105
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of blend ratio on the phase structure and ozone aging resistance of ethylene-propylene-diene, butyl, and chlorobutyl rubber blends

, , , , , & show all
Pages 432-446 | Received 11 Aug 2023, Accepted 01 Dec 2023, Published online: 14 Dec 2023

References

  • Vayyaprontavida Kaliyathan, A.; Varghese, K.; Nair, A. S.; Thomas, S. Rubber–Rubber Blends: A Critical Review. Progress in Rubber, Plastics and Recycling Technology. 2020, 36(3), 196–242. DOI: 10.1177/1477760619895002.
  • Deepalekshmi, P.; Visakh, P. M.; Mathew, A. P.; Chandra, A. K.; Thomas, S. Advances in Elastomers: Their Blends and Interpenetrating Networks-State of Art, New Challenges and Opportunities. Adv. Elastomers I. 2013, 1–9. DOI: 10.1007/978-3-642-20925-3_1.
  • Urtekin, G.; Ullah, M. S.; Yildirim, R.; Ozkoc, G.; Kodal, M. A Comprehensive Review of the Recent Developments in Thermoplastics and Rubber Blends‐Based Composites and Nanocomposites. Polym. Compos. 2023. DOI: 10.1002/pc.27712.
  • Zuiderduin, W. C. J.; Vlasveld, D. P. N.; Huétink, J.; Gaymans, R. J. Mechanical Properties of Polyketone Terpolymer/Rubber Blends. Polymer (Guildf.). 2004, 45(11), 3765–3779. DOI: 10.1016/j.polymer.2004.03.080.
  • Anggaravidya, M.; Amry, A.; Arti, D. K.; Kalembang, E.; Susanto, H.; Hidayat, A. S.; Limansubroto, C. D. Properties of Natural Rubber/Chloroprene Rubber Blend for Rubber Fender Application: Effects of Blend Ratio. Macromol. Symp. 2020, 391(1), 1900150. DOI: 10.1002/masy.201900150.
  • Pornprasit, R.; Pornprasit, P.; Boonma, P.; Natwichai, J. Determination of the Mechanical Properties of Rubber by FT-NIR. J. Spectrosc. 2016, 2016, 1–7. DOI: 10.1155/2016/4024783.
  • Pongtanayut, K.; Thongpin, C.; Santawitee, O. The Effect of Rubber on Morphology, Thermal Properties and Mechanical Properties of PLA/NR and PLA/ENR Blends. Energy Procedia. 2013, 34, 888–897. DOI: 10.1016/j.egypro.2013.06.826.
  • Chen, S.; Wang, T.; Wang, Q. Thermal Properties of Epoxy/Rubber Blends. In Handbook of Epoxy Blends; Springer International Publishing: Cham, 2017; pp. 249–277. DOI: 10.1007/978-3-319-40043-3_10.
  • Goyanes, S.; Lopez, C. C.; Rubiolo, G. H.; Quasso, F.; Marzocca, A. J. Thermal Properties in Cured Natural Rubber/Styrene Butadiene Rubber Blends. Eur. Polym. J. 2008, 44(5), 1525–1534. DOI: 10.1016/j.eurpolymj.2008.02.016.
  • Wu, W.; Wang, Y. Vulcanization and Thermal Properties of Silicone Rubber/Fluorine Rubber Blends. J. Macromol. Sci.Part B. 2019, 58(6), 579–591. DOI: 10.1080/00222348.2019.1609214.
  • Wirjosentono, B.; Tamrin, S. A.; Nasution, H.; Mechanical, D. A. Thermal and Adhesion Characteristics of Natural Rubber/Epoxidised Natural Rubber (NR/ENR 25) Blends Containing Natural Microbentonite. IOP Conf. Ser. Earth Environ. Sci. 2021, 912(1), 012073. DOI: 10.1088/1755-1315/912/1/012073.
  • Abdelsalam, A. A.; El-Sabbagh, S. H.; Mohamed, W. S.; Khozami, M. A. Studies on Swelling Behavior, Mechanical and Thermal Properties of Ternary Rubber Blend Composites in the Presence of Compatibilizers. Pigm. Resin. Technol. 2023, 52(5), 614–623. DOI: 10.1108/PRT-02-2022-0020.
  • Wei, H. C.; Leng, T. P.; Keat, Y. C. Effect of Blend Ratio on the Mechanical and Thermal Properties of Polyurethane/Silicone Rubber Conductive Material. Solid State Phenom. 2018, 280, 264–269. DOI: 10.4028/www.scientific.net/SSP.280.264.
  • Shao, H.; Guo, Q.; He, A. Strategy for the NR/BR Blends with Improved Thermo-Oxidative Resistance. Polym. Degrad. Stab. 2021, 191, 109665. DOI: 10.1016/j.polymdegradstab.2021.109665.
  • Lewis, C.; Bunyung, S.; Kiatkamjornwong, S. Rheological Properties and Compatibility of NR/EPDM and NR/Brominated EPDM Blends. J. Appl. Polym. Sci. 2003, 89(3), 837–847. DOI: 10.1002/app.12329.
  • Ghosh, A. K.; Das, A.; Basu, D. K. Effect of Bis(diisopropyl)thiophosphoryl Disulfide on the Covulcanization of Styrene–Butadiene Rubber and Ethylene–Propylene–Diene (Monomer) Blends. J. Appl. Polym. Sci. 2004, 92(2), 1231–1242. DOI: 10.1002/app.20117.
  • Polgar, L. M.; Hagting, E.; Raffa, P.; Mauri, M.; Simonutti, R.; Picchioni, F.; van Duin, M. Effect of Rubber Polarity on Cluster Formation in Rubbers Cross-Linked with Diels–Alder Chemistry. Macromolecules. 2017, 50(22), 8955–8964. DOI: 10.1021/acs.macromol.7b01541.
  • Premphet, K.; Horanont, P. Phase Structure and Property Relationships in Ternary Polypropylene/Elastomer/Filler Composites: Effect of Elastomer Polarity. J. Appl. Polym. Sci. 2000, 76(13), 1929–1939. DOI: 10.1002/(SICI)1097-4628(20000624)76:13<1929:AID-APP10>3.0.CO;2-H.
  • Li, Y.; Zhang, Y.; Zhang, Y. Morphology and Mechanical Properties of HDPE/SRP/Elastomer Composites: Effect of Elastomer Polarity. Polym. Test. 2004, 23(1), 83–90. DOI: 10.1016/S0142-9418(03)00065-5.
  • Sirisinha, C.; Baulek-Limcharoen, S.; Thunyarittikorn, J. Changes in Morphology and Properties of NR–NBR Blends. Effect of Viscosity Ratio Modified by Liquid Natural Rubber and Epoxidised Liquid Natural Rubber. Plast Rubber Compos. 2001, 30(7), 314–317. DOI: 10.1179/146580101322913400.
  • Thongpin, C.; Jumpathong, K.; Jaroenjai, R.; Bunwanna, W.; Jareanta, J. Effect of Composition Ratios and Mixing Steps on Properties of BR/NR/NBR Blends and Blends Foam. IOP Conf. Ser Mater. Sci. Eng. 2020, 773(1), 012043. DOI: 10.1088/1757-899X/773/1/012043.
  • Hong Le, H.; Ilisch, S.; Heinrich, G.; Radusch, H.-J. Chapter 6. Filler Migration in Natural Rubber Blends During the Mixing Process. In Natural Rubber Materials, Volume 1: Blends and IPNs; Thomas, S., Chan, C. A, L., (Eds.); Pothen; The Royal Society of Chemistry: London, 2014; pp. 132–176. DOI: 10.1039/9781849737647-00132.
  • Konarzewski, M.; Stankiewicz, M.; Sarzyński, M.; Wieczorek, M.; Czerwińska, M.; Prasuła, P.; Panowicz, R. Properties of Rubber-Like Materials and Their Blends in Wide Range of Temperatures – Experimental and Numerical Study. Acta Mechanica et Automatica. 2023, 17(3), 317–332. DOI: 10.2478/ama-2023-0037.
  • Vayyaprontavida Kaliyathan, A.; Rane, A. V.; Thomas, S. Nanoscale Partitioning of Carbon Black in Styrene Butadiene Rubber and Butadiene Rubber Miscible Blends and Its Effect on Physico-Mechanical Properties. J. Rubber Res. 2023, 26(2), 81–98. DOI: 10.1007/s42464-023-00197-4.
  • Vayyaprontavida Kaliyathan, A.; Rane, A. V.; Huskic, M.; Kanny, K.; Kunaver, M.; Kalarikkal, N.; Thomas, S. The Effect of Adding Carbon Black to Natural Rubber/Butadiene Rubber Blends on Curing, Morphological, and Mechanical Characteristics. J. Appl. Polym. Sci. 2022, 139(16), 51967. DOI: 10.1002/app.51967.
  • Han, T.; Nagarajan, S.; Zhao, H.; Sun, C.; Wen, S.; Zhao, S.; Zhao, S.; Zhang, L. Novel Reinforcement Behavior in Nanofilled Natural Rubber (Nr)/butadiene-Acrylonitrile Rubber (NBR) Blends: Filling-Polymer Network and Supernanosphere. Polym. 2020, 186, 122005. DOI: 10.1016/j.polymer.2019.122005.
  • Le, H. H.; Ilisch, S.; Kasaliwal, G. R.; Radusch, H.-J. Filler Phase Distribution in Rubber Blends Characterized by Thermogravimetric Analysis of the Rubber-Filler Gel. Rubber Chem. Technol. 2008, 81(5), 767–781. DOI: 10.5254/1.3548231.
  • Bokobza, L.; Elastomer Nanocomposites: Effect of Filler–Matrix and Filler–Filler Interactions. Polym. 2023, 15(13), 2900. doi 10.3390/polym15132900.
  • Shesan, O. J.; Stephen, A. C.; Chioma, A. G.; Neerish, R.; Rotimi, S. E. Fiber-Matrix Relationship for Composites Preparation. In Renewable and Sustainable Composites; IntechOpen, 2019. DOI: 10.5772/intechopen.84753.
  • Mosa, M.; Mokhtar, M.; Fouda, H.; Gobara, M. Study the Effect of Different Fillers on the Performance of Ethylene Propylene Diene Monomer Rubber‐Based Thermal Shielding Materials. Polym. Adv. Technol. 2023. DOI: 10.1002/pat.6202.
  • Mostafa, A.; Abouel-Kasem, A.; Bayoumi, M. R.; El-Sebaie, M. G. The Influence of CB Loading on Thermal Aging Resistance of SBR and NBR Rubber Compounds Under Different Aging Temperature. Mater. Des. 2009, 30(3), 791–795. DOI: 10.1016/j.matdes.2008.05.065.
  • Jung, J. K.; Lee, C. H.; Baek, U. B.; Choi, M. C.; Bae, J. W. Filler Influence on H2 Permeation Properties in Sulfur-CrossLinked Ethylene Propylene Diene Monomer Polymers Blended with Different Concentrations of Carbon Black and Silica Fillers. Polym. 2022, 14(3), 592. DOI: 10.3390/polym14030592.
  • Ashok, N.; Prakash, K.; Selvakumar, D.; Balachandran, M. Synergistic Enhancement of Mechanical, Viscoelastic, Transport, Thermal, and Radiation Aging Characteristics Through Chemically Bonded Interface in Nanosilica Reinforced EPDM‐Ciir Blends. J. Appl. Polym. Sci. 2021, 138, 12. DOI: 10.1002/app.50082.
  • Jantachum, P.; Khumpaitool, B.; Utara, S. Effect of Silane Coupling Agent and Cellulose Nanocrystals Loading on the Properties of Acrylonitrile Butadiene Rubber/Natural Rubber Nanocomposites. Ind. Crops Prod. 2023, 195, 116407. DOI: 10.1016/j.indcrop.2023.116407.
  • Dierkes, W.; Tiwari, M.; Guo, R.; Datta, R.; Talma, A.; Noordermeer, J.; van Ooij, W. Overcoming Incompatibility Problems in Elastomer Blends by Tailored Surface Properties of Rubber Additives. Rubber Chem. Technol. 2013, 86(1), 1–27. DOI: 10.5254/rct.13.89977.
  • Kim, S. W.; Park, H. Y.; Lim, J. C.; Jeon, I. R.; Seo, K. H. Cure Characteristics and Physical Properties of Ground-Rubber-Filled Natural Rubber Vulcanizates: Effects of the Curing Systems of the Ground Rubber and Rubber Matrix. J. Appl. Polym. Sci. 2007, 105(4), 2396–2406. DOI: 10.1002/app.26279.
  • Sreeja, T. D.; Kutty, S. K. N. Studies on Acrylonitrile Butadiene Rubber/Reclaimed Rubber Blends. J. Elastomers Plast. 34(2), 145–155. DOI: 10.1106/009524402024278.
  • Sreeja, T. D.; Kutty, S. K. N. Styrene Butadiene Rubber/Reclaimed Rubber Blends. Int. J. Polym. Mater. 2003, 52(7), 599–609. DOI: 10.1080/00914030304902.
  • Sunil, J. T.; Anoop, A. K.; Rani, J. Compatibility Studies on Sulphur Cured EPDM/CIIR Blends. Iran Polym. J. 2008, 17(6), 419–430.
  • Roland, C. M. Immiscible Rubber Blends. Adv. Elastomers I. 2013, 167–181. 10.1007/978-3-642-20925-3_6.
  • Shao, H.; Guo, Q.; He, A. Evolution of Crosslinking Networks Structure and Thermo-Oxidative Aging Behavior of Unfilled NR/BR Blends with TBIR as Extra Functional Compatibilizer. Polym. Test. 2022, 115, 107715. DOI: 10.1016/j.polymertesting.2022.107715.
  • Yuniari, A.; Mayasari, H. E.; Setyorini, I. Curing Characteristics, Swelling, and Mechanical Properties of Natural Rubber/Nitrile Butadiene Rubber Blends with and without Compatibilizer. Majalah Kulit, Karet, dan Plastik. 2017, 33(2), 65. DOI: 10.20543/mkkp.v33i2.3265.
  • Doma, A. S.; Kamoun, E. A.; Abboudy, S.; Belal, M. A.; Khattab, S. N.; El-Bardan, A. A. Compatibilization of Vulcanized SBR/NBR Blends Using Cis-Polybutadiene Rubber: Influence of Blend Ratio on Elastomer Properties. Eur. J. Eng. Technol. Res. 2019, 3(12), 135–143. DOI: 10.24018/ejeng.2018.3.12.958.
  • Sirqueira, A. S.; Soares, B. G. Compatibilization of Natural Rubber/EPDM Blends by Anhydride‐ and Mercapto‐Functionalized Copolymers. J. Macromol. Sci.Part B. 2007, 46(4), 639–650. DOI: 10.1080/00222340701386569.
  • Ali, Z.; Le, H. H.; Ilisch, S.; Thurn-Albrecht, T.; Radusch, H.-J. Morphology Development and Compatibilization Effect in Nanoclay Filled Rubber Blends. Polym. 2010, 51(20), 4580–4588. DOI: 10.1016/j.polymer.2010.08.002.
  • Essawy, H. A.; Khalil, A. M.; Tawfik, M. E.; El-Sabbagh, S. H. Compatibilization of NBR/SBR Blends Using Amphiphilic Montmorillonites. J. Elastomers Plast. 2014, 46(6), 514–526. DOI: 10.1177/0095244313476507.
  • Ramesan, M. T.; Mathew, G.; Kuriakose, B.; Alex, R. Role of Dichlorocarbene Modified Styrene Butadiene Rubber in Compatibilisation of Styrene Butadiene Rubber and Chloroprene Rubber Blends. Eur. Polym. J. 2001, 37(4), 719–728. DOI: 10.1016/S0014-3057(00)00157-9.
  • Khanra, S.; Kumar, A.; Ganguly, D.; Ghorai, S. K.; Chattopadhyay, S. The Efficacy of Methyl Vinyl Silicone-G-Maleic Anhydride in the Compatibilization of Fluoroelastomer and Silicone Based Super Specialty Elastomer Blend. J Polym Res. 2022, 29(5), 174. DOI: 10.1007/s10965-022-03006-5.
  • Alakrach, A. M.; Hamzah, R.; Noriman, N. Z.; Dahham, O. S.; Shayfull, Z.; Syed Idrus, S. Z.; Sudin, S. Recycled Natural Rubber Latex Gloves Filled Chloroprene Rubber: Effects of Compatibilizers. J. Phys.: Conf. Ser. 1019, 2018, 012067. DOI: 10.1088/1742-6596/1019/1/012067.
  • Bhowmick, A. K.; Stephens, H. Handbook of Elastomers; CRC Press: Boca Raton, FL, 2000. DOI: 10.1201/9781482270365.
  • Chaisuriyathepkul, A.; Suchiva, K.; Sea-Oui, P.; Sirisinha, C. Effect of Mixing Conditions on Phase Morphology of NR/EPDM Blends. Adv. Mat. Res. 2013, 747, 467–470. DOI: 10.4028/www.scientific.net/AMR.747.467.
  • Phiriyawirut, M.; Limwongwatthananan, T.; Kaemram, S.; Wiengkaew, S. Natural Rubber/Fluoro Elastomer Blends: Effect of Third Component on Cure Characteristics, Morphology, mechanical Properties, and Automotive Fuel Swelling. Open J. Polym. Chem. 2013, 03(4), 79–85. DOI: 10.4236/ojpchem.2013.34014.
  • Jin, J.; Noordermeer, J. W. M.; Blume, A.; Dierkes, W. K. Effect of SBR/BR Elastomer Blend Ratio on Filler and Vulcanization Characteristics of Silica Filled Tire Tread Compounds. Polym. Test. 2021, 99, 107212. DOI: 10.1016/j.polymertesting.2021.107212.
  • Surya, I.; Ginting, M.; Ismail, H. Cure Characteristics, Swelling Behaviour and Tensile Properties of Carbon Black-Filled Natural Rubber (NR)/Chloroprene Rubber (CR) Blends in the Presence of Alkanolamide. MATEC Web Conf. 2018, 197, 12005. DOI: 10.1051/matecconf/201819712005.
  • Johns, J.; Rao, V. Mechanical Properties and Swelling Behavior of Cross-Linked Natural Rubber/Chitosan Blends. Int. J. Polym. Anal. Charact. 2009, 14(6), 508–526. DOI: 10.1080/10236660903072797.
  • Sae-Oui, P.; Sirisinha, C.; Hatthapanit, K. Effect of Blend Ratio on Aging, Oil and Ozone Resistance of Silica-Filled Chloroprene Rubber/Natural Rubber (CR/NR) Blends. Express Polym. Lett. 2007, 1(1), 8–14. DOI: 10.3144/expresspolymlett.2007.3.
  • Sundararaj, U. Phase Morphology Development in Polymer Blends. In Micro- and Nanostructured Multiphase Polymer Blend Systems; CRC Press: Boca Raton, FL, 2005; pp. 133–164. DOI: 10.1201/9781420026542.ch4.
  • Lipatov, Y. Polymer Blends and Interpenetrating Polymer Networks at the Interface with Solids. Prog. Polym. Sci. 2002, 27(9), 1721–1801. DOI: 10.1016/S0079-6700(02)00021-7.
  • Fortelný, I.; Jůza, J. The Effects of Copolymer Compatibilizers on the Phase Structure Evolution in Polymer Blends—A Review. Mater. 2021, 14(24), 7786. DOI: 10.3390/ma14247786.
  • Mansilla, M. A.; Silva, L.; Salgueiro, W.; Marzocca, A. J.; Somoza, A. A Study About the Structure of Vulcanized Natural Rubber/Styrene Butadiene Rubber Blends and the Glass Transition Behavior. J. Appl. Polym. Sci. 125(2), 992–999. DOI: 10.1002/app.36321.
  • Homocianu, M.; Airinei, A.; Stelescu, D. M.; Timpu, D.; Ioanid, A. Morphological Structure and Surface Properties of Maleated Ethylene Propylene Diene Monomer/Organoclay Nanocomposites. Polym. Compos. 2012, 33(3), 379–387. DOI: 10.1002/pc.22159.
  • van Duin, M.; Orza, R.; Peters, R.; Chechik, V. Mechanism of Peroxide Cross-Linking of EPDM Rubber. Macromol. Symp. 2010, 291-292(1), 66–74. DOI: 10.1002/masy.201050508.
  • Stelescu, M.; Airinei, A.; Manaila, E.; Craciun, G.; Fifere, N.; Varganici, C.; Pamfil, D.; Doroftei, F. Effects of Electron Beam Irradiation on the Mechanical, Thermal, and Surface Properties of Some EPDM/Butyl Rubber Composites. Polym 2018, 10, 11. 1206. DOI: 10.3390/polym10111206.
  • Deniz, V.; Karaagac, B.; Ceyhan, N. Thermal Stability of Butyl/EPDM/Neoprene Based Rubber Compounds. J. Appl. Polym. Sci. 2007, 103(1), 557–563. DOI: 10.1002/app.25006.
  • Ashok, N.; Balachandran, M.; Lawrence, F. Organo-Modified Layered Silicate Nanocomposites of EPDM–Chlorobutyl Rubber Blends for Enhanced Performance in γ Radiation and Hydrocarbon Environment. J. Compos. Mater. 2018, 52(23), 3219–3231. DOI: 10.1177/0021998318763504.
  • Pazur, R. J.; Petrov, I. The Thermo-Oxidation of Chlorinated and Brominated Isobutylene-Co-Isoprene Polymers: Activation Energies and Reactions from Room Temperature to 100 °C. Polym. Degrad. Stab. 2015, 121, 311–320. DOI: 10.1016/j.polymdegradstab.2015.09.023.
  • Jose, S. T.; Anand, A. K.; Joseph, R. EPDM/CIIR Blends: Improved Mechanical Properties Through Precuring. Polym. Bull. 2009, 63(1), 135–146. DOI: 10.1007/s00289-009-0073-8.
  • Manaila, E.; Airinei, A.; Stelescu, M. D.; Sonmez, M.; Alexandrescu, L.; Craciun, G.; Pamfil, D.; Fifere, N.; Varganici, C.-D.; Doroftei, F., et al. Radiation Processing and Characterization of Some Ethylene-Propylene-Diene Terpolymer/Butyl (Halobutyl) Rubber/Nanosilica Composites. Polym. 2020, 12(10), 2431. DOI: 10.3390/polym12102431.
  • Mandlekar, N.; Joshi, M.; Butola, B. S. A Review on Specialty Elastomers Based Potential Inflatable Structures and Applications. Adv. Ind. Eng. Polym. Res. 2022, 5(1), 33–45. DOI: 10.1016/j.aiepr.2021.05.004.
  • Choi, S.-S.; Kim, J.-C. Thermal Aging Behaviors of Weather Resistant Rubber Composites of EPDM, IIR, and BIIR. Elastomers Compos. 2012. 47(2), 148–155. DOI: 10.7473/EC.2012.47.2.148.
  • Neelesh, A.; Vidhyashree, S.; Meera, B. The Influence of MWCNT and Hybrid (MWCNT/Nanoclay) Fillers on Performance of EPDM‐Ciir Blends in Nuclear Applications: Mechanical, Hydrocarbon Transport, and Gamma‐Radiation Aging Characteristics. J. Appl. Polym. Sci. 2020, 137(42), 49271. DOI: 10.1002/app.49271.
  • Ashok, N.; Balachandran, M. Effect of Nanoclay and Nanosilica on Carbon Black Reinforced EPDM/CIIR Blends for Nuclear Applications. Mater. Res. Express. 2020, 6(12), 125364. DOI: 10.1088/2053-1591/ab6765.
  • Jose, T. S.; Rani, J. EPDM/CIIR Blends: Effect of EPDM Grade on Mechanical Properties. Int. J. Polym. Mater. 2007, 56(7), 743–758. DOI: 10.1080/00914030601100771.
  • Sunil Jose, T.; Anoop Anand, K.; Joseph, R. On the Mechanical Properties of EPDM/CIIR Blends Cured with Reactive Phenolic Resin. Int. J. Polym. Mater. 2010, 59(7), 488–497. DOI: 10.1080/00914031003627197.
  • Gunasekaran, S.; Natarajan, R. K.; Kala, A. FTIR Spectra and Mechanical Strength Analysis of Some Selected Rubber Derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007, 68(2), 323–330. DOI: 10.1016/j.saa.2006.11.039.
  • Cataldo, F.; Ursini, O.; Angelini, G. Surface Oxidation of Rubber Crumb with Ozone. Polym. Degrad. Stab. 2010, 95(5), 803–810. DOI: 10.1016/j.polymdegradstab.2010.02.003.
  • Zhou, M.-Z.; Wang, H.-R.; Guo, X.; Wei, Y.-C.; Liao, S. Synergistic Effect of Thermal Oxygen and UV Aging on Natural Rubber. e-Polym. 2023, 23, 1. DOI: 10.1515/epoly-2023-0016.
  • Zhou, J.; Deng, P.; Gui, H.; Xu, J.; Liao, J.; Ding, A.; Gawdzik, B. Enhanced Ozone Aging Resistance of Natural Rubber with 2-Mercaptobenzothiazole as the Constant-Viscosity Agent. J. Chem. 2023, 2023, 1–8. DOI: 10.1155/2023/3648596.
  • Park, C. Y.; Hwang, Y. B. Cure Characteristics, Physical Properties and Ozone Resistance of Butyl Rubber and EPDM Rubber Blends. Elastomers Compos. 2011, 46(4), 329–334.
  • Thi Thuong, N.; Trung Nghia, P.; Kawahara, S. Factors Influencing Green Strength of Commercial Natural Rubber. Green Process. Synth. 2018, 7(5), 399–403. DOI: 10.1515/gps-2018-0019.
  • Mensah, B.; Agyei-Tuffour, B.; Nyankson, E.; Bensah, Y. D.; Dodoo-Arhin, D.; Bediako, J. K.; Onwona-Agyeman, B.; Yaya, A. Preparation and Characterization of Rubber Blends for Industrial Tire Tread Fabrication. Int. J. Polym. Sci. 2018, 2018, 1–12. DOI: 10.1155/2018/2473286.
  • Jablonowski, T. L.; Faiman, D. T. Blends of Butyl and EPDM in Inner Tube Applications. J. Elastomers Plast. 1991, 23(2), 119–134. DOI: 10.1177/009524439102300204.
  • Botros, S. H. Thermal Stability of Butyl/EPDM Rubber Blend Vulcanizates. Polym. Degrad. Stab. 1998, 62, 417–477.
  • Bhaumik, T. K.; Gupta, B. R.; Bhowmick, A. K. Tack and Green Strength of Blends of Bromobutyl and Epdm Rubbers. I. Unfilled Gum Blends. J. Adhes. 1987, 24(2–4), 183–198. DOI: 10.1080/00218468708075426.
  • Livanova, N. M.; Popov, A. A.; Shershnev, V. A.; Zaikov, G. E. Structure of the Interfacial Layer in Blends of Elastomers with Different Polarities and Ozone Resistance. AIP Conf. Proc. 2014, 554, 554–557. DOI: 10.1063/1.4876901.
  • Song, K. Interphase Characterization in Rubber Nanocomposites. Prog. Rubber Nanocomp. 2017, 115–152. DOI: 10.1016/B978-0-08-100409-8.00004-8.
  • Mangaraj, D. R. C. A. T. Elastomer Blends. Rubber Chem. Technol. 2002, 75(3), 365–427. DOI: 10.5254/1.3547677.
  • Deutsch, H. P.; Binder, K. Interdiffusion and Self-Diffusion in Polymer Mixtures: A Monte Carlo Study. J. Chem. Phys. 1991, 94(3), 2294–2304. DOI: 10.1063/1.459901.
  • El-Sabbagh, S. H. Compatibility Study of Natural Rubber and Ethylene–Propylene Diene Rubber Blends. Polym. Test. 2003, 22(1), 93–100. DOI: 10.1016/S0142-9418(02)00056-9.
  • Sokolova, L. V.; Nepomnyashchiy, A. F.; Tatarinov, G. A. Rotational Mobility of the Radical Probe in Butadiene-Nitrile Rubbers. Polym. Sci., Ser. A. 2017, 59(1), 27–32. DOI: 10.1134/S0965545X17010151.
  • Naveed, K.-R.; Wang, L.; Yu, H.; Ullah, R. S.; Haroon, M.; Fahad, S.; Li, J.; Elshaarani, T.; Khan, R. U.; Nazir, A. Recent Progress in the Electron Paramagnetic Resonance Study of Polymers. Polym. Chem. 2018, 9(24), 3306–3335. DOI: 10.1039/C8PY00689J.
  • Wasserman, L. A.; Barashkova, I. I.; Vasil’ev, V. G.; Papkov, V. S.; Salazkin, S. N.; Wasserman, A. M. EPR Spin Probe Study of Molecular Mobility and Structure of Aqueous Solutions and Gels of Polydiphenylenesulfophthalide. Appl. Magn. Reason. 2015, 46(12), 1409–1420. DOI: 10.1007/s00723-015-0702-3.
  • Karpova, S.; Iordanskiy, A.; Motyakin, M.; Olkhov, A.; Lomakin, S. Ultrathin Poly(3-Hydroxybutyrate) Fibers: Structure and Dynamic Characteristics. Vestnik Volgogradskogo gosudarstvennogo universiteta. Serija 10. Innovatcionnaia deiatel’nost. 2016, 2(2), 34–44. DOI: 10.15688/jvolsu10.2016.2.4.
  • Yousefi, A. A. Segmental Mobility in the Vicinity of T g in PS/SBR Blends: Nanodomain Size Prediction of the Dispersed Phase. J. Appl. Polym. Sci. 2013, 127(1), 659–665. DOI: 10.1002/app.37847.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.