151
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of silicone rubber-based nanocomposites: nanoparticle selection and performance analysis

, , , &
Pages 399-418 | Received 06 Sep 2023, Accepted 25 Nov 2023, Published online: 10 Dec 2023

References

  • Uckol, H. I.; Karaca, B.; Ilhan, S. DC and AC Electric Field Analysis and Experimental Verification of a Silicone Rubber Insulator. Electr. Eng. 2020, 102(2), 1–12. DOI: 10.1007/s00202-020-00954-3.
  • Zolriasatein, A. A New Approach Based on RTV/SiO2 Nano Coating for Tackling Environmental Pollution on Electrical Energy Transmission and Distributions. JREE. 2022, 9(3), 45–51. DOI: 10.30501/jree.2022.299858.1244.
  • Alam, S.; Serdyuk, Y. V.; Gubanski, S. M. Temperature and Field Induced Variations of Electric Conductivities of HTV Silicone Rubbers Derived from Measured Currents and Surface Potential Decay Characteristics. Energies. 2020, 13(11), 2982. DOI: 10.3390/en13112982.
  • Mekala, K.; Chandrasekar, S.; Ravindran, R. S. Investigations of Accelerated Aged Polymeric Insulators Using Partial Discharge Signal Measurement and Analysis. J. Electr. Eng. Technol. 2015, 10(1), 299–307. DOI: 10.5370/JEET.2015.10.1.299.
  • Arshad, A.; Nekahi, A.; McMeekin, S. G.; Farzaneh, M. Measurement of Surface Resistance of Silicone Rubber Sheets Under Polluted and Dry Band Conditions. Electr. Eng. 2018, 100(3), 1729–1738. DOI: 10.1007/s00202-017-0652-x.
  • Gupta, S.; Ramamurthy, P. C.; Madras, G. Future scope of silicone polymer based functionalized nanocomposites for device packaging: a mini review. J. Chem. Eng. Process Technol. 2015, 6(1), 213.
  • Li, Z. L.; Du, B. X.; Yang, Z. R.; Li, J. Effects of Crystal Morphology on Space Charge Transportation and Dissipation of Sic/Silicone Rubber Composites. IEEE Trans. Dielectr. Electr. Insul. 2017, 24(4), 2616–2625. DOI: 10.1109/TDEI.2017.006388.
  • Wahlander, M.; Nilsson, F.; Andersson, R. L.; Sanchez, C. C.; Taylor, N.; Carlmark, A.; Hillborg, H.; Malmström, E. Tailoring Dielectric Properties Using Designed Polymer-Grafted ZnO Nanoparticles in Silicone Rubber. J. Mater. Chem. A. 2017, 5(27), 14241–14258. DOI: 10.1039/c6ta11237d.
  • Chen, G. H.; Li, Y.; Wu, S. X.; Li, D.; Yang, S. S. Nano-particle’s effect on silicone rubber inhibitor. IOP Conf. Ser Mater. Sci. Eng. 2019, 479, 012115. DOI: 10.1088/1757-899X/479/1/012115.
  • Karami, Z.; Jazani, O. M.; Navarchian, A. H.; Saeb, M. R. State of Cure in Silicone/Clay Nanocomposite Coatings: The Puzzle and the Solution. Prog. Org. Coat. 2018. 2018, 125, 222–233. DOI: 10.1016/j.porgcoat.2018.09.019.
  • Zhao, Y.; Jing, J.; Chen, L.; Xu, F.; Hou, H. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection. Jinshu Xuebao/Acta Metallurgica Sinica. 2021, 57, 1107–1125. DOI: 10.11900/0412.1961.2021.00051.
  • Joshi, V.; Srividhya, M.; Dubey, M.; Ghosh, A. K.; Saxena, A. Effect of Functionalization on Dispersion of POSS-Silicone Rubber Nanocomposites. J. Appl. Polym. Sci. 2013, 130(1), 92–99. DOI: 10.1002/app.39112.
  • Zhu, X.; Zhang, Y.; Zhou, Y.; Huang, X. Moisture Absorption Characteristics of Nanoparticle-Doped Silicone Rubber and Its Influence Mechanism on Electrical Properties. Polymers. 2021, 13(9), 1474. DOI: 10.3390/polym13091474.
  • Sun, L.; Liang, T.; Zhang, C.; Chen, J. The Rheological Performance of Shear-Thickening Fluids Based on Carbon Fiber and Silica Nanocomposite. Phys. Fluids. 2023, 35(3), 32002. DOI: 10.1063/5.0138294.
  • Zhang, M.; Jiang, X.; Arefi, M. Dynamic Formulation of a Sandwich Microshell Considering Modified Couple Stress and Thickness-Stretching. Eur. Phys. J. Plus. 2023, 138(3), 227. DOI: 10.1140/epjp/s13360-023-03753-4.
  • Tikhani, F.; Jouyandeh, M.; Jafari, S. H.; Chabokrow, S.; Ghahari, M.; Gharanjig, K.; Klein, F.; Hampp, N.; Ganjali, M. R.; Formela, K., et al. Cure Index Demonstrates Curing of Epoxy Composites Containing Silica Nanoparticles of Variable Morphology and Porosity. Prog. Org. Coat. 2019, 135, 176–184. DOI: 10.1016/j.porgcoat.2019.05.017.
  • Ghiyasi, S.; Sari, M. G.; Shabanian, M.; Hajibeygi, M.; Zarrintaj, P.; Rallini, M.; Torre, L.; Puglia, D.; Vahabi, H.; Jouyandeh, M., et al. Hyperbranched Poly(ethyleneimine) Physically Attached to Silica Nanoparticles to Facilitate Curing of Epoxy Nanocomposite Coatings. Prog. Org. Coat. 2018, 120, 100–109. DOI: 10.1016/j.porgcoat.2018.03.019.
  • Chen, J.; Liu, J.; Yao, Y.; Chen, S. Effect of Microstructural Damage on the Mechanical Properties of Silica Nanoparticle-Reinforced Silicone Rubber Composites. Engineering Fracture Mechanics. 2020, 235, 107195. DOI: https://doi.org/10.1016/j.engfracmech.2020.107195.
  • Bakhshandeh, E.; Jannesari, A.; Ranjbar, Z.; Sobhani, S.; Saeb, M. R. Anti-Corrosion Hybrid Coatings Based on Epoxy–Silica Nano-Composites: Toward Relationship Between the Morphology and EIS Data. Prog. Org. Coat. 2014, 77(7), 1169–1183. DOI: https://doi.org/10.1016/j.porgcoat.2014.04.005.
  • Ansorge, S.; Papailiou, K. Mechanical Properties of Silicone Rubber Under High Loadings of Alumina Trihydrate Filler. J. Elastomers Plast. 2016, 48(4), 354–382. DOI: 10.1177/0095244315580452.
  • Muhammud, A. M.; K, G. N. Nanostructured SiO2 Material: Synthesis Advances and Applications in Rubber Reinforcement. R.S.C. Adv. 2022, 12(29), 18524–18546. DOI: 10.1039/D2RA02747J.
  • Momen, G.; Farzaneh, M. Survey of Micro/Nano Filler Use to Improve Silicone Rubber for Outdoor Insulators. Rev. Adv. Mater. Sci. 2011, 27, 1–13.
  • Lou, W.; Xie, C.; Guan, X. Molecular Dynamic Study of Radiation-Moisture Aging Effects on the Interface Properties of Nano-Silica/silicone Rubber Composites. npj Mater Degrad. 2023, 7(1), 32. DOI: 10.1038/s41529-023-00351-8.
  • Zhao, X.; Han, J.; Pu, L.; Duan, W.; Ju, Z.; Sun, H.; Gao, J. Study on the Influence of SiO2 on Silicone Rubber Material Used in Cable Accessories. J. Phys.: Conf. Ser. 2022, 2404(1), 012006. DOI: 10.1088/1742-6596/2404/1/012006.
  • Khattak, A.; Iqbal, M.; Amin, M. Aging Analysis of High Voltage Silicone Rubber/Silica Nanocomposites Under Accelerated Weathering Conditions, Science and Engineering of Composite Materials. Sci. Eng. Compos. Mater. 2017, 24(5), 679–689. DOI: 10.1515/secm-2015-0327.
  • Kurnia, R. F.; Mat Saman, N.; Ahmad, M. H.; Adzis, Z.; Buntat, Z.; Mohamed Piah, M. A. Electrical Trees and Partial Discharges in Silicone Rubber Nanocomposites Containing Silica Nanoparticles. Ijeei. December 2022, 14(4), 827–840. DOI: 10.15676/ijeei.2022.14.4.7.
  • Li, H.; Yin, Z.; Deng, L.; Wang, S.; Fu, Z.; Ma, Y. Effect of SiO2/Al2O3 Ratio on the Structure and Electrical Properties of MgO–Al2O3–SiO2 Glass-Ceramics Doped with TiO2. Mater. Chem. Phys. 2020, 256, 123653. DOI: 10.1016/j.matchemphys.2020.123653.
  • Ma, M.; Xu, L.; Qiao, L.; Chen, S.; Shi, Y.; He, H.; Wang, X. Nanofibrillated Cellulose/MgO@rGO composite Films with Highly Anisotropic Thermal Conductivity and Electrical Insulation. Chem. Eng. J. 2020, 392, 123714. DOI: 10.1016/j.cej.2019.123714.
  • Pourrahimi, A. M.; Pallon, L. K. H.; Liu, D.; Hoang, T. A.; Gubanski, S.; Hedenqvist, M. S.; Olsson, R. T.; Gedde, U. W. Polyethylene Nanocomposites for the Next Generation of Ultra-Low Transmission-Loss HVDC Cables: Insulations Containing Moisture-Resistant MgO Nanoparticles. ACS Appl. Mater. Interfaces. 2016, 8(23), 14824–14835. DOI: 10.1021/acsami.6b04188.
  • Saini, I.; Sharma, A.; Dhiman, R.; Aggarwal, S.; Ram, S.; Sharma, P. K. Grafted SiC Nanocrystals for Enhanced Optical, Electrical and Mechanical Properties of Polyvinyl Alcohol. J. Alloys Compound. 2017, 714, 172–180. DOI: 10.1016/j.jallcom.2017.04.183.
  • Wang, Y.; Wang, C.; Xiao, K. Investigation of the Electrical Properties of XLPE/SiC Nanocomposites Polymer Testing. Nanocomposites. Polym. Test. 2016, 50, 145–151. DOI: 10.1016/j.polymertesting.2016.01.007.
  • Shang, N.; Chen, Q.; Wei, X. Preparation and Dielectric Properties of SiC/LSR Nanocomposites for Insulation of High Voltage Direct Current Cable Accessories. Materials. 2018, 11(3), 403. DOI: 10.3390/ma11030403.
  • Fan, P.; Sun, Z.; Wang, Y.; Chang, H.; Zhang, P.; Yao, S.; Lu, C.; Rao, W.; Liu, J. Nano Liquid Metal for the Preparation of a Thermally Conductive and Electrically Insulating Material with High Stability. Rsc. Adv. 2018, 8(29), 16232–16242. DOI: 10.1039/C8RA00262B.
  • Saad, M. H. I. B.; Ahmad, M. H. B.; Arief, Y. Z.; Ahmad, H.; Mohamed Piah, M. A. B. Electrical Treeing and Morphological Analysis of Epoxy Nanocomposites with Different Concentrations of Silica Nanofillers. AMR. 2013, 832, 567–572. DOI: 10.4028/www.scientific.net/AMR.832.567.
  • Pourrahimi, A. M.; Olsson, R. T.; Hedenqvist, M. S. The Role of Interfaces in Polyethylene/metal-Oxide Nanocomposites for Ultrahigh-Voltage Insulating Materials. Adv.Mate. 2018, 30(4), 1703624. DOI: 10.1002/adma.201703624.
  • Ma, X.; Zhang, P.; Fan, Y.; Chen, H.; Yang, R., Effect of Nanoparticles Loading on Space Charge Characteristic of Al2O3-Silicone Rubber Nanocomposites, IEEE, 2012, DOI: 10.1109/IFOST.2012.6357533.
  • Bahrani, M.; Sharif, M.; Amirazodi, K. Preparation and Characterization of Polythiophene/Graphene Oxide/Epoxy Nanocomposite Coatings with Advanced Properties. Polym. Bull. 2022, 79(1), 263–284. DOI: 10.1007/s00289-020-03529-1.
  • Ullah, R.; Abd Rahman, R.; Ahmed, R.; Wali, K.; Ullah, I. Aging Mechanism of HTV Silicone Rubber Loaded with Hybrid Nano/Micro Silica and Alumina Exposed to Concurrent Multistress. Polym. Test. 2023, 121, 107985. DOI: 10.1016/j.polymertesting.2023.107985.
  • Kumar, V.; Alam, M. N.; Manikkavel, A.; Song, M.; Lee, D.-J.; Park, S.-S. Silicone Rubber Composites Reinforced by Carbon Nanofillers and Their Hybrids for Various Applications. A Review, Polymers. 2021, 13(14), 2322. DOI: 10.3390/polym13142322.
  • Bazireh, E.; Sharif, M. Polythiophene-Coated Multi-Walled Carbon Nanotube-Reinforced Epoxy Nanocomposites for Enhanced Mechanical, Electrical and Thermal Properties. Polym. Bull. 2020, 77(9), 4537–4553. DOI: https://doi.org/10.1007/s00289-019-02981-y.
  • Thomas, S. Silicon-Based Hybrid Nanoparticles. Fundamentals, properties and applications, 1st edition, 2021.
  • Sharif, M.; Heidari, A.; Aghaeinejad Meybodi, A. Polythiophene/Zinc Oxide/Graphene Oxide Ternary Photocatalyst: Synthesis, Characterization and Application. Polym. Plast. Technol. Eng. 2021, 60(13), 1450–1460. DOI: 10.1080/25740881.2021.1905842.
  • Mun, S. Y.; Cho, K. Y.; Lee, D.; Lim, H. M. Thermal and Electrical Properties of SiO2/SiC-epoxy Composite by Surface Oxidation of Silicon Carbide. Thermochim. Acta. 2017, 654, 70–73. DOI: 10.1016/j.tca.2017.04.012.
  • Liu, J.; Cui, L.; Kong, N.; Barrow, C. J.; Yang, W. RAFT Controlled Synthesis of Graphene/Polymer Hydrogel with Enhanced Mechanical Property for pH-Controlled Drug Release. Eur. Polym. J. 2014, 50, 9–17. DOI: 10.1016/j.eurpolymj.2013.10.015.
  • Fuad, A.; Kultsum, U.; Taufiq, A.; Hartatiek; Latifah, E. Nanostructural Characters of β-SiC Nanoparticles Prepared from Indonesian Natural Resource Using Sonochemical Method. J. Phys. 2018, 1011, 012066. Conf. Series 1011. DOI: 10.1088/1742-6596/1011/1/012066.
  • Luo, G.; Zh Hu J, Z.; Sun, J.; Zhang, Y.; Zhang, Q.; Shen, L. Study on Rheological Behavior of Micro/nano-Silicon Carbide Particles in Ethanol by Selecting Efficient Dispersants. Materials. 2020, 13(7), 1496. DOI: 10.3390/ma13071496.
  • Dang, B.; He, J.; Hu, J.; Zhou, Y. Tailored sPp/Silica Nanocomposite for Ecofriendly Insulation of Extruded HVDC Cable. J. Nanomater. 2015, 2015, 1–9. DOI: 10.1155/2015/686248.
  • Wen, X.; Yuan, X.; Lan, L.; Hao, L.; Wang, Y.; Li, S.; Lu, H.; Bao, Z. RTV Silicone Rubber Degradation Induced by Temperature Cycling Energies. Energies. 2017, 10(7), 1054–1066. DOI: 10.3390/en10071054.
  • Oleiwi Jawad, K., Study the Mechanical Properties of Polymeric Blends (SR/PMMA) Using for Maxillofacial Prosthesis Application, IOP Conference Series Materials Science and Engineering, 2018, DOI: 10.1088/1757-899X/454/1/012086
  • Launer Philip, J.; Barry, A. Infrared Analysis of Organosilicon Compounds: Spectra-Structure Correlations, Silicon Compounds: Silanes & Silicones, 3rd ed.; Gelset Inc: USA, 2013; pp. 175–178.
  • Feng, J.; Zhang, Q.; Tu, Z.; Tu, W.; Wan, Z.; Pan, M.; Zhang, H. Degradation of Silicone Rubbers with Different Hardness in Various Aqueous Solutions. Polym. Degrad. Stab. 2014, 109, 122–128. DOI: 10.1016/j.polymdegradstab.2014.07.011.
  • Fu, S.; Sun, Z.; Huang, P.; Li, Y.; Hu, N. Some Basic Aspects of Polymer Nanocomposites: A Critical Review. Nano Mater. Sci. 2019, 1(1), 2–30. DOI: 10.1016/j.nanoms.2019.02.006.
  • Kulik, V. M.; Boiko, A. V.; Bardakhanov, S. P.; Park, H.; Chun, H. H.; Lee, I. Viscoelastic Properties of Silicone Rubber with Admixture of SiO2 Nanoparticles. Materials Science And Engineering, Mater. Sci. Eng.: A. 2011, 528(18), 5729–5732. DOI: 10.1016/j.msea.2011.04.021.
  • Meyer, L. H.; Cherney, E. A.; Jayaram, S. H. The Role of Inorganic Fillers in Silicone Rubber for Outdoor Insulation—Alumina Tri-Hydrate or Silica. IEEE Electr. Insul. Mag. 2004, 20(4), 13–21. DOI: 10.1109/MEI.2004.1318835.
  • Kamarudin, N.; Razak, J. A.; Mohamad, N.; Norddin, N.; Aman, A.; Ismail, M. M.; Junid, R.; Chew, T. Mechanical and Electrical Properties of Silicone Rubber Based Composite for High Voltage Insulator Application. Int. J. Eng. Technol. 2018, 7, 452–457. DOI: 10.14419/ijet.v7i3.25.17729.
  • Ali, M.; Choudhry, M. A. Preparation and Characterization of EPDM-Silica Nano/Micro Composites for High Voltage Insulation Applications Materials Science-Poland. Mater. Science-Poland. 2015, 33(1), 213–219. DOI: 10.1515/msp-2015-0002.
  • Yoshimura, K.; Nakano, K.; Okamoto, K.; Miyake, T. Mechanical and Electrical Properties in Porous Structure of Ketjenblack/silicone–Rubber Composites, Sensors and Actuators a. Sens. Actuators A Phys. 2012, 180, 55–62. DOI: https://doi.org/10.1016/j.sna.2012.04.006.
  • Liu, P. S.; Li, T. F.; Fu, C. Relationship Between Electrical Resistivity and Porosity for Porous Metals. Mater. Sci. Eng. A. 1999, 268(1–2), 208–215. DOI: 10.1016/S0921-5093(99)00073-8.
  • Foroutani, K.; Pourabbas, B.; Sharif, M.; Fallahian, M.; Khademi, S.; Mohammadizadeh, M. In situ Deposition of Polythiophene Nanoparticles on Flexible Transparent Films: Effect of the Process Conditions. Mater. Sci. Semicond. Process. 2014, 57-65 19, 57–65. DOI: https://doi.org/10.1016/j.mssp.2013.11.012.
  • Ismail, N. H.; Mustapha, M. A Review of Thermoplastic Elastomeric Nanocomposites for High Voltage Insulation Applications. Polymer Engineering & Sci. 2018, 58(S1), E36–E63. DOI: 10.1002/pen.24822.
  • Foroutani, K.; Pourabbas, B.; Sharif, M.; Mohammadizadeh, M.; Fallahian, M.; Khademi, S. Preparation of Conductive Flexible Films by in situ Deposition of Polythiophene Nanoparticles on Polyethylene Naphthalate. Mater. Sci. Semicond. Process. 2014, 18, 6–14. DOI: https://doi.org/10.1016/j.mssp.2013.10.015.
  • Li, M.; Guo, Q.; Chen, L.; Li, L.; Hou, H.; Zhao, Y. Microstructure and Properties of Graphene Nanoplatelets Reinforced AZ91D Matrix Composites Prepared by Electromagnetic Stirring Casting. J. Mater. Res. Technol. 2022, 21, 4138–4150. DOI: 10.1016/j.jmrt.2022.11.033.
  • Takala, M.; Ranta, H.; Nevalainen, P.; Pakonen, P.; Pelto, J.; Karttunen, M.; Virtanen, S.; Koivu, V.; Pettersson, M.; Soner, B. Effect of Low Amount of Nanosilica on Dielectric Properties of Polypropylene. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1259–1267. DOI: 10.1109/TDEI.2010.5539698.
  • Haque, S. M., Rey, J. A. A.; Masúd, A. A.; Umar, Y.; Albarracin, R. Electrical Properties of Different Polymeric Materials and Their Applications: The Influence of Electric Field, Properties and Applications of Polymer Dielectrics, pp. 41–63. 2017. 10.5772/67091.
  • Pitsa, D., Vardakis, G. E.; Danikas, M. G. Effect of Nanoparticles Loading on Electrical Tree Propagation in Polymer Nanocomposites, In Proceedings of 2011 International Symposium on Electrical Insulating Materials, IEEE: 2011, pp 9–11. DOI:10.1109/ISEIM.2011.6826263.
  • Saini, I.; Sharma, A.; Rozra, J.; Dhiman, R.; Aggarwal, S.; Sharma, P. K. Modification of Structural, Thermal, and Electrical Properties of PVA by Addition of Silicon Carbide Nanocrystals. J. Appl. Polym. Sci. 2015, 132(34). DOI: 10.1002/APP.42464.
  • Preda, I.; Castellon, J.; Agnel, S.; Notingher, P.; Fréchette, M.; Heid, T.; Couderc, H.; Freebody, N.; Vaughan, A. S. Conduction Currents and Time to Frequency Domain Transformation for Epoxy Resin Nanocomposites, IEEE 2013 International Conference on Solid Dielectrics (ICSD), Bologna, Italy: 2013, pp 1060–1063.
  • Jamail, N. A. M.; Piah, M. A. M.; Muhamad, N. A.; Salam, Z.; Kasri, N. F.; Zainir, R. A.; Kamarudin, Q. E. Effect of Nanofillers on the Polarization and Depolarization Current Characteristics of New LLDPE-NR Compound for High Voltage Application. Adv. Mater. Sci. Eng. 2014, 2014, 1–7. DOI: 10.1155/2014/416420.
  • Aganbegović, M.; Imani, M. T.; Werle, P. Electrical Conductivity in Specially Doped Silicon Layers Under DC Stress, In The International Symposium on High Voltage Engineering, Budapest, Hungary: 2019, pp 211–220.
  • Sharif, M.; Tavakoli, S. Biodegradable chitosan-graphene oxide as an affective green filler for improving of properties in epoxy nanocomposites. Int. J. Biol. Macromol. 2023, 233, 123550–8130. DOI: https://doi.org/10.1016/j.ijbiomac.2023.123550.
  • Azimi, N.; Gandomkar, A.; Sharif, M. Relationship Between Production Condition, Microstructure and Final Properties of Chitosan/Graphene Oxide–Zinc Oxide Bionanocomposite. Polym. Bull. 2023, 80(6), 6455–6469. DOI: 10.1007/s00289-022-04277-0.
  • Appukuttan, S.; Joseph, K. Immobilizing Polymer Chains in Chlorobutyl Rubber Nanocomposites. Society of Plastics Engineers Plastics Research, 2014; pp. 1–2. doi: 10.2417/spe.
  • Ehsani, M.; Borsi, H.; Gockenbach, E.; Bakhshandeh, G. R.; Morshedian, J. Modified Silicone Rubber for Use as High Voltage Outdoor Insulators. Adv. Polym. Technol. 2005, 24(1), 51–61. DOI: 10.1002/adv.20027.
  • Liu, D.; Chen, J.; Song, L.; Lu, A.; Wang, Y.; Sun, G. Parameterization of Silica-Filled Silicone Rubber Morphology: A Contrast Variation SANS and TEM Study. Polymer. 2017, 120, 155–163. DOI: 10.1016/j.polymer.2017.05.064.
  • Morshedian, J.; Abbassi-Sourki, F.; Mohadeseh, L. Polyolefin Elastomer Nanocomposites Reinforcements with Nanosilicon Carbide and Nanoclay Particles. Iran. J. Polym. Sci. Technol. 2018, 31(1), 43–55.
  • Pleşa, I.; Noţingher, P.; Schlögl, S.; Sumereder, C.; Muhr, M. Properties of Polymer Composites Used in High-Voltage Applications. Polymers. 2016, 8(5), 173. DOI: 10.3390/polym8050173.
  • Gangisetty, G.; Zevenhoven, R. A Review of Nanoparticle Material Coatings in Passive Radiative Cooling Systems Including Skylights. Energies. 2023, 16(4), 1975. DOI: https://doi.org/10.3390/en16041975.
  • Wu, S.; Li, J.; Zhang, G.; Yao, Y.; Li, G.; Sun, R.; Wong, C. Ultrafast Self-Healing Nanocomposites via Infrared Laser and Their Application in Flexible Electronics. ACS Appl. Mater. Interfaces. 2017, 9(3), 3040–3049. DOI: 10.1021/acsami.6b15476.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.