135
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Tailoring alkyl ketene dimer on structural-properties relationship of cellulose-based materials: a short review

&
Pages 372-384 | Received 09 Oct 2023, Accepted 25 Nov 2023, Published online: 30 Nov 2023

References

  • Tanpichai, S.; Boonmahitthisud, A.; Soykeabkaew, N.; Ongthip, L. Review of the Recent Developments in All-Cellulose Nanocomposites: Properties and Applications. Carbohydr. Polym. 2022, 286, 119192. DOI: 10.1016/j.carbpol.2022.119192.
  • Huber, T.; Bickerton, S.; Müssig, J.; Pang, S.; Staiger, M. P. Solvent Infusion Processing of All-Cellulose Composite Materials. Carbohydr. Polym. 2012, 90(1), 730–733. DOI: 10.1016/j.carbpol.2012.05.047.
  • Song, X.; Chen, F.; Liu, F. Preparation and Characterization of Alkyl Ketene Dimer (AKD) Modified Cellulose Composite Membrane. Carbohydr. Polym. 2012, Apr , 88(2), 417–421. DOI:10.1016/J.CARBPOL.2011.10.062.
  • Kuo, Y.-N.; Hong, J. A New Method for Cellulose Membrane Fabrication and the Determination of Its Characteristics. J. Colloid. Interface. Sci. 2005, May , 285(1), 232–238. DOI:10.1016/j.jcis.2004.10.043.
  • Bary, E. M. A.; Fekri, A.; Soliman, Y. A.; Harmal, A. N. Novel superabsorbent membranes made of PVA and Ziziphus spina-christi cellulose for agricultural and horticultural applications. New. J. Chem. 2017, 41(18), 9688–9700. DOI: 10.1039/C7NJ01676J.
  • Oh, J.; Park, H.; Kim, J.; Park, Y. Reusable and Biodegradable Separation Membranes Prepared from Common Mushrooms for the Removal of Oily and Particulate Contaminants from Water. ACS Appl. Bio. Mater. 2023, 6(6), 2345–2357. DOI: 10.1021/acsabm.3c00189.
  • Liu, A. A Degradable Membrane Based on Lignin-Containing Cellulose for High-Energy Lithium-Ion Batteries. Int. J. Biol. Macromol. 2022, 213, 690–698. DOI: 10.1016/j.ijbiomac.2022.06.004.
  • Urbina, L.; Algar, I.; García‐Astrain, C.; Gabilondo, N.; González, A.; Corcuera, M.; Eceiza, A.; Retegi, A. Biodegradable Composites with Improved Barrier Properties and Transparency from the Impregnation of PLA to Bacterial Cellulose Membranes. J. Appl. Polym. Sci. 2016, 133(28). DOI: 10.1002/app.43669.
  • Perumal, A. B.; Sellamuthu, P. S.; Nambiar, R. B.; Sadiku, E. R. Development of Polyvinyl Alcohol/Chitosan Bio-Nanocomposite Films Reinforced with Cellulose Nanocrystals Isolated from Rice Straw. Appl. Surf. Sci. 2018, 449, 591–602. DOI: 10.1016/j.apsusc.2018.01.022.
  • Schröpfer, S. B.; Bottene, M. K.; Bianchin, L.; Robinson, L. C.; Lima, V. D.; Jahno, V. D.; Barud, H. D. S.; Ribeiro, S. J. L. Biodegradation evaluation of bacterial cellulose, vegetable cellulose and poly (3-hydroxybutyrate) in soil. Polímeros. 2015, 25(2), 154–160. DOI: 10.1590/0104-1428.1712.
  • Imani, M.; Dimic-Misic, K.; Kostic, M.; Barac, N.; Janackovic, D.; Uskokovic, P.; Ivanovska, A.; Lahti, J.; Barcelo, E.; Gane, P., et al. Achieving a Superhydrophobic, Moisture, Oil and Gas Barrier Film Using a Regenerated Cellulose–Calcium Carbonate Composite Derived from Paper Components or Waste. Sustainability. 2022, 14(16), 10425.
  • Vuoti, S.; Talja, R.; Johansson, L.-S.; Heikkinen, H.; Tammelin, T. Solvent Impact on Esterification and Film Formation Ability of Nanofibrillated Cellulose. Cellulose. 2013, 20(5), 2359–2370. DOI: 10.1007/s10570-013-9983-6.
  • Goo, S.; Park, H.; Yook, S.; Park, S. Y.; Youn, H. J. Preparation of Hydrophobized Cellulose Nanofibril Film with High Strength Using AKD. J. Korea TAPPI. 2018, 50(6), 34–41. DOI: 10.7584/JKTAPPI.2018.12.50.6.34.
  • Garnier, G.; Wright, J.; Godbout, L.; Yu, L. Wetting mechanism of alkyl ketene dimers on cellulose films. Colloids Surf. A Physicochem. Eng. Asp. 1998, Dec , 145(1–3), 153–165. DOI:10.1016/s0927-7757(98)00668-2.
  • Yang, Q.; Takeuchi, M.; Saito, T.; Isogai, A. Formation of Nanosized Islands of Dialkyl $\upbeta$-Ketoester Bonds for Efficient Hydrophobization of a Cellulose Film Surface. Langmuir. 2014, Jun , 30(27), 8109–8118. DOI:10.1021/la501706t.
  • Tucker, I. M.; Petkov, J. T.; Penfold, J.; Thomas, R. K. Interaction of the Anionic Surfactant SDS with a Cellulose Thin Film and the Role of Electrolyte and Poyelectrolyte. 2 Hydrophilic Cellulose. Langmuir. 2012, 28(27), 10223–10229. DOI: 10.1021/la3019277.
  • Gindl, W.; Martinschitz, K. J.; Boesecke, P.; Keckes, J. Changes in the Molecular Orientation and Tensile Properties of Uniaxially Drawn Cellulose Films. Biomacromolecules. 2006, 7(11), 3146–3150. DOI: 10.1021/bm060698u.
  • Yang, Q.; Saito, T.; Isogai, A. Facile Fabrication of Transparent Cellulose Films with High Water Repellency and Gas Barrier Properties. Cellulose. 2012, Sep , 19(6), 1913–1921. DOI:10.1007/s10570-012-9790-5.
  • Ma, H.; Zhou, B.; Li, H.-S.; Li, Y.-Q.; Ou, S.-Y. Green Composite Films Composed of Nanocrystalline Cellulose and a Cellulose Matrix Regenerated from Functionalized Ionic Liquid Solution. Carbohydr. Polym. 2011, Feb , 84(1), 383–389. DOI:10.1016/j.carbpol.2010.11.050.
  • Wong, L. C. Cellulose hydrogel development from unbleached oil palm biomass pulps for dermal drug delivery. Int. J. Biol. Macromol. 2023, 224, 483–495. DOI: 10.1016/j.ijbiomac.2022.10.138.
  • Cui, X.; Lee, J. J. L.; Chen, W. N. Eco-Friendly and Biodegradable Cellulose Hydrogels Produced from Low Cost Okara: Towards Non-Toxic Flexible Electronics. Sci. Rep. 2019, 9(1), 18166. DOI: 10.1038/s41598-019-54638-5.
  • Durpekova, S.; Di Martino, A.; Dusankova, M.; Drohsler, P.; Sedlarik, V. Biopolymer Hydrogel Based on Acid Whey and Cellulose Derivatives for Enhancement Water Retention Capacity of Soil and Slow Release of Fertilizers. Polymers (Basel). 2021, 13(19), 3274. DOI: 10.3390/polym13193274.
  • Mohamed, R. R.; Fahim, M. E.; Soliman, S. Development of Hydrogel Based on Carboxymethyl Cellulose/Poly (4-Vinylpyridine) for Controlled Releasing of Fertilizers. BMC Chem. 2022, 16(1), 1–12. DOI: 10.1186/s13065-022-00846-6.
  • Das, D.; Bhattacharjee, S.; Bhaladhare, S. Preparation of Cellulose Hydrogels and Hydrogel Nanocomposites Reinforced by Crystalline Cellulose Nanofibers (CNFs) as a Water Reservoir for Agriculture Use. ACS Appl. Polym. Mater. 2023, 5(4), 2895–2904. DOI: 10.1021/acsapm.3c00109.
  • Liao, J.; Luan, P.; Zhang, Y.; Chen, L.; Huang, L.; Mo, L.; Li, J.; Xiong, Q. A Lightweight, Biodegradable, and Recyclable Cellulose-Based Bio-Foam with Good Mechanical Strength and Water Stability. J. Environ. Chem. Eng. 2022, 10(3), 107788. DOI: 10.1016/j.jece.2022.107788.
  • Thai, Q. B.; Chong, R. O.; Nguyen, P. T. T.; Le, D. K.; Le, P. K.; Phan-Thien, N.; Duong, H. M. Recycling of Waste Tire Fibers into Advanced Aerogels for Thermal Insulation and Sound Absorption Applications. J. Environ. Chem. Eng. 2020, 8(5), 104279. DOI: 10.1016/j.jece.2020.104279.
  • Kaur, J.; Sharma, K.; Kaushik, A. Waste Hemp-Stalk Derived Nutrient Encapsulated Aerogels for Slow Release of Fertilizers: A Step Towards Sustainable Agriculture. J. Environ. Chem. Eng. 2023, 11(3), 109582. DOI: 10.1016/j.jece.2023.109582.
  • Subramoniapillai, V.; Thilagavathi, G. Oil Spill Cleanup by Natural Fibers: A Review. Res. J. Text. Apparel. 2022, 26(4), 390–404. DOI: 10.1108/RJTA-03-2021-0031.
  • Wang, C.; Cao, H.; Jia, L.; Liu, W.; Liu, P. Characterization of Antibacterial Aerogel Based on ɛ-Poly-L-Lysine/nanocellulose by Using Citric Acid as Crosslinker. Carbohydr. Polym. 2022, 291, 119568. DOI: 10.1016/j.carbpol.2022.119568.
  • Sun, B.; Zhao, J.; Wang, T.; Li, Y.; Yang, X.; Tan, F.; Li, Y.; Chen, C.; Sun, D. Highly Efficient Construction of Sustainable Bacterial Cellulose Aerogels with Boosting PM Filter Efficiency by Tuning Functional Group. Carbohydr. Polym. 2023, 309, 120664. DOI: 10.1016/j.carbpol.2023.120664.
  • Lepetit, A.; Drolet, R.; Tolnai, B.; Montplaisir, D.; Lucas, R.; Zerrouki, R. Microfibrillated Cellulose with Sizing for Reinforcing Composites with LDPE. Cellulose. 2017, 24(10), 4303–4312. DOI: 10.1007/s10570-017-1429-0.
  • Huber, T.; Müssig, J.; Curnow, O.; Pang, S.; Bickerton, S.; Staiger, M. P. A critical review of all-cellulose composites. J. Mater. Sci. 2011, 47(3), 1171–1186. DOI: 10.1007/s10853-011-5774-3.
  • Ramesh, M.; Deepa, C. Properties of Cellulose Based Bio-Fibres Reinforced Polymer Composites. In Biofibers and Biopolymers for Biocomposites; Springer International Publishing: 2020; pp. 71–89. DOI:10.1007/978-3-030-40301-0_3.
  • Fernandes, M.; Gama, M.; Dourado, F.; Souto, A. P. Development of Novel Bacterial Cellulose Composites for the Textile and Shoe Industry. Microb. Biotechnol. 2019, 12(4), 650–661. DOI: 10.1111/1751-7915.13387.
  • Li, L.; Cao, M.; Li, J.; Wang, C.; Li, S. Structure Optimization of Cellulose Nanofibers/Poly (Lactic Acid) Composites by the Sizing of AKD. Polymers (Basel). 2021, 13(23), 4119. DOI: 10.3390/polym13234119.
  • Gandini, A.; da Silva Curvelo, A. A.; Pasquini, D.; de Menezes, A. J. Direct Transformation of Cellulose Fibres into Self-Reinforced Composites by Partial Oxypropylation. Polymer (Guildf.). 2005, Nov, 46(24), 10611–10613. DOI: 10.1016/j.polymer.2005.09.004.
  • Bangar, S. P.; Whiteside, W. S. Nano-Cellulose Reinforced Starch Bio Composite Films-A Review on Green Composites. Int. J. Biol. Macromol. 2021, 185, 849–860. DOI: 10.1016/j.ijbiomac.2021.07.017.
  • Rastogi, S.; Singh, V. K.; Verma, A. Experimental Response of Nonwoven Waste Cellulose Fabric–Reinforced Epoxy Composites for High Toughness and Coating Applications. Mater. Perform. Charact. 2020, 9(1), 151–172. DOI: 10.1520/MPC20190251.
  • Qin, C.; Soykeabkaew, N.; Xiuyuan, N.; Peijs, T. The Effect of Fibre Volume Fraction and Mercerization on the Properties of All-Cellulose Composites. Carbohydr. Polym. 2008, 71(3), 458–467. DOI: 10.1016/j.carbpol.2007.06.019.
  • Duchemin, B. J. C.; Mathew, A. P.; Oksman, K. All-Cellulose Composites by Partial Dissolution in the Ionic Liquid 1-Butyl-3-Methylimidazolium Chloride. Compos. Part A Appl. Sci. Manuf. 2009, Dec, 40(12), 2031–2037. DOI: 10.1016/j.compositesa.2009.09.013.
  • Aziz, F. A.; Salleh, M. M. In situ Surface Treatment on All-Cellulose Composites (ACCs) Using Alkyl Ketene Dimer (AKD) via Solvent Infusion Processing (SIP). In Materials Science Forum; Trans Tech Publ, 2022; pp. 3–9; Vol. 1077. DOI: 10.4028/p-m00p6g.
  • Kalka, S.; Huber, T.; Steinberg, J.; Baronian, K.; Müssig, J.; Staiger, M. P. Biodegradability of all-cellulose composite laminates. Compos. Part A Appl. Sci. Manuf. 2014, 59, 37–44. DOI: 10.1016/j.compositesa.2013.12.012.
  • Mat Salleh, M.; Magniez, K.; Pang, S.; Dormanns, J. W.; Staiger, M. P. Parametric Optimization of the Processing of All-Cellulose Composite Laminae. Adv. Manuf. 2017, 3(2). DOI: 10.1080/20550340.2017.1324351.
  • Mautner, A.; Nawawi, W. M. F. W.; Lee, K.-Y.; Bismarck, A. High porosity cellulose nanopapers as reinforcement in multi-layer epoxy laminates. Compos. Part A Appl. Sci. Manuf. 2020, 131, 105779. DOI: 10.1016/j.compositesa.2020.105779.
  • Dormanns, J. W.; Schuermann, J.; Müssig, J.; Duchemin, B. J. C.; Staiger, M. P. Solvent Infusion Processing of All-Cellulose Composite Laminates Using an Aqueous NaOh/Urea Solvent System. Compos. Part A Appl. Sci. Manuf. 2016, 82, 130–140. DOI: 10.1016/j.compositesa.2015.12.002.
  • Gindl, W.; Keckes, J. All-cellulose nanocomposite. Polymer (Guildf.). 2005, 46(23), 10221–10225. DOI: 10.1016/j.polymer.2005.08.040.
  • Oh, Y.; Park, S. Y.; Yook, S.; Shin, H.; Lee, H. L.; Youn, H. J. A Waterproof Cellulose Nanofibril Sheet Prepared by the Deposition of an Alkyl Ketene Dimer on a Controlled Porous Structure. Cellulose. 2022, 29(12), 6645–6657. DOI: 10.1007/s10570-022-04701-8.
  • Ganeshan, P.; Kumaran, S. S.; Raja, K.; Venkateswarlu, D. An Investigation of Mechanical Properties of Madar Fiber Reinforced Polyester Composites for Various Fiber Length and Fiber Content. Mater. Res. Express. 2018, 6(1), 15303. DOI: 10.1088/2053-1591/aae5bd.
  • Punyamurthy, R.; Sampathkumar, D.; Ranganagowda, R. P. G.; Bennehalli, B.; Srinivasa, C. V. Mechanical Properties of Abaca Fiber Reinforced Polypropylene Composites: Effect of Chemical Treatment by Benzenediazonium Chloride. J. King Saud Univ. Eng. Sci. 2017, 29(3), 289–294. DOI: 10.1016/j.jksues.2015.10.004.
  • Cisneros-López, E. O.; González-López, M. E.; Pérez-Fonseca, A. A.; González-Núñez, R.; Rodrigue, D.; Robledo-Ortíz, J. R. Effect of Fiber Content and Surface Treatment on the Mechanical Properties of Natural Fiber Composites Produced by Rotomolding. Compos. Interfaces. 2017, 24(1), 35–53. DOI: 10.1080/09276440.2016.1184556.
  • Wang, H.; Memon, H.; Hassan, E. A.; Miah, M. S.; Ali, M. A. Effect of Jute Fiber Modification on Mechanical Properties of Jute Fiber Composite. Materials. 2019, 12(8), 1226. DOI: 10.3390/ma12081226.
  • Wang, L.; Ando, M.; Kubota, M.; Ishihara, S.; Hikima, Y.; Ohshima, M.; Sekiguchi, T.; Sato, A.; Yano, H. Effects of Hydrophobic-Modified Cellulose Nanofibers (CNFs) on Cell Morphology and Mechanical Properties of High Void Fraction Polypropylene Nanocomposite Foams. Compos. Part A Appl. Sci. Manuf. 2017, 98, 166–173. DOI: 10.1016/j.compositesa.2017.03.028.
  • Kumar, S.; Prasad, L.; Patel, V. K.; Kumar, V.; Kumar, A.; Yadav, A. Physico-Mechanical Properties and Taguchi Optimized Abrasive Wear of Alkali Treated and Fly Ash Reinforced Himalayan Agave Fiber Polyester Composite. J. Nat. Fibers. 2022, 19(14), 9269–9282. DOI: 10.1080/15440478.2021.1982818.
  • Cai, J.; Niu, H.; Yu, Y.; Xiong, H.; Lin, T. Effect of Solvent Treatment on Morphology, Crystallinity and Tensile Properties of Cellulose Acetate Nanofiber Mats. J. Text. Inst. 2017, 108(4), 555–561. DOI: 10.1080/00405000.2016.1174456.
  • Bayani, S.; Taghiyari, H. R.; Papadopoulos, A. N. Physical and Mechanical Properties of Thermally-Modified Beech Wood Impregnated with Silver Nano-Suspension and Their Relationship with the Crystallinity of Cellulose. Polymers (Basel). 2019, 11(10), 1538. DOI: 10.3390/polym11101538.
  • Ryu, S. H.; Lee, Y. S.; Kim, J. H. Efficacy of alkyl ketene dimer modified microcrystalline cellulose in polypropylene matrix. Polymer (Guildf.). 2020, 196, 122463. DOI: 10.1016/j.polymer.2020.122463.
  • Van Nguyen, S.; Lee, B.-K. Polyvinyl alcohol/cellulose nanocrystals/alkyl ketene dimer nanocomposite as a novel biodegradable food packing material. Int. J. Biol. Macromol. 2022, 207, 31–39. DOI: 10.1016/j.ijbiomac.2022.02.184.
  • Zhang, H. Effect of a Novel Coupling Agent, Alkyl Ketene Dimer, on the Mechanical Properties of Wood–Plastic Composites. Mater. Des. 2014, 59, 130–134. DOI: 10.1016/j.matdes.2014.02.048.
  • Duan, Q.; Bao, X.; Yu, L.; Cui, F.; Zahid, N.; Liu, F.; Zhu, J.; Liu, H. Study on Hydroxypropyl Corn Starch/Alkyl Ketene Dimer Composite Film with Enhanced Water Resistance and Mechanical Properties. Int. J. Biol. Macromol. 2023, 253, 126613. DOI: 10.1016/j.ijbiomac.2023.126613.
  • Yang, Q.; Saito, T.; Isogai, A. Facile Fabrication of Transparent Cellulose Films with High Water Repellency and Gas Barrier Properties. Cellulose. 2012, 19(6), 1913–1921. DOI: 10.1007/s10570-012-9790-5.
  • Demirel, I.; Güdül, G. K.; Temiz, H.; Kustas, A.; Aydin, S. Effect of Alkyl Ketene Dimer on the Physical, Mechanical, Biological Durability of Plywood. BioResources. 2018, 13(1), 147–156. DOI: 10.15376/biores.13.1.147-156.
  • Shi, Z.; Fu, F.; Wang, S.; He, S.; Yang, R. Modification of Chinese Fir with Alkyl Ketene Dimer (AKD): Processing and Characterization. BioResources. 2013, 8(1). DOI: 10.15376/biores.8.1.581-591.
  • Missoum, K.; Martoïa, F.; Belgacem, M. N.; Bras, J. Effect of Chemically Modified Nanofibrillated Cellulose Addition on the Properties of Fiber-Based Materials. Ind. Crops Prod. 2013, Jul, 48, 98–105. DOI: 10.1016/j.indcrop.2013.04.013.
  • Song, X.; Chen, F.; Liu, F. Study on the Reaction of Alkyl Ketene Dimer (AKD) and Cellulose Fiber. BioResources. 2012, 7(1), 652–662.
  • Bildik, A. E.; Hubbe, M. A.; Gürboy, K. B. Alkyl Ketene Dimer ({AKD}) Sizing of Paper Under Simplified Treatment Conditions. Tappi J. 2016, 15(8), 545–552. DOI: 10.32964//tj15.8.545.
  • Lepetit, R.; Drolet, A.; Tolnai, R.; Montplaisir, B.; Lucas, D.; Zerrouki, R. Microfibrillated Cellulose with Sizing for Reinforcing Composites with LDPE. Cellulose. 2017, 24(10), 4303–4312. DOI: 10.1007/s10570-017-1429-0.
  • Missoum, K.; Martoïa, F.; Belgacem, M. N.; Bras, J. Effect of Chemically Modified Nanofibrillated Cellulose Addition on the Properties of Fiber-Based Materials. Ind. Crops Prod. 2013, 48, 98–105. DOI: 10.1016/j.indcrop.2013.04.013.
  • Yan, Y.; Amer, H.; Rosenau, T.; Zollfrank, C.; Dörrstein, J.; Jobst, C.; Zimmermann, T.; Keckes, J.; Veigel, S.; Gindl-Altmutter, W., et al. Dry, Hydrophobic Microfibrillated Cellulose Powder Obtained in a Simple Procedure Using Alkyl Ketene Dimer. Cellulose. 2016, Feb, 23(2), 1189–1197. DOI: 10.1007/s10570-016-0887-0.
  • Yuan, Y.; Wen, Z. Enhancement of Hydrophobicity of Nanofibrillated Cellulose Through Grafting of Alkyl Ketene Dimer. Cellulose. 2018, 25(12), 6863–6871. DOI: 10.1007/s10570-018-2048-0.
  • Lovaglio, T.; Gindl-Altmutter, W.; Meints, T.; Moretti, N.; Todaro, L. Wetting Behavior of Alder (Alnus Cordata (Loisel) Duby) Wood Surface: Effect of Thermo-Treatment and Alkyl Ketene Dimer ({AKD}). Forests. 2019, Sep, 10(9), 770. DOI: 10.3390/f10090770.
  • Seo, W.; Cho, N.; Ohga, S. Possibility of Hydrogen Bonding Between AKD and Cellulose Molecules During AKD Sizing. J. Fac. Agric. Kyushu Univ. 2008, 53(2), 405–410. DOI: 10.5109/12849.
  • Rout, T.; Bera, S.; Udayabhanu, G.; Narayan, R. Methodologies of Application of Sol-Gel Based Solution Onto Substrate: A Review. J. Coat. Sci. Technol. 2016, May, 3(1), 9–22. DOI: 10.6000/2369-3355.2016.03.01.2.
  • Yan, Y.; Amer, H.; Rosenau, T.; Zollfrank, C.; Dörrstein, J.; Jobst, C.; Zimmermann, T.; Keckes, J.; Veigel, S.; Gindl-Altmutter, W., et al. Dry, Hydrophobic Microfibrillated Cellulose Powder Obtained in a Simple Procedure Using Alkyl Ketene Dimer. Cellulose. 2016, 23(2), 1189–1197. DOI: 10.1007/s10570-016-0887-0.
  • Yuan, Z.; Wen, Y. Enhancement of Hydrophobicity of Nanofibrillated Cellulose Through Grafting of Alkyl Ketene Dimer. Cellul. CrossMark. 2018, 25(12), 6863–6871. DOI: 10.1007/s10570-018-2048-0.
  • Cao, H.; Guo, X.; Zhou, Y.; Yan, Y.; Sun, W. Fabrication of Durable Hydrophobic/Superhydrophobic Wood Using an Alkyl Ketene Dimer by a Simple and Feasible Method. ACS Omega. 2022, 7(21), 17921–17928. DOI: 10.1021/acsomega.2c01215.
  • Kaewsaneha, C.; Roeurn, B.; Apiboon, C.; Opaprakasit, M.; Sreearunothai, P.; Opaprakasit, P. Preparation of Water-Based Alkyl Ketene Dimer (AKD) Nanoparticles and Their Use in Superhydrophobic Treatments of Value-Added Teakwood Products. ACS Omega. 2022, 7(31), 27400–27409. DOI: 10.1021/acsomega.2c02420.
  • Garnier, G.; Wright, J.; Godbout, L.; Yu, L. Wetting Mechanism of Alkyl Ketene Dimers on Cellulose Films. Colloids Surf. A Physicochem. Eng. Aspects. 1998, 145(1–3), 153–165. DOI: 10.1016/S0927-7757(98)00668-2.
  • Liu, H.; Gao, S.-W.; Cai, J.-S.; He, C.-L.; Mao, J.-J.; Zhu, T.-X.; Chen, Z.; Huang, J.-Y.; Meng, K.; Zhang, K.-Q., et al. Recent Progress in Fabrication and Applications of Superhydrophobic Coating on Cellulose-Based Substrates. Materials. 2016, 9(3), 124–137.
  • Seo, W.-S.; Cho, N.-S. Effect of Water Content on Cellulose/AKD Reaction. Appita Technol. Innovation Manuf. Environ. 2005, 58(2), 122–126.
  • Nechita, P.; Roman, M.; Cantaragiu Ceoromila, A.; Dediu Botezatu, A. V. Improving Barrier Properties of Xylan-Coated Food Packaging Papers with Alkyl Ketene Dimer. Sustainability. 2022, 14(23), 16255. DOI: 10.3390/su142316255.
  • Huang, L.; Chen, C.; Gao, S.; Cui, L.; Wang, S.; Song, X.; Chen, F.; Liu, J.; Yu, S. Preparation and Characterization of a High Performance Emulsion Using a Polymeric Emulsifier and AKD. BioResources. 2018, 13(2), 4046–4057. DOI: 10.15376/biores.13.2.4046-4057.
  • Arminger, B.; Gindl-Altmutter, W.; Keckes, J.; Hansmann, C. Facile Preparation of Superhydrophobic Wood Surfaces: Via Spraying of Aqueous Alkyl Ketene Dimer Dispersions. Rsc. Adv. 2019, 9(42), 24357–24367. DOI: 10.1039/c9ra03700d.
  • Chen, F. S.; Song, X. M.; Liu, F. S.; Liu, D. F. Calculation of the Reactivity of Alkyl Ketene Dimer with Ethanol and the Characterization of Reaction Products. Asian J. Chem. 2013, 25(3), 1182–1186.
  • Fedorov, P. P.; Luginina, A. A.; Kuznetsov, S. V.; Voronov, V. V.; Yapryntsev, A. D.; Lyapin, A. A.; Pynenkov, A. A.; Nishchev, K. N.; Chernova, E. V.; Petukhov, D. I., et al. Hydrophobic Up-Conversion Carboxylated Nanocellulose/Fluoride Phosphor Composite Films Modified with Alkyl Ketene Dimer. Carbohydr. Polym. 2020, 250, 116866. DOI: 10.1016/j.carbpol.2020.116866.
  • Asakura, K.; Iwamoto, M.; Isogai, A. The Effects of AKD Oligomers Present in AKD Wax on Dispersion Stability and Paper Sizing Performance. Nord Pulp. Paper Res. J. 2006, 21(2), 245–252. DOI: 10.3183/npprj-2006-21-02-p245-252.
  • Xie, J.; Liu, S. A Review of Hydrophobic Nanocellulose and Its Applications. Pap. Biomater. 2021, 6(2), 35–42.
  • Qu, J.; Yuan, Z.; Wang, C.; Wang, A.; Liu, X.; Wei, B.; Wen, Y. Enhancing the Redispersibility of TEMPO-Mediated Oxidized Cellulose Nanofibrils in N, N-Dimethylformamide by Modification with Cetyltrimethylammonium Bromide. Cellulose. 2019, 26(13–14), 7769–7780. DOI: 10.1007/s10570-019-02655-y.
  • Habibi, Y. Key Advances in the Chemical Modification of Nanocelluloses. Chem. Soc. Rev. 2014, 43(5), 1519–1542. DOI: 10.1039/C3CS60204D.
  • Matsumura, H.; Sugiyama, J.; Glasser, W. G. Cellulosic Nanocomposites. I. Thermally Deformable Cellulose Hexanoates from Heterogeneous Reaction. J. Appl. Polym. Sci. 2000, 78(13), 2242–2253. DOI: 10.1002/1097-4628(20001220)78:13<2242:AID-APP20>3.0.CO;2-5.
  • Hu, Z.; Ballinger, S.; Pelton, R.; Cranston, E. D. Surfactant-Enhanced Cellulose Nanocrystal Pickering Emulsions. J. Colloid. Interface. Sci. 2015, 439, 139–148. DOI: 10.1016/j.jcis.2014.10.034.
  • de Lima, G. F.; de Souza, A. G.; Rosa, D. S. Effect of Adsorption of Polyethylene Glycol (PEG), in Aqueous Media, to Improve Cellulose Nanostructures Stability. J. Mol. Liq. 2018, 268, 415–424. DOI: 10.1016/j.molliq.2018.07.080.
  • Capron, I.; Rojas, O. J.; Bordes, R. Behavior of Nanocelluloses at Interfaces. Curr. Opin. Colloid. Interface Sci. 2017, 29, 83–95. DOI: 10.1016/j.cocis.2017.04.001.
  • Dhar, N.; Au, D.; Berry, R. C.; Tam, K. C. Interactions of Nanocrystalline Cellulose with an Oppositely Charged Surfactant in Aqueous Medium. Colloids Surf. A Physicochem. Eng. Asp. 2012, 415, 310–319. DOI: 10.1016/j.colsurfa.2012.09.010.
  • Adenekan, K.; Hutton-Prager, B. Sticky Hydrophobic Behavior of Cellulose Substrates Impregnated with Alkyl Ketene Dimer ({AKD}) via Sub- and Supercritical Carbon Dioxide. Colloids Surf. A Physicochem. Eng. Aspects. 2019, Jan, 560, 154–163. DOI: 10.1016/j.colsurfa.2018.09.073.
  • Nibbering, E. T. J.; Dreyer, J.; Kühn, O.; Bredenbeck, J.; Hamm, P.; Elsaesser, T. Vibrational Dynamics of Hydrogen Bonds. Anal. Control Ultrafast Photoinduced React. 2007, 87, 619–687.
  • Shen, W.; Zhang, H.; Ettl, R. Chemical composition of {\textquotedblleft}{AKD} vapour{\textquotedblright} and its implication to {AKD} vapour sizing. Cellulose. 2005, Oct , 12(6), 641–652. DOI:10.1007/s10570-005-9010-7.
  • McMurry, J. E. Organic Chemistry with Biological Applications; Cengage Learning: CA, USA, 2014.
  • Shen, Z.; Rajabi-Abhari, A.; Oh, K.; Yang, G.; Youn, H. J.; Lee, H. L. Improving the Barrier Properties of Packaging Paper by Polyvinyl Alcohol Based Polymer Coating—Effect of the Base Paper and Nanoclay. Polymers (Basel). 2021, 13(8), 1334. DOI: 10.3390/polym13081334.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.