotto, S. Analysis About the Behavior and Modeling of PH-Sensitive Hydrogels with Different Ratios of Chitosan and Polyvinylpyrrolidone. J. Mater. Sci. Chem. Eng. 2019, 07(8), 64–76. DOI: 10.4236/msce.2019.78008.
  • Zhao, L.; Xu, L.; Mitomo, H.; Yoshii, F. Synthesis of pH-Sensitive PVP/CM-Chitosan Hydrogels with Improved Surface Property by Irradiation. Carbohydr. Polym. 2006, 64, 473–480. DOI: 10.1016/j.carbpol.2005.12.014.
  • Risbud, M.; Hardikar, A.; Bhonde, R. Growth Modulation of Fibroblasts by Chitosan-Polyvinyl Pyrrolidone Hydrogel: Implications for Wound Management? J. Biosci. 2000, 25(1), 25–31. DOI: 10.1007/BF02985178.
  • Zhang, J.; Ding, C.; Yue, Z.; Sun, S.; Zhang, Y.; Ding, Q. Fabrication of Chitosan/PVP/Dihydroquercetin Nanocomposite Film for in vitro and in vivo Evaluation of Wound Healing. Int. J. Biol. Macromol. 2022, 206, 591–604. DOI: 10.1016/j.ijbiomac.2022.02.110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.