63
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of compatibility in the EVA/starch/organoclay biodegradable nanocomposite on thermal properties and flame self-extinguishing behavior

, , , , , & show all
Pages 2318-2333 | Received 04 Jul 2023, Accepted 09 Sep 2023, Published online: 19 Sep 2023

References

  • Srivastava, S. K.; Pramanik, M.; Acharya, H. Ethylene/Vinyl Acetate Copolymer/Clay Nanocomposites. J. Polym. Sci. Part B: Polym. Phys. 2006, 44, 471–480. DOI: 10.1002/polb.20702.
  • Henderson, A. M. Ethylene-Vinyl Acetate (EVA) Copolymers: A General Review. IEEE Electr. Insul. Mag. 1993, 9(1), 30–38. DOI: 10.1109/57.249923.
  • Osman, A. F.; Hamid, A. R. A.; Fitri, T. F. M.; Fauzi, A. A. A.; Halim, K. A. A. Poly(ethylene-Co-Vinyl Acetate) Copolymer Based Nanocomposite: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 864(1), 012121. DOI: 10.1088/1757-899X/864/1/012121.
  • Zanetti, M. Synthesis and Thermal Behaviour of Layered Silicate–EVA Nanocomposites. Polymer. 2001, 42(10), 4501–4507. DOI: 10.1016/S0032-3861(00)00775-8.
  • Zanetti, M.; Kashiwagi, T.; Falqui, L.; Camino, G. Cone Calorimeter Combustion and Gasification Studies of Polymer Layered Silicate Nanocomposites. Chem. Mater. 2002, 14(2), 881–887. DOI: 10.1021/cm011236k.
  • Szép, A.; Szabó, A.; Tóth, N.; Anna, P.; Marosi, G. Role of Montmorillonite in Flame Retardancy of Ethylene–Vinyl Acetate Copolymer. Polym. Deg. Stabil. 2006, 91(3), 593–599. DOI: 10.1016/j.polymdegradstab.2005.02.026.
  • Bae, J. W.; Yang, T. U.; Nam, G. J.; Lee, G. J.; Nam, B.; Jho, J. Y. Dispersion and Flame Retardancy of Ethylene Vinyl Acetate/Layered Silicate Nanocomposites Using the Masterbatch Approach for Cable Insulating Material. Polym. Bull. 2011, 67(4), 729–740. DOI: 10.1007/s00289-011-0498-8.
  • Osman, A. F.; Alakrach, A. M.; Kalo, H.; Azmi, W. N. W.; Hashim, F. In vitro Biostability and Biocompatibility of Ethyl Vinyl Acetate (EVA) Nanocomposites for Biomedical Applications. R.S.C. Adv. 2015, 5(40), 31485–31495. DOI: 10.1039/C4R415116J.
  • Osman, A. F.; Fitri, T. F. M.; Rakibuddin, M.; Hashim, F.; Johari, S. A. T. T.; Ananthakrishnan, R.; Ramli, R. Pre-Dispersed Organo-Montmorillonite (Organo-MMT) Nanofiller: Morphology, Cytocompatibility and Impact on Flexibility, Toughness and Biostability of Medical Ethyl Vinyl Acetate (EVA) Copolymer. Mater. Sci. Eng. C. 2017, 74, 194–206. DOI: 10.1016/j.msec.2016.11.137.
  • Fitri, T. F. M.; Osman, A. F.; Alosime, E. M.; Othman, R.; Hashim, F.; Abdullah, M. A. A. Biomedical PEVA Nanocomposite with Dual Clay Nanofiller: Cytotoxicity, Mechanical Properties, and Biostability. Polymers. 2021, 13(24), 4345. DOI: 10.3390/polym13244345.
  • Marini, J.; Branciforti, M. C.; Alves, R. M. V.; Bretas, R. E. S. Effect of EVA as Compatibilizer on the Mechanical Properties, Permeability Characteristics, Lamellae Orientation, and Long Period of Blown Films of HDPE/Clay Nanocomposites. J. Appl. Polym. Sci. 2010, 118(6), 3340–3350. DOI: 10.1002/app.32356.
  • Sánchez-Valdés, S.; Ramírez-Vargas, E.; Martínez-Colunga, J. G.; Ramos-DeValle, L. F.; Morales-Cepeda, A.; Rodríguez-Fernández, O. S.; Lozano-Ramírez, T.; Flores-Gallardo, S.; Méndez-Nonell, J. Improvement of the Photostability of Low-Density Polyethylene and Ethylene Vinyl Acetate Blends with Nanoclay: Toward Durable Nanocomposites for Potential Application in Greenhouse Cover Films. Polym. Plast. Technol. Eng. 2018, 57, 1706–1714. DOI: 10.1080/03602559.2017.1419489.
  • Goodarzi, V.; Jafari, S. H.; Khonakdar, H. A.; Ghalei, B.; Mortazavi, M. Assessment of Role of Morphology in Gas Permselectivity of Membranes Based on Polypropylene/Ethylene Vinyl Acetate/Clay Nanocomposite. J. Membr. Sci. 2013, 445, 76–87. DOI: 10.1016/j.memsci.2013.04.073.
  • Valera-Zaragoza, M.; Ramírez-Vargas, E.; Medellín-Rodríguez, F. J.; Huerta-Martínez, B. M. Thermal Stability and Flammability Properties of Heterophasic PP–Ep/eva/organoclay Nanocomposites. Polym. Degrad. Stab. 2006, 91(6), 1319–1325. DOI: 10.1016/j.polymdegradstab.2005.08.011.
  • Valera-Zaragoza, M.; Ramírez-Vargas, E.; Medellín-Rodríguez, F. J. Preparation and Morphological Evolution of Heterophasic PP-EP/EVA/Organoclay Nanocomposites: Effect of the Nanoclay Organic Modifier. J. Appl. Polym. Sci. 2008, 108(3), 1986–1994. DOI: 10.1002/app.27858.
  • Valera-Zaragoza, M.; Rivas-Vázquez, L. P.; Ramírez-Vargas, E.; Sánchez-Valdes, S.; Ramos-DeValle, L. F.; Medellín-Rodríguez, F. J. Influence of Morphology on the Dynamic Mechanical Characteristics of PP-EP/EVA/Organoclay Nanocomposites. Compos: Part B. 2013, 55, 506–512. DOI: 10.1016/j.compositesb.2013.07.009.
  • Sessini, V.; Arrieta, M. P.; Raquez, J. M.; Dubois, P.; Kenny, J. M.; Peponi, L. Thermal and Composting Degradation of EVA/Thermoplastic Starch Blends and Their Nanocomposites. Polym. Degrad. Stab. 2019, 159, 184–198. DOI: 10.1016/j.polymdegradstab.2018.11.025.
  • Sessini, V.; Raquez, J. M.; Re, G. L.; Mincheva, R.; Kenny, J. M.; Dubois, P.; Peponi, L. Multiresponsive Shape Memory Blends and Nanocomposites Based on Starch. ACS Appl. Mater. Interfaces. 2016, 8(30), 19197–19201. DOI: 10.1021/acsami.6b06618.
  • Sessini, V.; Raquez, J. M.; Lourdin, D.; Maigret, J. E.; Kenny, J. M.; Dubois, P.; Peponi, L. Humidity-Activated Shape Memory Effects on Thermoplastic Starch/EVA Blends and Their Compatibilizer Nanocomposites. Macromol. Chem. Phys. 2017, 218(24), 1700388. DOI: 10.1002/macp.201700388.
  • García-Muñoz, M. A.; Valera-Zaragoza, M.; Aparicio-Saguilán, A.; Peña-Rico, M. A.; Juarez-Arellano, E. A.; Aguirre-Cruz, A.; Ramírez-Vargas, E.; Sánchez-Valdes, S. Melt Processing of Ethylene–Vinyl Acetate/Banana Starch/Cloisite 20A Organoclay Nanocomposite Films: Structural, Thermal and Composting Behavior. Iranian Polym. J. 2020, 29(8), 723–733. DOI: 10.1007/s13726-020-00835-3.
  • Khawam, A.; Flanagan, D. R. Solid-State Kinetic Models: Basics and Mathematical Fundamentals. J. Phys. Chem B. 2006, 110(35), 17315–17328. DOI: 10.1021/jp062746a.
  • Ghadikolaei, S. S.; Omrani, A.; Ehsani, M. Non-Isothermal Degradation Kinetics of Ethylene-Vinyl Acetate Copolymer Nanocomposite Reinforced with Modified Bacterial Cellulose Nanofibers Using Advanced Isconversional and Master Plot Analyses. Thermochim. Acta. 2017, 655, 87–93. DOI: 10.1016/j.tca.2017.06.014.
  • Chrissafis, K. Kinetics of Thermal Degradation of Polymers. Complementary Use of Isoconversional and Model-Fitting Methods. J. Therm. Anal. Calorim. 2009, 95(1), 273–283. DOI: 10.1007/s10973-008-9041-z.
  • Dennis, H. R.; Hunter, D. L.; Chang, D.; Kim, S.; White, J. L.; Cho, J. W.; Paul, D. R. Effect of Melt Processing Conditions on the Extent of Exfoliation in Organoclay-Based Nanocomposites. Polymer. 2001, 42(23), 9513–9522. DOI: 10.1016/S0032-3861(01)00473-6.
  • Modesti, M.; Lorenzetti, A.; Bon, D.; Besco, S. Effect of Processing Conditions on Morphology and Mechanical Properties of Compatibilized Polypropylene Nanocomposites. Polymer. 2005, 46(23), 10237–10245. DOI: 10.1016/j.polymer.2005.08.035.
  • Ramírez-Vargas, E.; Valera-Zaragoza, M.; Sánchez-Valdes, S.; Hernández-Valdez, J. S.; Ibarra-Castillo, F. F. Effect of Processing Conditions on the Structural Morphology of PP–Ep/eva/organoclay Ternary Nanocomposites. Polym. Bull. 2009, 62(3), 391–403. DOI: 10.1007/s00289-008-0015-x.
  • Valera-Zaragoza, M.; Yescas-Yescas, A.; Juarez-Arellano, E. A.; Aguirre Cruz, A.; Aparicio-Saguilán, A.; Ramírez-Vargas, E.; Sepúlveda-Guzmán, S.; Sánchez-Valdes, S. Immobilization of TiO2 Nanoparticles on Montmorillonite Clay and Its Effect on the Morphology of Natural Rubber Nanocomposites. Polym. Bull. 2014, 71(6), 1295–1313. DOI: 10.1007/s00289-014-1123-4.
  • Azeez, A. A.; Rhee, K. Y.; Park, S. J.; Hui, D. Epoxy Clay Nanocomposites – Processing, Properties and Applications: A Review. Compos. B Eng. 2013, 45(1), 308–320. DOI: 10.1016/j.compositesb.2012.04.012.
  • Chee, S. S.; Jawaid, M. The Effect of Bi-Functionalized MMT on Morphology, Thermal Stability, Dynamic Mechanical, and Tensile Properties of Epoxy/Organoclay Nanocomposites. Polymers. 2019, 11(12), 2012. DOI: 10.3390/polym11122012.
  • Idumah, C. I.; Obele, C. M. Understanding Interfacial Influence on Properties of Polymer Nanocomposites. Surf. Interfaces. 2021, 22, 100879. DOI: 10.1016/j.surfin.2020.100879.
  • Park, H. M.; Li, X.; Jin, C. Z.; Park, C. Y.; Cho, W. J.; Ha, C. S. Preparation and Properties of Biodegradable Thermoplastic Starch/Clay Hybrids. Macromol. Mater. Eng. 2002, 287(8), 553–558. DOI: 10.1002/1439-2054(20020801)287:8<553:AID-MAME553>3.0.CO;2-3.
  • Huneault, M. A.; Li, H. Preparation and Properties of Extruded Thermoplastic Starch/Polymer Blends. J. Appl. Polym. Sci. 2012, 126(S1), E96–E108. DOI: 10.1002/app.36724.
  • Castillo, L. A.; López, O. V.; García, M. A.; Barbosa, S. E.; Villar, M. A. Crystalline Morphological of Thermoplastic Starch/Talc Nanocomposites Induced by Thermal Processing. Heliyon. 2019, 5(6), e01877. DOI: 10.1016/j.heliyon.2019.e01877.
  • Sessini, V.; Raquez, J. M.; Kenny, J. M.; Dubois, P.; Peponi, L. Melt-Processing of Bionanocomposites Based on Ethylene-Co-Vinyl Acetate and Starch Nanocrystals. Carbohydr. Polym. 2019, 208, 382–390. DOI: 10.1016/j.carbpol.2018.12.095.
  • Entezam, M.; Khonakdar, H. A.; Jafari, S. M. A.; Raji, S.; Otadi, M. Thermal Stability and Flammability of Ethylene Vinyl Acetate Copolymers in Presence of Nanoclay and a Halogen-Free Flame Retardant. J. Vinyl Addit. Technol. 2017, 23, E92–E98. DOI: 10.1002/vnl.21566.
  • Liu, Y.; Yang, L.; Ma, C.; Zhang, Y. Thermal Behavior of Sweet Potato Starch by Non-Isothermal Thermogravimetric Analysis. Materials. 2019, 12(5), 699. DOI: 10.3390/ma12050699.
  • Costache, M. C.; Jiang, D. D.; Wilkie, C. A. Thermal Degradation of Ethylene–Vinyl Acetate Coplymer Nanocomposites. Polymer. 2005, 46(18), 6947–6958. DOI: 10.1016/j.polymer.2005.05.084.
  • Girardin, B.; Fontaine, G.; Duquesne, S.; Försth, M.; Bourbigot, S. Measurement of Kinetics and Thermodynamics of the Thermal Degradation for Flame Retarded Materials: Application to EVA/ATH/NC. J. Anal. Appl. Pyrolysis. 2017, 124, 130–148. DOI: 10.1016/j.jaap.2016.12.034.
  • Zhang, Q. X.; Yu, Z. Z.; Xie, X. L.; Naito, K.; Kagawa, Y. Preparation and Crystalline Morphology of Biodegradable Starch/Clay Nanocomposites. Polymer. 2007, 48(24), 7193–7200. DOI: 10.1016/j.polymer.2007.09.051.
  • Nguyen, D. M.; Vu, T. T.; Grillet, A. C.; Thuc, H. H.; Thuc, C. N. H. Effect of Organoclay on Morphology and Properties of Linear Low Density Polyethylene and Vietnamese Cassava Starch Biobased Blend. Carbohydr. Polym. 2016, 136, 163–170. DOI: 10.1016/j.carbpol.2015.09.020.
  • Sánchez-Jiménez, P. E.; Pérez-Maqueda, L. A.; Perejón, A.; Criado, J. M. Nanoclay Nucleation Effect in the Thermal Stabilization of a Polymer Nanocomposite: A Kinetic Mechanism Change. J. Phys. Chem. C. 2012, 116(21), 11797–11807. DOI: 10.1021/jp302466p.
  • Gao, Y.; Wang, Q.; Qiu, L.; Wu, J.; Yan, X.; Umar, A.; Guo, J.; Zhang, X.; Wang, J.; Guo, Z. Ethylene-Vinyl Acetate/LDH Nanocomposites with Enhanced Thermal Stability, Flame Retardancy, and Rheological Property. Polym. Compos. 2015, 37(12), 3449–3459. DOI: 10.1002/pc23545.
  • Wang, M.; Yin, G. Z.; Yang, Y.; Fu, W.; Palencia, J. L. D.; Zhao, J.; Wang, N.; Jiang, Y.; Wang, D. Y. Bio-Based Flame Retardants to Polymers: A Review. Adv. Ind. Eng. Polym. Res. 2023, 6(2), 132–155. DOI: 10.1016/j.aiepr.2022.07.003.
  • Jiao, L. L.; Zhao, P. C.; Liu, Z. Q.; Wu, Q. S.; Yan, D. Q.; Li, Y. L.; Chen, Y. N.; Li, J. S. Preparation of Magnesium Hydroxide Flame Retardant from Hydromagnesite and Enhance the Flame Retardant Performance of EVA. Polymers. 2022, 14(8), 1567. DOI: 10.3390/polym14081567.
  • Xu, S.; Han, Y.; Zhou, C.; Li, J.; Shen, L.; Lin, H. A Biobased Flame Retardant Towards Improvement of Flame Retardancy and Mechanical Property of Ethylene Vinyl Acetate. Chin. Chem. Lett. 2023, 34, 107202. DOI: 10.1016/j.cclet.2022.02.008.
  • Liu, Y.; Li, B.; Xu, M.; Wang, L. Highly Efficient Composite Flame Retardants for Improving the Flame Retardancy, Thermal Stability, Smoke Suppression, and Mechanical Properties of EVA. Materials. 2020, 13(5), 1251. DOI: 10.3390/ma13051251.
  • Feng, C.; Liang, M.; Chen, W.; Huang, J.; Liu, H. Flame Retardancy and Thermal Degradation of Intumescent Flame Retardant EVA Composite with Efficient Charring Agent. J. Anal. Appl. Pyrolysis. 2015, 113, 266–273. DOI: 10.1016/j.jaap.2015.01.021.
  • Xu, B.; Ma, W.; Wu, X.; Qian, L.; Jiang, S. Flame Retardancy and Thermal Behavior of Intumescent Flame-Retardant EVA Composites with an Efficient Triazine-Based Charring Agent. Mater. Res. Express. 2018, 5(4), 045309. DOI: 10.1088/2053-1591/aabc3b.
  • Yang, Z. W.; Liang, X. X.; Xu, X. Q.; Lei, C.; He, X. L.; Song, T.; Huo, W. Y.; Ma, H. C.; Lei, Z. Q. PGS@B–N: An Efficient Flame Retardant to Improve Simultaneously the Interfacial Interaction and the Flame Retardancy of EVA. R.S.C. Adv. 2016, 6(70), 65921–65929. DOI: 10.1039/C6RA11804F.
  • Jeong, S. H.; Park, C. H.; Song, H.; Heo, J. H.; Lee, J. H. Biomolecules as Green Flame Retardants: Recent Progress, Challenges, and Opportunities. J. Clean. Prod. 2022, 368, 133241. DOI: 10.1016/j.jclepro.2022.133241.
  • Xia, Y.; Chai, W.; Liu, Y.; Su, X.; Liao, C.; Gao, M.; Li, Y.; Zheng, Z. Facile Fabrication of Starch-Based, Synergistic Intumescent and Halogen-Free Flame Retardant Strategy with Expandable Graphite in Enhancing the Fire Safety of Polypropylene. Ind. Crops Prod. 2022, 184, 115002. DOI: 10.1016/j.indcrop.2022.115002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.