100
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Carbon sphere@layered double hydroxides filled cellulose nanofibers aerogel for Cr(VI) adsorption from aqueous solution

, , , , , & show all
Pages 419-431 | Received 23 Aug 2023, Accepted 26 Nov 2023, Published online: 05 Dec 2023

References

  • Gong, K. D.; Hu, Q.; Yao, L.; Li, M.; Sun, D. Z.; Shao, Q.; Qiu, B.; Guo, Z. H. Ultrasonic Pretreated Sludge Derived Stable Magnetic Active Carbon for Cr(vi) Removal from Wastewater. ACS Sustainable Chem. Eng. 2018, 6, 7283–7291. DOI: 10.1021/acssuschemeng.7b04421.
  • Zhao, Z. Y.; An, H.; Lin, J.; Feng, M. C.; Murugadoss, V.; Ding, T.; Liu, H.; Shao, Q.; Mai, X. M.; Wang, N., et al. Progress on the Photocatalytic Reduction Removal of Chromium Contamination. Chem. Rec. 2019, 19, 873–882. DOI: 10.1002/tcr.201800153.
  • Wang, W. W.; Zhou, J. B.; Achari, G.; Yu, J. G.; Cai, W. Q. Cr(vi) Removal from Aqueous Solutions by Hydrothermal Synthetic Layered Double Hydroxides: Adsorption Performance, Coexisting Anions and Regeneration Studies. Colloids Surfaces., A. 2014, 457, 33–40. DOI: 10.1016/j.colsurfa.2014.05.034.
  • Fu, F. L.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manage. 2011, 92, 407–418. DOI: 10.1016/j.jenvman.2010.11.011.
  • Yue, X. Y.; Liu, W. Z.; Chen, Z. L.; Lin, Z. Simultaneous removalofCu(ii) and Cr(vi) by Mg-Al-Cl Layered Double Hydroxide and Mechanism Insight. J. Environ. Sci. 2017, 53, 16–26. DOI: 10.1016/j.jes.2016.01.015.
  • Jiang, M. Q.; Jin, X. Y.; Lu, X. Q.; Chen, Z. L. Adsorption of Pb(ii), Cd(ii), Ni(ii) and Cu(ii) Onto Natural Kaolinite Clay. Desalination. 2010, 252, 33–39. DOI: 10.1016/j.desal.2009.11.005.
  • Xuan, X.; Qian, M.; Han, L.; Wan, L.; Li, Y.; Lu, T.; Pan, L.; Niu, Y.; Gong, S. In-Situ Growth of Hollow NiCo Layered Double Hydroxide on Carbon Substrate for Flexible Supercapacitor. Electrochim. Acta. 2019, 321, 321. DOI: 10.1016/j.electacta.2019.134710.
  • Khorshidi, M.; Asadpour, S.; Sarmast, N.; Dinari, M. A Review of the Synthesis Methods, Properties, and Applications of Layered Double Hydroxides/Carbon Nanocomposites. J. Mol. Liq. 2022, 348, 348. DOI: 10.1016/j.molliq.2021.118399.
  • Prasad, C.; Tang, H.; Liu, Q. Q.; Zulfiqar, S.; Shah, S.; Bahadur, I. An Overview of Semiconductors/Layered Double Hydroxides Composites: Properties, Synthesis, Photocatalytic and Photoelectrochemical Applications. J. Mol. Liq. 2019, 289, 289. DOI: 10.1016/j.molliq.2019.111114.
  • Zhang, L. X.; He, F. X.; Mao, W. G.; Uan, Y. T. Fast and Efficient Removal of Cr(vi) to Ppb Level Together with Cr(iii) Sequestration in Water Using Layered Double Hydroxide Interclated with Diethyldithiocarbamate. Sci. Total Environ. 2020, 727, 727. DOI: 10.1016/j.scitotenv.2020.138701.
  • Zhao, S. F.; Wu, M.; Jing, R. S.; Liu, X. J.; Shao, Y. F.; Zhang, Q.; Lv, F. Z.; Liu, A. J.; Meng, Z. L. One-Pot Formation of Magnetic Layered Double Hydroxide Based on Electrostatic Self-Assembly to Remove Cr(vi) from Wastewater. Appl. Clay Sci. 2019, 182, 182. DOI: 10.1016/j.clay.2019.105297.
  • Chao, H. P.; Wang, Y. C.; Tran, H. N. Removal of Hexavalent Chromium from Groundwater by Mg/al-Layered Double Hydroxides Using Characteristics of in-Situ Synthesis. Environ. Pollut. 2018, 243, 620–629. DOI: 10.1016/j.envpol.2018.08.033.
  • Tan, L.; Li, H. L.; Liu, M. R. Characterization of CMC-LDH Beads and Their Application in the Removal of Cr(vi) from Aqueous Solution. Rsc. Adv. 2018, 8, 12870–12878. DOI: 10.1039/C8RA00633D.
  • Liang, X. F.; Zang, Y. B.; Xu, Y. M.; Tan, X.; Hou, W. G.; Wang, L.; Sun, Y. B. Sorption of Metal Cations on Layered Double Hydroxides. Colloids Surfaces., A. 2013, 433, 122–131. DOI: 10.1016/j.colsurfa.2013.05.006.
  • Yuan, X. Y.; Wang, Y. F.; Wang, J.; Zhou, C.; Tang, Q.; Rao, X. B. Calcined Graphene/mgal-Layered Double Hydroxides for Enhanced Cr(vi) Removal. Chem. Eng. J. 2013, 221, 204–213. DOI: 10.1016/j.cej.2013.01.090.
  • Fang, Y.; Liu, L.; Xiang, H.; Wang, Y.; Sun, X. Biomass-Based Carbon Microspheres for Removing Heavy Metals from the Environment: A Review. Mater. Today Sustainability. 2022, 18, 18. DOI: 10.1016/j.mtsust.2022.100136.
  • Liu, Y. D.; Wang, Y. F.; Qi, W.; Wang, K.; Xing, Q. G.; You, S. P.; Su, R. X.; He, Z. M. Facile Fabrication of Oxidized Lignin-Based Porous Carbon Spheres for Efficient Removal of Pb2+. Chemistryselect. 2019, 4, 5251–5257. DOI: 10.1002/slct.201901028.
  • Xu, H. H.; Zhu, S. D.; Xia, M. Z.; Wang, F. Y.; Ju, X. H. Three-Dimension Hierarchical Composite via in-Situ Growth of Zn/Al Layered Double Hydroxide Plates Onto Polyaniline-Wrapped Carbon Sphere for Efficient Naproxen Removal. J. Hazard. Mater. 2022, 423, 423. DOI: 10.1016/j.jhazmat.2021.127192.
  • Tan, X.; Zhang, Y. J.; Liu, M.; Cao, J. M.; Duan, G. L.; Cui, J.; Lin, A. J. Ultrasonic-Assisted Preparation of Interlaced Layered Hydrotalcite (U–Fe/Al-LDH) for High-Efficiency Removal of Cr(vi): Enhancing Adsorption-Coupled Reduction Capacity and Stability. Chemosphere. 2022, 308, 308. DOI: 10.1016/j.chemosphere.2022.136472.
  • Huang, D. L.; Liu, C. H.; Zhang, C.; Deng, R.; Wang, R. Z.; Xue, W. J.; Luo, H.; Zeng, G. M.; Zhang, Q.; Guo, X. Y. Cr(vi) Removal from Aqueous Solution Using Biochar Modified with Mg/al-Layered Double Hydroxide Intercalated with Ethylenediaminetetraacetic Acid. Bioresour. Technol. 2019, 276, 127–132. DOI: 10.1016/j.biortech.2018.12.114.
  • Zhang, X.; Zhou, Q.; Zou, W.; Hu, X. Molecular Mechanisms of Developmental Toxicity Induced by Graphene Oxide at Predicted Environmental Concentrations. Environ. Sci. Technol. 2017, 51, 7861–7871. DOI: 10.1021/acs.est.7b01922.
  • Zhu, H.; Yang, X.; Cranston, E. D.; Zhu, S. Flexible and Porous Nanocellulose Aerogels with High Loadings of Metal-Organic-Framework Particles for Separations Applications. Adv. Mater. 2016, 28, 7652–7657. DOI: 10.1002/adma.201601351.
  • Xu, H. J.; Liu, Y. X.; Liang, H. X.; Gao, C. X.; Qin, J. J.; You, L. C.; Wang, R.; Li, J.; Yang, S. M. Adsorption of Cr(vi) from Aqueous Solutions Using Novel Activated Carbon Spheres Derived from Glucose and Sodium Dodecylbenzene Sulfonate. Sci. Total Environ. 2021, 759, 759. DOI: 10.1016/j.scitotenv.2020.143457.
  • Zhang, Y.; Lin, S.; Qiao, J.; Kołodyńska, D.; Ju, Y.; Zhang, M.; Cai, M.; Deng, D.; Dionysiou, D. D. Malic Acid-Enhanced Chitosan Hydrogel Beads (mChbs) for the Removal of Cr(vi) and Cu(ii) from Aqueous Solution. Chem. Eng. J. 2018, 353, 225–236. DOI: 10.1016/j.cej.2018.06.143.
  • Lü, T.; Ma, R.; Ke, K.; Zhang, D.; Qi, D.; Zhao, H. Synthesis of Gallic Acid Functionalized Magnetic Hydrogel Beads for Enhanced Synergistic Reduction and Adsorption of Aqueous Chromium. Chem. Eng. J. 2021, 408, 408. DOI: 10.1016/j.cej.2020.127327.
  • Zhou, Y. Z.; Li, Y.; Liu, D. X.; Liu, D. B.; Xu, L. D.; Liu, C. Adsorption Optimization of Uranium(vi) Onto Polydopamine and Sodium Titanate Co-Functionalized MWCNTs Using Response Surface Methodology and a Modeling Approach. Colloids Surfaces., A. 2021, 627, 627. DOI: 10.1016/j.colsurfa.2021.127145.
  • Yilmaz, M.; Al-Musawi, T. J.; Saloot, M. K.; Khatibi, A. D.; Baniasadi, M.; Balarak, D. Synthesis of Activated Carbon from Lemna minor Plant and Magnetized with Iron (III) Oxide Magnetic Nanoparticles and Its Application in Removal of Ciprofloxacin. Biomass Conv. Bioref. 2022. DOI: 10.1007/s13399-021-02279-y.
  • Al-Musawi, T. J.; Mengelizadeh, N.; Al Rawi, O.; Balarak, D. Capacity and Modeling of Acid Blue 113 Dye Adsorption Onto Chitosan Magnetized by Fe2O3 Nanoparticles. J Polym. Environ. 2022, 30, 344–359. DOI: 10.1007/s10924-021-02200-8.
  • Touihri, M.; Guesmi, F.; Hannachi, C.; Hamrouni, B.; Sellaoui, L.; Badawi, M.; Poch, J.; Fiol, N. Single and Simultaneous Adsorption of Cr(vi) and Cu (II) on a Novel Fe3O4/Pine Cones Gel Beads Nanocomposite: Experiments, Characterization and Isotherms Modeling. Chem. Eng. J. 2021, 416, 416. DOI: 10.1016/j.cej.2021.129101.
  • Jain, M.; Yadav, M.; Kohout, T.; Lahtinen, M.; Garg, V. K.; Sillanpää, M. Development of Iron Oxide/Activated Carbon Nanoparticle Composite for the Removal of Cr(vi), Cu(ii) and Cd(ii) Ions from Aqueous Solution. Water Resour. Ind. 2018, 20, 54–74. DOI: 10.1016/j.wri.2018.10.001.
  • Mostafapour, F. K.; Zolghadr, R.; Saloot, M. K.; Mahvi, A. H.; Balarak, D.; Safari, E. Identification of ’Voodoo’: An Emerging Substance of Abuse in Egypt. Int. J. Environ. Anal. Chem. 2022, 102, 104–116. DOI: 10.1080/03067319.2022.2130061.
  • Sillanpää, M.; Mahvi, A. H.; Balarak, D.; Khatibi, A. D. Adsorption of Acid Orange 7 Dyes from Aqueous Solution Using Polypyrrole/Nanosilica Composite: Experimental and Modelling. Int. J. Environ. Anal. Chem. 2023, 103, 212–229. DOI: 10.1080/03067319.2020.1855338.
  • Rumman, G. A.; Al-Musawi, T. J.; Sillanpää, M.; Balarak, D. Adsorption Performance of an Amine-Functionalized MCM–41 Mesoporous Silica Nanoparticle System for Ciprofloxacin Removal. Environ. Nanotechnol. Monit. Manage. 2021, 16, 100536. DOI: 10.1016/j.enmm.2021.100536.
  • Mohammadi, N.; Khani, H.; Gupta, V. K.; Amereh, E.; Agarwal, S. Adsorption Process of Methyl Orange Dye Onto Mesoporous Carbon Material-Kinetic and Thermodynamic Studies. J. Coll. Interf. Sci. 2011, 362, 457–462. DOI: 10.1016/j.jcis.2011.06.067.
  • Gu, H. B.; Rapole, S. B.; Sharma, J.; Huang, Y. D.; Cao, D. M.; Colorado, H. A.; Luo, Z. P.; Haldolaarachchige, N.; Young, D. P.; Walters, B., et al. Magnetic Polyaniline Nanocomposites Toward Toxic Hexavalent Chromium Removal. R.S.C. Adv. 2012, 2, 11007–11018. DOI: 10.1039/c2ra21991c.
  • Liu, H. J.; Yang, F.; Zheng, Y. M.; Kang, J.; Qu, J. H.; Chen, J. P. Improvement of metal adsorption onto chitosan/Sargassum sp. composite sorbent by an innovative ion-imprint technology. Water. Res. 2011, 45(1), 145–154. DOI: 10.1016/j.watres.2010.08.017.
  • Liu, C. K.; Bai, R. B.; Ly, Q. S. Selective Removal of Copper and Lead Ions by Diethylenetriamine-Functionalized Adsorbent: Behaviors and Mechanisms. Water. Res. 2008, 42, 1511–1522. DOI: 10.1016/j.watres.2007.10.031.
  • Lu, T.; Ma, R. G.; Ke, K.; Zhang, D.; Qi, D. M.; Zhao, H. T. Synthesis of Gallic Acid Functionalized Magnetic Hydrogel Beads for Enhanced Synergistic Reduction and Adsorption of Aqueous Chromium. Chem. Eng. J. 2021, 408, 408. DOI: 10.1016/j.cej.2020.127327.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.