451
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Development of fully green composites utilizing thermoplastic starch and cellulosic fibers from agro-waste: a critical review

ORCID Icon & ORCID Icon
Pages 540-569 | Received 30 Oct 2023, Accepted 14 Dec 2023, Published online: 11 Jan 2024

References

  • Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; Washington, DC: World Bank Publications, 2018. DOI: 10.1596/978-1-4648-1329-0.
  • Malucelli, L. C.; Lacerda, L. G.; Dziedzic, M.; da Silva Carvalho Filho, M. A. P. Properties and Future Perspectives of Nanocrystals from Agro-Industrial Residues: A Review of Recent Research. Rev. Environ. Sci. Bio. Technol. 2017, 16, 131–145. DOI: 10.1007/s11157-017-9423-4.
  • Ahmad Khorairi, A. N. S.; Sofian-Seng, N. S.; Othaman, R.; Abdul Rahman, H.; Mohd Razali, N. S.; Lim, S. J.; Wan Mustapha, W. A. A Review on Agro-Industrial Waste as Cellulose and Nanocellulose Source and Their Potentials in Food Applications. Food Rev. Int. 2023, 39(2), 663–688. DOI: 10.1080/87559129.2021.1926478.
  • Yildirim, A.; Acay, H. Applications of Biodegradable Green Composites. 2021. DOI: 10.1007/978-981-15-9643-8_14.
  • Johnston, R. B. Arsenic and the 2030 Agenda for Sustainable Development. Arsen. Res. Glob. Sustain. - Proc. 6th Int. Congr. Arsen. Environ. AS 2016, 2016, 12–14. 10.1201/b20466-7.
  • Joshi, S. V.; Drzal, L. T.; Mohanty, A. K.; Arora, S. Are Natural Fiber Composites Environmentally Superior to Glass Fiber Reinforced Composites? Compos. Part A Appl. Sci. Manuf. 2004, 35(3), 371–376. DOI: 10.1016/j.compositesa.2003.09.016.
  • Feyissa, E. M.; Gudayu, A. D. Synthesis of Starch-Derived Biopolymer Reinforced Enset Fi Ber Green Composite Packaging Fi Lms: Processes and Properties Optimization. 2023, 32, 1–21. DOI: 10.1177/26349833231200907.
  • Yohannes, T.; Beteley, C.; Meshesha, T.; Ahmed, S.; Anuradha, M. S. P. Characterization, and Optimization of Starch ‑ Based Biodegradable Bioplastic from Waste Potato (Solanum Tuberosum) Peel with the Reinforcement of False Banana (Ensete Ventricosum) Fiber. Biomass Convers. Biorefinery. 2022, (123456789). DOI: 10.1007/s13399-022-03426-9.
  • Netravali, A. N.; Chabba, S. Composites Get Greener. Mater. Today. 2003, 4(6), 22–29. DOI: 10.1016/S1369-7021(03)00427-9.
  • Ortega-Toro, R.; Boix, A. C. Reinforcement of Thermoplastic Starch Films with Cellulose Fibres Obtained from Rice and Coffee Husks. J. Renewable Mater. 2018, 6, 599–610. DOI: 10.32604/JRM.2018.
  • Fonseca-Garcia, A.; Jiménez-Regalado, E. J.; Aguirre-Loredo, R. Y. Preparation of a Novel Biodegradable Packaging Film Based on Corn Starch-Chitosan and Poloxamers. Carbohydr. Polym. 2021, 251, 117009. DOI: 10.1016/j.carbpol.2020.117009.
  • Wang, B.; Yu, B.; Yuan, C.; Guo, L.; Liu, P.; Gao, W.; Li, D.; Cui, B.; Abd El-Aty, A. M. An Overview on Plasticized Biodegradable Corn Starch-Based Films: The Physicochemical Properties and Gelatinization Process. Crit. Rev. Food Sci. Nutr. 2022, 62(10), 2569–2579. DOI: 10.1080/10408398.2020.1868971.
  • Onyeaka, H.; Obileke, K.; Makaka, G.; Nwokolo, N. Current Research and Applications of Starch-Based Biodegradable Films for Food Packaging. Polym. (Basel). 2022, 14(6), 1126. DOI: 10.3390/polym14061126.
  • Fonseca, L. M.; Henkes, A. K.; Bruni, G. P.; Viana, L. A. N.; de Moura, C. M.; Flores, W. H.; Galio, A. F. Fabrication and Characterization of Native and Oxidized Potato Starch Biodegradable Films. Food Biophys. 2018, 13, 163–174. DOI: 10.1007/s11483-018-9522-y.
  • Abe, M. M.; Martins, J. R.; Sanvezzo, P. B.; Macedo, J. V.; Branciforti, M. C.; Halley, P.; Botaro, V. R.; Brienzo, M. Advantages and Disadvantages of Bioplastics Production from Starch and Lignocellulosic Components. Polym. (Basel). 2021, 13(15), 2484. DOI: 10.3390/polym13152484.
  • Kargarzadeh, H.; Johar, N.; Ahmad, I. Starch Biocomposite Film Reinforced by Multiscale Rice Husk Fiber. Compos. Sci. Technol. 2017, 151, 147–155. DOI: 10.1016/j.compscitech.2017.08.018.
  • Ibrahim, H.; Mehanny, S.; Darwish, L.; Farag, M. A Comparative Study on the Mechanical and Biodegradation Characteristics of Starch-Based Composites Reinforced with Different Lignocellulosic Fibers. J Polym. Environ. 2018, 26(6), 2434–2447. DOI: 10.1007/s10924-017-1143-x.
  • Ruhul Amin, M.; Mahmud, M. A.; Anannya, F. R. Natural Fiber Reinforced Starch Based Biocomposites. Polym. Sci. - Ser. A. 2019, 61(5), 533–543. DOI: 10.1134/S0965545X1905016X.
  • Darwish, L. R.; El-Wakad, M. T.; Farag, M.; Emara, M. The Use of Starch Matrix-Banana Fiber Composites for Biodegradable Maxillofacial Bone Plates. Int. J. Math. Comput. Simul. 2021, 15, 115–120. DOI: 10.46300/9102.2021.15.22.
  • Jumaidin, R.; Khiruddin, M. A. A.; Asyul Sutan Saidi, Z.; Salit, M. S.; Ilyas, R. A. Effect of Cogon Grass Fibre on the Thermal, Mechanical and Biodegradation Properties of Thermoplastic Cassava Starch Biocomposite. Int. J. Biol. Macromol. 2020, 146, 746–755. DOI: 10.1016/j.ijbiomac.2019.11.011.
  • Mukhtar, I.; Leman, Z.; Ishak, M. R.; Zainudin, E. S. Sugar Palm Fibre and Its Composites: A Review of Recent Developments. Routledge Handb. Glob. Ethics. 2015, 11(4), 170–181. DOI: 10.15376/biores.11.4.10756-10782.
  • Pérez‐Pacheco, E.; Canto‐Pinto, J. C.; Moo‐Huchin, V. M.; Moo‐Huchin, V. M.; Estrada‐Mota, I. A.; Estrada‐Mota, I. A.; Chel‐Guerrero, R. J. E.; Chel‐Guerrero, L. Thermoplastic Starch (TPS)-Cellulosic Fibers Composite: Mechanical Properties and Water Vapor. Intech. 2016, 11, 13.
  • Belboom, S.; Léonard, A. Does Biobased Polymer Achieve Better Environmental Impacts Than Fossil Polymer? Comparison of Fossil HDPE and Biobased HDPE Produced from Sugar Beet and Wheat. Biomass Bioenergy. 2016, 85, 159–167. DOI: 10.1016/j.biombioe.2015.12.014.
  • Koyuncu, M.; Karahan, M.; Karahan, N.; Shaker, K.; Nawab, Y. Static and Dynamic Mechanical Properties of Cotton/Epoxy Green Composites. F&TinEE. 2016, 24(4), 105–111. DOI: 10.5604/12303666.1201139.
  • Masood, Z.; Ahmad, S.; Umair, M.; Shaker, K.; Karahan, M. Mechanical Behaviour of Hybrid Composites Developed from Textile Waste. Fibres And Textiles In Eastern Europe. 2018, 1(127), 46–52. DOI: 10.5604/01.3001.0010.7796.
  • Chakma, S.; Ranjan, A.; Choudhury, H. A.; Dikshit, P. K.; Moholkar, V. S. Bioenergy from Rice Crop Residues: Role in Developing Economies. Clean Technol. Environ. Policy. 2016, 18(2), 373–394. DOI: 10.1007/s10098-015-1051-5.
  • Torres, F. G.; Rodriguez, S.; Saavedra, A. C. Green Composite Materials from Biopolymers Reinforced with Agroforestry Waste. J Polym. Environ. 2019, 27(12), 2651–2673. DOI: 10.1007/s10924-019-01561-5.
  • AL-Oqla, F. M.; Hayajneh, M. T.; Al-Shrida, M. M. Mechanical Performance, Thermal Stability and Morphological Analysis of Date Palm Fiber Reinforced Polypropylene Composites Toward Functional Bio-Products. Cellulose. 2022, 29(6), 3293–3309. DOI: 10.1007/s10570-022-04498-6.
  • Abotbina, W.; Sapuan, S. M.; Ilyas, R. A.; Sultan, M. T. H.; Alkbir, M. F. M. Preparation and Characterization of Black Seed/Cassava Bagasse Fiber-Reinforced Cornstarch-Based Hybrid Composites. Sustain. 2022, 14, 19. DOI: 10.3390/su141912042.
  • Csiszár, E.; Kun, D.; Fekete, E. The Role of Structure and Interactions in Thermoplastic Starch–Nanocellulose Composites. Polym. (Basel). 2021, 13(18), 1–14. DOI: 10.3390/polym13183186.
  • Hernández-Olivares, F.; Elizabeth Medina-Alvarado, R.; Burneo-Valdivieso, X. E.; Rodrigo Zúñiga-Suárez, A. Short Sugarcane Bagasse Fibers Cementitious Composites for Building Construction. Constr. Build. Mater. 2020, 247, 8–10. DOI: 10.1016/j.conbuildmat.2020.118451.
  • Edhirej, A.; Sapuan, S. M.; Jawaid, M.; Zahari, N. I. Cassava/Sugar Palm Fiber Reinforced Cassava Starch Hybrid Composites: Physical, Thermal and Structural Properties. Int. J. Biol. Macromol. 2017, 101, 75–83. DOI: 10.1016/j.ijbiomac.2017.03.045.
  • Fitch-Vargas, P. R.; Camacho-Hernández, I. L.; Martínez-Bustos, F.; Islas-Rubio, A. R.; Carrillo-Cañedo, K. I.; Calderón-Castro, A.; Jacobo-Valenzuela, N.; Carrillo-López, A.; Delgado-Nieblas, C. I.; Aguilar-Palazuelos, E. M. Mechanical, Physical and Microstructural Properties of Acetylated Starch-Based Biocomposites Reinforced with Acetylated Sugarcane Fiber. Carbohydr. Polym. 2019, 219(February), 378–386. DOI: 10.1016/j.carbpol.2019.05.043.
  • El Halal, S. L. M.; Colussi, R.; Deon, V. G.; Pinto, V. Z.; Villanova, F. A.; Carreño, N. L. V.; Dias, A. R. G.; da Rosa Zavareze, E. Films Based on Oxidized Starch and Cellulose from Barley. Carbohydr. Polym. 2015, 133, 644–653. DOI: 10.1016/j.carbpol.2015.07.024.
  • Mittal, A.; Garg, S.; Bajpai, S. Fabrication and Characteristics of Poly (Vinyl Alcohol)-Starch-Cellulosic Material Based Biodegradable Composite Film for Packaging Application. Mater. Today Proc. 2020, 21, 1577–1582. DOI: 10.1016/j.matpr.2019.11.210.
  • Zhang, J.; Zou, F.; Tao, H.; Gao, W.; Guo, L.; Cui, B.; Yuan, C.; Liu, P.; Lu, L.; Wu, Z., et al. Effects of Different Sources of Cellulose on Mechanical and Barrier Properties of Thermoplastic Sweet Potato Starch Films. Ind. Crops Prod. 2023, 194, 116358. DOI: 10.1016/j.indcrop.2023.116358.
  • Keijsers, E. R. P.; Y\ilmaz, G.; van Dam, J. E. G. The Cellulose Resource Matrix. Carbohydr. Polym. 2013, 93(1), 9–21. DOI: 10.1016/j.carbpol.2012.08.110.
  • Garcia, A.; Gandini, A.; Labidi, J.; Belgacem, N.; Bras, J. Industrial and Crop Wastes: A New Source for Nanocellulose Biorefinery. Ind. Crops Prod. 2016, 93, 26–38. DOI: 10.1016/j.indcrop.2016.06.004.
  • Chopra, L.; Manikanika. Extraction of Cellulosic Fibers from the Natural Resources: A Short Review. Mater. Today Proc. 2021, 48(xxxx), 1265–1270. DOI: 10.1016/j.matpr.2021.08.267.
  • Dungani, R.; Karina, M.; Sulaeman, A.; Hermawan, D.; Hadiyane, A. Asian Journal of Plant Sciences Review Article Agricultural Waste Fibers Towards Sustainability and Advanced Utilization: A Review. Asian J. Plant Sci. 2016, 15(1), 42–55. DOI: 10.3923/ajps.2016.42.55.
  • Byju, G.; Suja, G. Mineral Nutrition of Cassava, 1st; Elsevier Inc: 2020Vol. 159. 10.1016/bs.agron.2019.08.005.
  • Hasmadi, M.; Harlina, L.; Jau-Shya, L.; Mansoor, A. H.; Jahurul, M. H. A.; Zainol, M. K. Physicochemical and Functional Properties of Cassava Flour Grown in Different Locations in Sabah, Malaysia. Food Res. 2020, 4(4), 991–999. DOI: 10.26656/fr.2017.4(4).405.
  • Chen, D.; Lawton, D.; Thompson, M. R.; Liu, Q. Biocomposites Reinforced with Cellulose Nanocrystals Derived from Potato Peel Waste. Carbohydr. Polym. 2012, 90(1), 709–716. DOI: 10.1016/j.carbpol.2012.06.002.
  • Khalil, H. P. S. A.; Davoudpour, Y.; Islam, M. N.; Mustapha, A.; Sudesh, K.; Dungani, R.; Jawaid, M. Production and Modification of Nanofibrillated Cellulose Using Various Mechanical Processes: A Review. Carbohydr. Polym. 2014, 99, 649–665. DOI: 10.1016/j.carbpol.2013.08.069.
  • Fatah, I. Y. A.; Khalil, H. P. S.; Hossain, M. S.; Aziz, A. A.; Davoudpour, Y.; Dungani, R.; Bhat, A. Exploration of a Chemo-Mechanical Technique for the Isolation of Nanofibrillated Cellulosic Fiber from Oil Palm Empty Fruit Bunch as a Reinforcing Agent in Composites Materials. Polym. (Basel). 2014, 6(10), 2611–2624. DOI: 10.3390/polym6102611.
  • Wang, W.; Liu, C.; Huang, F.; Li, W.; Zheng, C. Preparation and Characterization of Nanocellulose from Rapeseed Hull. Oil Crop Sci. 2019, 4(1), 55–64.
  • Abdul Rahman, N. H.; Chieng, B. W.; Ibrahim, N. A.; Abdul Rahman, N. Extraction and Characterization of Cellulose Nanocrystals from Tea Leaf Waste Fibers. Polym. (Basel). 2017, 9(11), 588. DOI: 10.3390/polym9110588.
  • Widiarto, S.; Yuwono, S. D.; Rochliadi, A.; Arcana, I. M. Preparation and Characterization of Cellulose and Nanocellulose from Agro-Industrial Waste-Cassava Peel. In IOP Conference Series: Materials Science and Engineering; 2017; Vol. 176, p 12052. DOI: 10.1088/1757-899x/176/1/012052.
  • Collazo-Bigliardi, S.; Ortega-Toro, R.; Boix, A. C. Isolation and Characterisation of Microcrystalline Cellulose and Cellulose Nanocrystals from Coffee Husk and Comparative Study with Rice Husk. Carbohydr. Polym. 2018, 191, 205–215. DOI: 10.1016/j.carbpol.2018.03.022.
  • Singanusong, R.; Tochampa, W.; Kongbangkerd, T.; Sodchit, C. Extraction and Properties of Cellulose from Banana Peels. Suranaree J. Sci. Technol. 2014, 21(3), 201–213.
  • Saelee, K.; Yingkamhaeng, N.; Nimchua, T.; Sukyai, P. Extraction and Characterization of Cellulose from Sugarcane Bagasse by Using Environmental Friendly Method. In Proceedings of the 26th annual meeting of the thai society for biotechnology and international conference, Mae Fah Lunag University (School of Science), Thailand; 2014; pp 26–29.
  • Shahi, N.; Min, B.; Sapkota, B.; Rangari, V. K. Eco-Friendly Cellulose Nanofiber Extraction from Sugarcane Bagasse and Film Fabrication. Sustainability. 2020, 12(15), 6015. DOI: 10.3390/su12156015.
  • Syazwani, N. S.; Efzan, M. N. E.; Kok, C. K.; Nurhidayatullaili, M. J. Analysis on Extracted Jute Cellulose Nanofibers by Fourier Transform Infrared and X-Ray Diffraction. J. Build. Eng. 2022, 48, 103744. DOI: 10.1016/j.jobe.2021.103744.
  • Nasri-Nasrabadi, B.; Behzad, T.; Bagheri, R. Extraction and Characterization of Rice Straw Cellulose Nanofibers by an Optimized Chemomechanical Method. J. Appl. Polym. Sci. 2014, 131(7), 7. DOI: 10.1002/app.40063.
  • Saritha, M.; Arora, A.; Lata. Biological Pretreatment of Lignocellulosic Substrates for Enhanced Delignification and Enzymatic Digestibility. Indian J. Microbiol. 2012, 52, 122–130. DOI: 10.1007/s12088-011-0199-x.
  • Jayasekara, S.; Ratnayake, R. Microbial Cellulases: An Overview and Applications. Cellulose. 2019, 22, 92.
  • Elfaleh, I.; Abbassi, F.; Habibi, M.; Ahmad, F.; Guedri, M.; Nasri, M.; Garnier, C. A Comprehensive Review of Natural Fibers and Their Composites: An Eco-Friendly Alternative to Conventional Materials. Results Eng. 2023, 19(April), 101271. DOI: 10.1016/j.rineng.2023.101271.
  • Edhirej, A.; Sapuan, S. M.; Jawaid, M.; Zahari, N. I. Cassava: Its Polymer, Fiber, Composite, and Application. Polym. Compos. 2017, 38(3), 555–570. DOI: 10.1002/pc.23614.
  • El-Ramady, H.; Brevik, E. C.; Bayoumi, Y.; Shalaby, T. A.; El-Mahrouk, M. E.; Taha, N.; Elbasiouny, H.; Elbehiry, F.; Amer, M.; Abdalla, N., et al. An Overview of Agro-Waste Management in Light of the Water-Energy-Waste Nexus. Sustainability. 2022, 14(23), 15717.
  • Puglia, D.; Pezzolla, D.; Gigliotti, G.; Torre, L.; Bartucca, M. L.; Del Buono, D. The Opportunity of Valorizing Agricultural Waste, Through Its Conversion into Biostimulants, Biofertilizers, and Biopolymers. Sustainability. 2021, 13(5), 2710. DOI: 10.3390/su13052710.
  • Phiri, R.; Mavinkere Rangappa, S.; Siengchin, S.; Oladijo, O. P.; Dhakal, H. N. Development of Sustainable Biopolymer-Based Composites for Lightweight Applications from Agricultural Waste Biomass: A Review. Adv. Ind. Eng. Polym. Res. 2023, 6(4), 436–450. DOI: 10.1016/j.aiepr.2023.04.004.
  • Patel, N.; Feofilovs, M.; Blumberga, D. Agro Biopolymer: A Sustainable Future of Agriculture–State of Art Review. Environ. Clim. Technol. 2022, 26(1), 499–511. DOI: 10.2478/rtuect-2022-0038.
  • Visco, A.; Scolaro, C.; Facchin, M.; Brahimi, S.; Belhamdi, H.; Gatto, V.; Beghetto, V. Agri-Food Wastes for Bioplastics: European Prospective on Possible Applications in Their Second Life for a Circular Economy. Polym. (Basel). 2022, 14(13), 2752. DOI: 10.3390/polym14132752.
  • Quilez-Molina, A. I.; Chandra Paul, U.; Merino, D.; Athanassiou, A. Composites of Thermoplastic Starch and Lignin-Rich Agricultural Waste for the Packaging of Fatty Foods. ACS Sustain. Chem.\& Eng. 2022, 10(47), 15402–15413. DOI: 10.1021/acssuschemeng.2c04326.
  • Koul, B.; Yakoob, M.; Shah, M. P. Agricultural Waste Management Strategies for Environmental Sustainability. Environ. Res. 2022, 206, 112285. DOI: 10.1016/j.envres.2021.112285.
  • Shanmugam, V.; Mensah, R. A.; Försth, M.; Sas, G.; Restás, Á.; Addy, C.; Xu, Q.; Jiang, L.; Neisiany, R. E.; Singha, S., et al. Circular Economy in Biocomposite Development: State-Of-The-Art, Challenges and Emerging Trends. Compos. Part C Open Access. 2021, 5, 100138. DOI: 10.1016/j.jcomc.2021.100138.
  • Puri, S.; Sharma, S.; Kumari, A.; Sharma, M.; Sharma, U.; Kumar, S. Extraction of Lignocellulosic Constituents from Cow Dung: Preparation and Characterisation of Nanocellulose. Biomass Convers. Biorefinery. 2020, 13, 311–320. DOI: 10.1007/s13399-020-01119-9.
  • Srivastava, R. K.; Shetti, N. P.; Reddy, K. R.; Kwon, E. E.; Nadagouda, M. N.; Aminabhavi, T. M. Biomass Utilization and Production of Biofuels from Carbon Neutral Materials. Environ. Pollut. 2021, 276, 116731. DOI: 10.1016/j.envpol.2021.116731.
  • Gillespie, A. The Long Road to Sustainability: The Past, Present, and Future of International Environmental Law and Policy; USA: Oxford University Press, 2018. DOI: 10.1093/oso/9780198819516.001.0001.
  • Launio, C. C.; Asis, C. A.; Manalili, R. G.; Javier, E. F. Cost-Effectiveness Analysis of Farmers’ Rice Straw Management Practices Considering CH4 and N2O Emissions. J. Environ. Manage. 2016, 183, 245–252. DOI: 10.1016/j.jenvman.2016.08.015.
  • Kumari, B.; Chandel, B. S.; Lal, P. An Econometric Analysis of Optimality for Sustainable Paddy Production in India. Agric. Econ. Res. Rev. 2018, 31(347–2018–5154), 139–145. DOI: 10.5958/0974-0279.2018.00029.0.
  • Chakrabarti, S.; Khan, M. T.; Kishore, A.; Roy, D.; Scott, S. P. Risk of Acute Respiratory Infection from Crop Burning in India: Estimating Disease Burden and Economic Welfare from Satellite and National Health Survey Data for 250 000 Persons. Int. J. Epidemiol. 2019, 48(4), 1113–1124. DOI: 10.1093/ije/dyz022.
  • Tarazona, N. A.; Machatschek, R.; Balcucho, J.; Castro-Mayorga, J. L.; Saldarriaga, J. F.; Lendlein, A. Opportunities and Challenges for Integrating the Development of Sustainable Polymer Materials within an International Circular (Bio) Economy Concept. MRS Energy\& Sustain. 2022, 9(1), 28–34. DOI: 10.1557/s43581-021-00015-7.
  • Kumar Sarangi, P.; Subudhi, S.; Bhatia, L.; Saha, K.; Mudgil, D.; Prasad Shadangi, K.; Srivastava, R. K.; Pattnaik, B.; Arya, R. K. Utilization of Agricultural Waste Biomass and Recycling Toward Circular Bioeconomy. Environ. Sci. Pollut. Res. 2023, 30(4), 8526–8539. DOI: 10.1007/s11356-022-20669-1.
  • Singh, R.; Das, R.; Sangwan, S.; Rohatgi, B.; Khanam, R.; Peera, S. K. P. G.; Das, S.; Lyngdoh, Y. A.; Langyan, S.; Shukla, A., et al. Utilisation of Agro-Industrial Waste for Sustainable Green Production: A Review. Environ. Sustain. 2021, 4(4), 619–636.
  • Prasertsan, P.; Prasertsan, S.; Kittikun, A. H. Recycling of Agro-Industrial Wastes Through Cleaner Technology. Biotechnol. Encycl. Life Support Syst. 2007.
  • Wakabayashi, M.; Fujisawa, S.; Saito, T.; Isogai, A. Nanocellulose Film Properties Tunable by Controlling Degree of Fibrillation of TEMPO-Oxidized Cellulose. Front. Chem. 2020, 8, 37. DOI: 10.3389/fchem.2020.00037.
  • Ventura-Cruz, S.; Tecante, A. Nanocellulose and Microcrystalline Cellulose from Agricultural Waste: Review on Isolation and Application as Reinforcement in Polymeric Matrices. Food Hydrocoll. 2021, 118, 106771. DOI: 10.1016/j.foodhyd.2021.106771.
  • Thyavihalli Girijappa, Y. G.; Mavinkere Rangappa, S.; Parameswaranpillai, J.; Siengchin, S. Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review. Front. Mater. 2019, 6(September), 1–14. DOI: 10.3389/fmats.2019.00226.
  • Mochane, M. J.; Mokhena, T. C.; Mokhothu, T. H.; Mtibe, A.; Sadiku, E. R.; Ray, S. S.; Ibrahim, I. D.; Daramola, O. O. Recent Progress on Natural Fiber Hybrid Composites for Advanced Applications: A Review. Express Polym. Lett. 2019, 13(2), 159–198. DOI: 10.3144/expresspolymlett.2019.15.
  • Ari, A.; Karahan, M.; Ahmed, H. A. M.; Babiker, O.; Dehşet, R. M. A. A Review of Cellulosic Natural Fibers’ Properties and Their Suitability as Reinforcing Materials for Composite Panels and Applications. AATCC J. Res. 2023, 10(3), 163–183. DOI: 10.1177/24723444221147365.
  • Sanjay, M. R.; Arpitha, G. R.; Senthamaraikannan, P.; Kathiresan, M.; Saibalaji, M. A.; Yogesha, B. The Hybrid Effect of Jute/Kenaf/E-Glass Woven Fabric Epoxy Composites for Medium Load Applications: Impact, Inter-Laminar Strength, and Failure Surface Characterization. J. Nat. Fibers. 2018, 16, 600–612. DOI: 10.1080/15440478.2018.1431828.
  • Rangappa, S. M.; Siengchin, S.; Parameswaranpillai, J.; Jawaid, M.; Ozbakkaloglu, T. Lignocellulosic Fiber Reinforced Composites: Progress, Performance, Properties, Applications, and Future Perspectives. Polym. Compos. 2022, 43(2), 645–691. DOI: 10.1002/pc.26413.
  • Badanayak, P.; Jose, S.; Bose, G. Banana Pseudostem Fiber: A Critical Review on Fiber Extraction, Characterization, and Surface Modification. J. Nat. Fibers. 2023, 20, 1. DOI: 10.1080/15440478.2023.2168821.
  • Varghese, S. A.; Pulikkalparambil, H.; Promhuad, K.; Srisa, A.; Laorenza, Y.; Jarupan, L.; Nampitch, T.; Chonhenchob, V.; Harnkarnsujarit, N. Renovation of Agro-Waste for Sustainable Food Packaging: A Review. Polym. (Basel). 2023, 15(3), 1–25. DOI: 10.3390/polym15030648.
  • Balcha, D. T.; Kulig, B.; Hensel, O.; Woldesenbet, E. Mechanical Properties of Enset Fibers Obtained from Different Breeds of Enset Plant. World Acad. Sci. Eng. Technol. Int. J. Aerosp. Mech. Eng. 2021, 15(1), 7–14.
  • Dungani, R.; Karina, M.; Sulaeman, A.; Hermawan, D.; Hadiyane, A. Agricultural Waste Fibers Towards Sustainability and Advanced Utilization: A Review. Asian J. Plant Sci. 2016, 15(1/2), 42–55. DOI: 10.3923/ajps.2016.42.55.
  • Ashori, A.; Nourbakhsh, A. Bio-Based Composites from Waste Agricultural Residues. Waste Manag. 2010, 30(4), 680–684. DOI: 10.1016/j.wasman.2009.08.003.
  • Erkul, Ş. N.; Karahan, M.; Ari, A. A Sustainable Approach to Plastics; Bioplastics. Recent - Rezult. Cercet. Noastre Teh. 2023, 24(1), 29–50. DOI: 10.31926/recent.2023.69.029.
  • Surendren, A.; Mohanty, A. K.; Liu, Q.; Misra, M. A Review of Biodegradable Thermoplastic Starches, Their Blends and Composites: Recent Developments and Opportunities for Single-Use Plastic Packaging Alternatives. Green Chem. 2022, 19(11), 8606–8636. DOI: 10.1039/d2gc02169b.
  • Dewi, R.; Sylvia, N.; Riza, M. The Effect of Rice Husk and Saw Dusk Filler on Mechanical Property of Bio Composite from Sago Starch. Int. J. Eng. Sci. Info. Technol. 2021, 1(3), 98–103. DOI: 10.52088/ijesty.v1i3.113.
  • Wattanakornsiri, A.; Pachana, K.; Kaewpirom, S.; Traina, M.; Migliaresi, C. Preparation and Properties of Green Composites Based on Tapioca Starch and Differently Recycled Paper Cellulose Fibers. J Polym. Environ. 2012, 20(3), 801–809. DOI: 10.1007/s10924-012-0494-6.
  • Jumaidin, R.; Sapuan, S. M.; Jawaid, M.; Ishak, M. R.; Sahari, J. T. Mechanical, and Physical Properties of Seaweed/Sugar Palm Fibre Reinforced Thermoplastic Sugar Palm Starch/Agar Hybrid Composites. Int. J. Biol. Macromol. 2017, 97, 606–615. DOI: 10.1016/j.ijbiomac.2017.01.079.
  • Espinach, F. X.; Delgado-Aguilar, M.; Fullana-I-Palmer, P. Starch-Based Biopolymer Reinforced with High Yield Fibers from Sugarcane Bagasse as a Technical and Environmentally Friendly Alternative to High Density Polyethylene. BioResources. 2016, 11(4), 9856–9868. DOI: 10.15376/biores.11.4.9856-9868.
  • Boonsuk, P.; Sukolrat, A.; Bourkaew, S.; Kaewtatip, K.; Chantarak, S.; Kelarakis, A.; Chaibundit, C. Structure-Properties Relationships in Alkaline Treated Rice Husk Reinforced Thermoplastic Cassava Starch Biocomposites. Int. J. Biol. Macromol. 2020, 167, 130–140. DOI: 10.1016/j.ijbiomac.2020.11.157.
  • Ibrahim, M. I. J.; Sapuan, S. M.; Zainudin, E. S.; Zuhri, M. Y. M. Potential of Using Multiscale Corn Husk Fiber as Reinforcing Filler in Cornstarch-Based Biocomposites. Int. J. Biol. Macromol. 2019, 139, 596–604. DOI: https://doi.org/10.1016/j.ijbiomac.2019.08.015.
  • Berti, S.; Jagus, R. J.; Flores, S. K. Effect of Rice Bran Addition on Physical Properties of Antimicrobial Biocomposite Films Based on Starch. Food Bioprocess Technol. 2021, 14, 1700–1711. DOI: 10.1007/s11947-021-02669-0.
  • Fu, D.; Netravali, A. N. Green Composites Based on Avocado Seed Starch and Nano- and Micro-Scale Cellulose. Polym. Compos. 2020, 41(11), 4631–4648. DOI: 10.1002/pc.25739.
  • Xie, F.; Halley, P. J.; Avérous, L. Rheology to Understand and Optimize Processibility, Structures and Properties of Starch Polymeric Materials. Prog. Polym. Sci. 2012, 37(4), 595–623. DOI: 10.1016/j.progpolymsci.2011.07.002.
  • Yusof, F. M.; Wahab, N.; Rahman, N. L. A.; Kalam, A.; Jumahat, A.; Taib, C. F. M. Properties of Treated Bamboo Fiber Reinforced Tapioca Starch Biodegradable Composite. Mater. Today Proc. 2019, 16, 2367–2373. DOI: 10.1016/j.matpr.2019.06.140.
  • Satyanarayana, K. G.; Prasad, V. S. Starch-Based “Green” Composites. Biodegrad. Green Compos. 2016, 199–298. DOI: 10.1002/9781118911068.ch8.
  • Xie, F.; Halley, P. J.; Avérous, L. Bio-Nanocomposites Based on Starch. Nanocomposites With Biodegrad. Polym. Synth. Prop. Futur. Perspect. 2011, 234–260. DOI: 10.1093/acprof:oso/9780199581924.003.0010.
  • Sahari, J.; Sapuan, S. M.; Zainudin, E. S.; Maleque, M. A. Thermo-Mechanical Behaviors of Thermoplastic Starch Derived from Sugar Palm Tree (Arenga Pinnata). Carbohydr. Polym. 2013, 92(2), 1711–1716. DOI: 10.1016/j.carbpol.2012.11.031.
  • Carvalho, A. J. F. Starch: Major Sources, Properties and Applications as Thermoplastic Materials. Monomers, Polym. Compos. From Renew. Resour. 2008, 321–342. DOI: 10.1016/b978-0-08-045316-3.00015-6.
  • Diyana, Z. N.; Jumaidin, R.; Selamat, M. Z.; Ghazali, I.; Julmohammad, N. Physical Properties of Thermoplastic Starch Derived from Natural Resources and Its Blends: A Review. Polymers. 2021, 13, 1–20. DOI: 10.3390/polym13091396.
  • Freitas, P. A. V.; La Fuente Arias, C. I.; Torres-Giner, S.; González-Martínez, C.; Chiralt, A. Valorization of Rice Straw into Cellulose Microfibers for the Reinforcement of Thermoplastic Corn Starch Films. Appl. Sci. 2021, 11, 18. DOI: 10.3390/app11188433.
  • Niranjana Prabhu, T.; Prashantha, K. A Review on Present Status and Future Challenges of Starch Based Polymer Films and Their Composites in Food Packaging Applications. Polym. Compos. 2018, 39(7), 2499–2522. DOI: 10.1002/pc.24236.
  • Zainuddin, S. Y. Z.; Ahmad, I.; Kargarzadeh, H.; Abdullah, I.; Dufresne, A. Potential of Using Multiscale Kenaf Fibers as Reinforcing Filler in Cassava Starch-Kenaf Biocomposites. Carbohydr. Polym. 2013, 92(2), 2299–2305. DOI: 10.1016/j.carbpol.2012.11.106.
  • Avérous, L. Formulation and Development of Biodegradable and Bio-Based Multiphase Materials: Plasticized Starch-Based Materials. Environ. Impact Polym. 2014, 155–199. DOI: 10.1002/9781118827116.ch9.
  • Balart, R.; Garcia-Garcia, D.; Fombuena, V.; Quiles-Carrillo, L.; Arrieta, M. P. Biopolymers from Natural Resources. Polym. (Basel). 2021, 13(15), 1–9. DOI: 10.3390/polym13152532.
  • Ojogbo, E.; Ogunsona, E. O.; Mekonnen, T. H. Chemical and Physical Modifications of Starch for Renewable Polymeric Materials. Mater. Today Sustain. 2020, 7, 100028. DOI: 10.1016/j.mtsust.2019.100028.
  • Surendren, A.; Mohanty, A. K.; Liu, Q.; Misra, M. A Review of Biodegradable Thermoplastic Starches, Their Blends and Composites: Recent Developments and Opportunities for Single-Use Plastic Packaging Alternatives. Green Chem. 2022, 24(22), 8606–8636. DOI: 10.1039/D2GC02169B.
  • Crucean, D.; Pontoire, B.; Debucquet, G.; Le-Bail, A.; Le-Bail, P. Influence of the Presence of Choline Chloride on the Classical Mechanism of “Gelatinization” of Starch. Polym. (Basel). 2021, 13(9), 1509. DOI: 10.3390/polym13091509.
  • Edhirej, A.; Sapuan, S. M.; Jawaid, M.; Zahari, N. I. Effect of Various Plasticizers and Concentration on the Physical, Thermal, Mechanical, and Structural Properties of Cassava-Starch-Based Films. Starch-Stärke. 2017, 69(1–2), 1500366. DOI: 10.1002/star.201500366.
  • Paluch, M.; Ostrowska, J.; Tyński, P.; Sadurski, W.; Konkol, M. Structural and Thermal Properties of Starch Plasticized with Glycerol/Urea Mixture. J Polym. Environ. 2021, 30, 728–740. DOI: 10.1007/s10924-021-02235-x.
  • Mizera, C.; Herak, D.; Hrabe, P.; Muller, M.; Kabutey, A. Mechanical Behavior of Ensete Ventricosum Fiber Under Tension Loading. J. Nat. Fibers. 2017, 14(2), 287–296. DOI: 10.1080/15440478.2016.1206500.
  • Imraan, M.; Ilyas, R. A.; Norfarhana, A. S.; Bangar, S. P.; Knight, V. F.; Norrrahim, M. N. F. Sugar Palm (Arenga Pinnata) Fibers: New Emerging Natural Fibre and Its Relevant Properties, Treatments and Potential Applications. J. Mater. Res. Technol. 2023, 24, 4551–4572. DOI: 10.1016/j.jmrt.2023.04.056.
  • Reddy, N.; Yang, Y. Innovative Bio Bers from Renewable Resources; Berlin, Heidelberg: Springer, 2015. DOI: 10.1007/978-3-662-45136-6.
  • Motaung, T. E.; Linganiso, L. Z. Critical Review on Agrowaste Cellulose Applications for Biopolymers; Springer India, 2018; Vol. 22. DOI: 10.1007/s12588-018-9219-6.
  • Cheng, H.; Chen, L.; Julian, D.; Yang, T.; Zhang, Z.; Ren, F.; Miao, M.; Tian, Y.; Jin, Z. Trends in Food Science & Technology Starch-Based Biodegradable Packaging Materials: A Review of Their Preparation, Characterization and Diverse Applications in the Food Industry. Trends Food Sci. Technol. 2021, 114(July 2020), 70–82. DOI: 10.1016/j.tifs.2021.05.017.
  • Haile, A.; Gebino, G.; Tesfaye, T.; Mengie, W.; Ayele, M.; Abuhay, A.; Yilie, D. Utilization of Non-Wood Biomass for Pulp Manufacturing in Paper Industry: Case of Ethiopia. Biomass Convers. Biorefinery. 2023, 13(9), 7441–7459. DOI: 10.1007/s13399-021-01424-x.
  • Suhot, M. A.; Hassan, M. Z.; Aziz, S. A.; Daud, M. Y. M. Recent Progress of Rice Husk Reinforced Polymer Composites: A Review. Polymers. 2021, 13(15), 2391. DOI: 10.3390/polym13152391.
  • Gutiérrez, T. J.; Alvarez, V. A. Cellulosic Materials as Natural Fillers in Starch-Containing Matrix-Based Films: A Review. Polym. Bull. 2017, 74(6), 2401–2430. DOI: 10.1007/s00289-016-1814-0.
  • Wahid, M. K.; Ahmad, M. N.; Osman, M. H.; Maidin, N. A.; Rahman, M. H. A.; Firdaus, H. M. S.; Kasno, M. A. Development of Biodegradable Plastics for Packaging Using Wastes from Oil Palm and Sugar Cane. IJRTE. 2019, 8, 75–78.
  • Cruz-Tirado, J. P.; Siche, R.; Cabanillas, A.; D\’\iaz-Sánchez, L.; Vejarano, R.; Tapia-Blácido, D. R. Properties of Baked Foams from Oca (Oxalis Tuberosa) Starch Reinforced with Sugarcane Bagasse and Asparagus Peel Fiber. Procedia. Eng. 2017, 200, 178–185. DOI: 10.1016/j.proeng.2017.07.026.
  • Mehanny, S.; Farag, M.; Rashad, R. M.; Elsayed, H. Fabrication and Characterization of Starch Based Bagasse Fiber Composite. ASME Int. Mech. Eng. Congr. Expos. 2012, 45196, 1345–1353.
  • Raghavendra, S.; Prabhakara, S. S. Surface Modification of Banana Fiber and Its Influence on Performance of Biodegradable Banana-Cassava Starch Composites. Appl. Mech. Mater. 2019, 895, 15–20. DOI: 10.4028/www.scientific.net/AMM.895.15.
  • Florencia, V.; López, O. V.; Garc\’\ia, M. A. Exploitation of By-Products from Cassava and Ahipa Starch Extraction as Filler of Thermoplastic Corn Starch. Compos. Part B Eng. 2020, 182, 107653. DOI: 10.1016/j.compositesb.2019.107653.
  • Khan, B.; Bilal Khan Niazi, M.; Samin, G.; Jahan, Z. Thermoplastic Starch: A Possible Biodegradable Food Packaging Material—A Review. J. Food Process. Eng. 2017, 40(3), e12447. DOI: 10.1111/jfpe.12447.
  • Averous, L.; Boquillon, N. Biocomposites Based on Plasticized Starch: Thermal and Mechanical Behaviours. Carbohydr. Polym. 2004, 56(2), 111–122. DOI: 10.1016/j.carbpol.2003.11.015.
  • Cheng, W. Preparation and Properties of Lignocellulosic Fiber/CaCo 3/Thermoplastic Starch Composites. Carbohydr. Polym. 2019, 211(November 2018), 204–208. DOI: 10.1016/j.carbpol.2019.01.062.
  • Thunwall, M.; Kuthanova, V.; Boldizar, A.; Rigdahl, M. Film Blowing of Thermoplastic Starch. Carbohydr. Polym. 2008, 71(4), 583–590. DOI: 10.1016/j.carbpol.2007.07.001.
  • Sothornvit, R.; Olsen, C. W.; McHugh, T. H.; Krochta, J. M. Tensile Properties of Compression-Molded Whey Protein Sheets: Determination of Molding Condition and Glycerol-Content Effects and Comparison with Solution-Cast Films. J. Food Eng. 2007, 78(3), 855–860. DOI: 10.1016/j.jfoodeng.2005.12.002.
  • Manoel, A. F.; Claro, P. I. C.; Mattoso, L. H. C.; Marconcini, J. M.; Mantovani, G. L. Thermoplastic Waxy Starch Films Processed by Extrusion and Pressing: Effect of Glycerol and Water Concentration. Mater. Res. 2017, 20, 353–357. DOI: 10.1590/1980-5373-mr-2016-0881.
  • Müller, C. M. O.; Laurindo, J. B.; Yamashita, F. Effect of Cellulose Fibers Addition on the Mechanical Properties and Water Vapor Barrier of Starch-Based Films. Food Hydrocoll. 2009, 23(5), 1328–1333. DOI: 10.1016/j.foodhyd.2008.09.002.
  • Yu, J.; Yang, J.; Liu, B.; Ma, X. Preparation and Characterization of Glycerol Plasticized-Pea Starch/zno–Carboxymethylcellulose Sodium Nanocomposites. Bioresources Technol. 2009, 100(11), 2832–2841. DOI: 10.1016/j.biortech.2008.12.045.
  • Ibrahim, M. M.; Moustafa, H.; El Rahman, E. N. A.; Mehanny, S.; Hemida, M. H.; El-Kashif, E. Reinforcement of Starch Based Biodegradable Composite Using Nile Rose Residues. J. Mater. Res. Technol. 2020, 9(3), 6160–6171. DOI: 10.1016/j.jmrt.2020.04.018.
  • Schutz, G. F.; Alves, R. M. V.; Vieira, R. P. Development of Starch-Based Films Reinforced with Coffee Husks for Packaging Applications. J Polym. Environ. 2023, 31(5), 1955–1966. DOI: 10.1007/s10924-022-02733-6.
  • Müller, C. M. O.; Laurindo, J. B.; Yamashita, F. Effect of Cellulose Fibers on the Crystallinity and Mechanical Properties of Starch-Based Films at Different Relative Humidity Values. Carbohydr. Polym. 2009, 77(2), 293–299. DOI: 10.1016/j.carbpol.2008.12.030.
  • Behera, A. K.; Mohanty, C.; Pradhan, S. K.; Das, N. Assessment of Soil and Fungal Degradability of Thermoplastic Starch Reinforced Natural Fiber Composite. J Polym. Environ. 2021, 29(4), 1031–1039. DOI: 10.1007/s10924-020-01944-z.
  • Kamaruddin, Z. H.; Jumaidin, R.; Ilyas, R. A.; Selamat, M. Z.; Alamjuri, R. H.; Yusof, F. A. M. Biocomposite of Cassava Starch-Cymbopogan Citratus Fibre: Mechanical, Thermal and Biodegradation Properties. Polym. (Basel). 2022, 14(3), 1–19. DOI: 10.3390/polym14030514.
  • Prachayawarakorn, J.; Chaiwatyothin, S.; Mueangta, S.; Hanchana, A. Effect of Jute and Kapok Fibers on Properties of Thermoplastic Cassava Starch Composites. Mater. Des. 2013, 47, 309–315. DOI: 10.1016/j.matdes.2012.12.012.
  • Ibrahim, H.; Farag, M.; Megahed, H.; Mehanny, S. Characteristics of Starch-Based Biodegradable Composites Reinforced with Date Palm and Flax Fibers. Carbohydr. Polym. 2014, 101(1), 11–19. DOI: 10.1016/j.carbpol.2013.08.051.
  • Ibrahim, M. I. J.; Sapuan, S. M.; Zainudin, E. S.; Zuhri, M. Y. M. Preparation and Characterization of Cornhusk/Sugar Palm Fiber Reinforced Cornstarch-Based Hybrid Composites. J. Mater. Res. Technol. 2020, 9(1), 200–211. DOI: 10.1016/j.jmrt.2019.10.045.
  • Travalini, A. P.; Lamsal, B.; Magalhães, W. L. E.; Demiate, I. M. Cassava Starch Films Reinforced with Lignocellulose Nanofibers from Cassava Bagasse. Int. J. Biol. Macromol. 2019, 139, 1151–1161. DOI: 10.1016/j.ijbiomac.2019.08.115.
  • Florencia, V.; López, O. V.; García, M. A. Exploitation of By-Products from Cassava and Ahipa Starch Extraction as Filler of Thermoplastic Corn Starch. Compos. Part B Eng. 2020 July, 182. doi:10.1016/j.compositesb.2019.107653.
  • Edhirej, A.; Sapuan, S. M.; Jawaid, M.; Zahari, N. I. Preparation and Characterization of Cassava Bagasse Reinforced Thermoplastic Cassava Starch. Fibers Polym. 2017, 18(1), 162–171. DOI: 10.1007/s12221-017-6251-7.
  • Prachayawarakorn, J.; Chaiwatyothin, S.; Mueangta, S.; Hanchana, A. Effect of Jute and Kapok Fibers on Properties of Thermoplastic Cassava Starch Composites. Mater.\& Des. 2013, 47, 309–315. DOI: 10.1016/j.matdes.2012.12.012.
  • Versino, F.; López, O. V.; Garc\’\ia, M. A. Sustainable Use of Cassava (Manihot Esculenta) Roots as Raw Material for Biocomposites Development. Ind. Crops Prod. 2015, 65, 79–89. DOI: 10.1016/j.indcrop.2014.11.054.
  • Teixeira, E. D. M.; Curvelo, A. A. S.; Corrêa, A. C.; Marconcini, J. M.; Glenn, G. M.; Mattoso, L. H. C. Properties of Thermoplastic Starch from Cassava Bagasse and Cassava Starch and Their Blends with Poly (Lactic Acid). Ind. Crop Prod. 2012, 37(1), 61–68. DOI: 10.1016/j.indcrop.2011.11.036.
  • Devadiga, D. G.; Bhat, K. S.; Mahesha, G. T. Sugarcane Bagasse Fiber Reinforced Composites: Recent Advances and Applications. Cogent Eng. 2020, 7, 1. DOI: 10.1080/23311916.2020.1823159.
  • Fitch-Vargas, P. R.; Camacho-Hernández, I. L.; Rodríguez-González, F. J.; Martínez-Bustos, F.; Calderón-Castro, A.; de Jesús Zazueta-Morales, J.; Aguilar-Palazuelos, E. Effect of Compounding and Plastic Processing Methods on the Development of Bioplastics Based on Acetylated Starch Reinforced with Sugarcane Bagasse Cellulose Fibers. Ind. Crops Prod. 2023, 192, 116084. DOI: 10.1016/j.indcrop.2022.116084.
  • Dos Santos, B. H.; De Souza Do Prado, K.; Jacinto, A. A.; Da Silva Spinacé, M. A. Influence of Sugarcane Bagasse Fiber Size on Biodegradable Composites of Thermoplastic Starch. J. Renew Mater. 2018, 6(2), 176–182. DOI: 10.7569/JRM.2018.634101.
  • Gilfillan, W. N.; Nguyen, D. M. T.; Sopade, P. A.; Doherty, W. O. S. Preparation and Characterisation of Composites from Starch and Sugar Cane Fibre. Ind. Crops Prod. 2012, 40, 45–54. DOI: 10.1016/j.indcrop.2012.02.036.
  • Vallejos, M. E.; Curvelo, A. A. S.; Teixeira, E. M.; Mendes, F. M.; Carvalho, A. J. F.; Felissia, F. E.; Area, M. C. Composite Materials of Thermoplastic Starch and Fibers from the Ethanol–Water Fractionation of Bagasse. Ind. Crops Prod. 2011, 33(3), 739–746. DOI: 10.1016/j.indcrop.2011.01.014.
  • Cao, Y.; Shibata, S.; Fukumoto, I. Mechanical Properties of Biodegradable Composites Reinforced with Bagasse Fibre Before and After Alkali Treatments. Compos. Part A Appl. Sci. Manuf. 2006, 37(3), 423–429. DOI: 10.1016/j.compositesa.2005.05.045.
  • Kaewtatip, K.; Thongmee, J. Preparation of Thermoplastic Starch/Treated Bagasse Fiber Composites. Starch/staerke. 2014, 66(7–8), 724–728. DOI: 10.1002/star.201400005.
  • Asrofi, M.; Sapuan, S. M.; Ilyas, R. A.; Ramesh, M. Characteristic of Composite Bioplastics from Tapioca Starch and Sugarcane Bagasse Fiber: Effect of Time Duration of Ultrasonication (Bath-Type). Mater. Today Proc. 2020, 46(xxxx), 1626–1630. DOI: 10.1016/j.matpr.2020.07.254.
  • Jumaidin, R.; Diah, N. A.; Ilyas, R. A.; Alamjuri, R. H.; Yusof, F. A. M. Processing and Characterisation of Banana Leaf Fibre Reinforced Thermoplastic Cassava Starch Composites. Polymers. 2021, 13(9). DOI: 10.3390/polym13091420.
  • Kahar, A. W. M.; Ann, L. J. Preparation and Characterisation of Linear Low-Density Polyethylene/Thermoplastic Starch Blends Filled with Banana Fibre. In IOP Conference Series: Materials Science and Engineering; 2017; Vol. 209. 10.1088/1757-899X/209/1/012003.
  • Bilba, K.; Arsene, M.-A.; Ouensanga, A. Study of Banana and Coconut Fibers: Botanical Composition, Thermal Degradation and Textural Observations. Bioresources Technol. 2007, 98(1), 58–68. DOI: 10.1016/j.biortech.2005.11.030.
  • Sivakumar, A. A.; Canales, C.; Roco-Videla, Á.; Chávez, M. Development of Thermoplastic Cassava Starch Composites with Banana Leaf Fibre. Sustain. 2022, 14, 19. DOI: 10.3390/su141912732.
  • Jumaidin, R.; Khiruddin, M. A. A.; Saidi, Z. A. S.; Salit, M. S.; Ilyas, R. A. Effect of Cogon Grass Fibre on the Thermal, Mechanical and Biodegradation Properties of Thermoplastic Cassava Starch Biocomposite. Int. J. Biol. Macromol. 2020, 146, 746–755. DOI: 10.1016/j.ijbiomac.2019.11.011.
  • Mehanny, S.; Darwish, L.; Ibrahim, H.; El-Wakad, M. T.; Farag, M. High-Content Lignocellulosic Fibers Reinforcing Starch-Based Biodegradable Composites: Properties and Applications. Compos. From Renew. Sustain. Mater. 2016. DOI: 10.5772/65262.
  • Dejene, B. K.; Geletaw, T. M. A Review on False Banana (Enset Ventricosum) Fiber Reinforced Green Composite and Its Applications. J. Nat. Fibers. 2023, 20(2). DOI: 10.1080/15440478.2023.2244163.
  • Teklay, A.; Gebeyehu, G.; Getachew, T.; Yaynshet, T.; Sastry, T. P. Conversion of Finished Leather Waste Incorporated with Plant Fibers into Value Added Consumer Products–An Effort to Minimize Solid Waste in Ethiopia. Waste Manag. 2017, 68, 45–55. DOI: 10.1016/j.wasman.2017.07.024.
  • Tsegaye, A. On Indigenous Production, Genetic Diversity and Crop Ecology of Enset (Ensete Ventricosum (Welw.) Cheesman); St. Louis County, Missouri: Wageningen University and Research, 2002.
  • CSA. Agricultural Sample Survey 2016/2017 (2009 E.C). Volume I Report on Area and Production of Major Crops (Private Peasant Holdings, Meher Season); 2017.
  • Tenaye, T.; Mohammed, S. A.; Jabasingh, S. A. Sustainable Synthesis and Characterization of Enset Cellulose Nanocrystals (E-CNp) from Enset Ventricosum Biomass and Its Application in the Fabrication of Enset Cellulose Nanocomposite (E-CNc). Biomass Convers. Biorefinery. 2022, (123456789). DOI: 10.1007/s13399-022-02682-z.
  • Ismail, I.; Osman, A. F.; Ping, T. L. Effects of Ultrasonication Process on Crystallinity and Tear Strength of Thermoplastic Starch/Cellulose Biocomposites. In IOP Conference Series: Materials Science and Engineering; 2019; Vol. 701, p 12045. DOI: 10.1088/1757-899x/701/1/012045.
  • Hrabalova, M.; Gregorova, A.; Wimmer, R.; Sedlarik, V.; Machovsky, M.; Mundigler, N. Effect of Wood Flour Loading and Thermal Annealing on Viscoelastic Properties of Poly (Lactic Acid) Composite Films. J. Appl. Polym. Sci. 2010, 118(3), 1534–1540. DOI: 10.1002/app.32509.
  • Yang, J.; Ching, Y. C.; Chuah, C. H. Applications of Lignocellulosic Fibers and Lignin in Bioplastics: A Review. Polym. (Basel). 2019, 11(5), 751. DOI: 10.3390/polym11050751.
  • Buzarovska, A.; Bogoeva, G. G.; Grozdanov, A.; Avella, M.; Gentile, G.; Errico, M. Potential Use of Rice Straw as Filler in Eco-Composite Materials. Aust. J. Crop Sci. 2008, 1(2), 37–42.
  • Bisht, N.; Gope, P. C.; Rani, N. Rice Husk as a Fibre in Composites: A Review. J. Mech. Behav. Mater. 2020, 29, 147–162. DOI: 10.1515/jmbm-2020-0015.
  • Singh, T.; Gangil, B.; Patnaik, A.; Biswas, D.; Fekete, G. Agriculture waste reinforced corn starch-based biocomposites: effect of rice husk/walnut shell on physicomechanical, biodegradable and thermal properties. Mater. Res. Express. 2019. DOI: 10.1088/2053-1591/aafe45.
  • Corralo, J.; Amanda, S.; Isabel, J.; Tessaro, C. Biodegradable Cassava Starch Based Foams Using Rice Husk Waste as Macro Filler. Waste Biomass Valorization. 2020, 11(8), 4315–4325. DOI: 10.1007/s12649-019-00776-w.
  • Agyei-Tuffour, B.; Michael, D. D.; Azeko, O. S. T.; Salifu, A.; Oluwaseun, A.; Abu, K. O. Comparative Analyses of Rice Husk Cellulose Fiber and Kaolin Particulate Reinforced Thermoplastic Cassava Starch Biocomposites Using the Solution Casting Technique. Polym. Compos. 2021, 42(7), 3216–3230. 2020. DOI: 10.1002/pc.26052.
  • Ramli, R. N.; Lee, C. K.; Kassim, M. A.; Lubis, M.; Harahap, M. B. Improving the Mechanical, Water Vapor Permeability, Antimicrobial Properties of Corn- Starch/Poly Vinyl Alcoholfilm (PVA): Effect of Rice Husk Fiber (RH) & Alovera Gel (AV) Improving the Mechanical, Water Vapor Permeability, Antimicrobial Prop. DOI:10.1088/1757-899X/798/1/012002.
  • Kumar, S.; Saha, A. Utilization of Coconut Shell Biomass Residue to Develop Sustainable Biocomposites and Characterize the Physical, Mechanical, Thermal, and Water Absorption Properties. Biomass Convers. Biorefinery. 2022, No. 0123456789. DOI: 10.1007/s13399-022-03293-4.
  • de Souza, M. J. C.; de Melo, R. R.; Guimarães Junior, J. B.; Mascarenhas, A. R. P.; de Oliveira Paula, E. A.; Pedrosa, T. D.; Maskell, D.; Mensah, P.; Rodolfo Junior, F. Eco-Friendly Particleboard Production from Coconut Waste Valorization. Environ. Sci. Pollut. Res. 2023, 30(6), 15241–15252. DOI: 10.1007/s11356-022-23273-5.
  • Ricciardi, P.; Cillari, G.; Carnevale Miino, M.; Collivignarelli, M. C. Valorization of Agro-Industry Residues in the Building and Environmental Sector: A Review. Waste Manag.\& Res. 2020, 38(5), 487–513. DOI: 10.1177/0734242X20904426.
  • Owodunni, A. A.; Lamaming, J.; Hashim, R.; Taiwo, O. F. A.; Hussin, M. H.; Kassim, M. H. M.; Bustami, Y.; Sulaiman, O.; Amini, M. H. M.; Hiziroglu, S. Properties of Green Particleboard Manufactured from Coconut Fiber Using a Potato Starch Based Adhesive. BioResources. 2020, 15(2), 2279–2292. DOI: 10.15376/biores.15.2.2279-2292.
  • da Silva Moura, A.; Demori, R.; Leão, R. M.; Frankenberg, C. L. C.; Santana, R. M. C. The Influence of the Coconut Fiber Treated as Reinforcement in PHB (Polyhydroxybutyrate) Composites. Mater. Today Commun. 2019, 18, 191–198. DOI: 10.1016/j.mtcomm.2018.12.006.
  • Fiorelli, J.; Bueno, S. B.; Cabral, M. R. Assessment of Multilayer Particleboards Produced with Green Coconut and Sugarcane Bagasse Fibers. Constr. Build. Mater. 2019, 205, 1–9. DOI: 10.1016/j.conbuildmat.2019.02.024.
  • Lomelí-Ramírez, M. G.; Kestur, S. G.; Manríquez-González, R.; Iwakiri, S.; De Muniz, G. B.; Flores-Sahagun, T. S. Bio-Composites of Cassava Starch-Green Coconut Fiber: Part II - Structure and Properties. Carbohydr. Polym. 2014, 102(1), 576–583. DOI: 10.1016/j.carbpol.2013.11.020.
  • De Moura, C. V. R.; Da Cruz Sousa, D.; De Moura, E. M.; De Araújo, E. C. E.; Sittolin, I. M. New Biodegradable Composites from Starch and Fibers of the Babassu Coconut. Polimeros. 2021, 31, 1. DOI: 10.1590/0104-1428.09519.
  • Pongsa, U.; Sangrayub, P.; Saengkhiao, P.; Lumsakul, P.; Kaweegitbundit, P.; Kasemsiri, P.; Hiziroglu, S. Properties of Biodegradable Foam Composites Made from Coconut Residue as a Function of the Reinforcing Phase of Cassava Starch. Eng. Appl. Sci. Res. 2023, 50(3), 270–277. DOI: 10.14456/easr.2023.30.
  • Chotiprayon, P.; Chaisawad, B.; Yoksan, R. Thermoplastic Cassava Starch/Poly(lactic Acid) Blend Reinforced with Coir Fibres. Int. J. Biol. Macromol. 2020, 156, 960–968. DOI: 10.1016/j.ijbiomac.2020.04.121.
  • Mogan, K.; Jumaidin, R.; Ilyas, R. A.; Kamaruddin, Z. H. SCIENCE & TECHNOLOGY Environmental Properties of Coconut Fiber/Reinforced Thermoplastic Starch/Beeswax Hybrid Composites. Sci. Technol. 2023, 31(S1), 21–38. DOI: 10.47836/pjst.31.S1.02.
  • Jumaidin, R.; Adam, N. W.; Ilyas, R. A.; Hussin, M. S. F.; Taha, M. M.; Mansor, M. R.; Azlan, U. A. A.; Yob, M. S. Water Transport and Physical Properties of Sugarcane Bagasse Fibre Reinforced Thermoplastic Potato Starch Biocomposite. J. Adv. Res. Fluid Mech. Therm. Sci. 2019, 61(2), 273–281.
  • Sahari, J.; Sapuan, S. M.; Zainudin, E. S.; Maleque, M. A. Mechanical and Thermal Properties of Environmentally Friendly Composites Derived from Sugar Palm Tree. Mater.\& Des. 2013, 49, 285–289. DOI: 10.1016/j.matdes.2013.01.048.
  • Elsayed, H.; Farag, M.; Megahed, H.; Mehanny, S. Influence of Flax Fibers on Properties of Starch-Based Composites. ASME Int. Mech. Eng. Congr. Expos. 2012, 45196, 1397–1408.
  • Prachayawarakorn, J.; Hwansanoet, W. Effect of Silk Protein Fibers on Properties of Thermoplastic Rice Starch. Fibers Polym. 2012, 13(5), 606–612. DOI: 10.1007/s12221-012-0606-x.
  • Behera, A. K.; Manna, S.; Das, N. Effect of Soy Waste/Cellulose on Mechanical, Water Sorption, and Biodegradation Properties of Thermoplastic Starch Composites. Starch/staerke. 2022, 74(1–2), 1–7. DOI: 10.1002/star.202100123.
  • Chen, Y.; Liu, C.; Chang, P. R.; Cao, X.; Anderson, D. P. Bionanocomposites Based on Pea Starch and Cellulose Nanowhiskers Hydrolyzed from Pea Hull Fibre: Effect of Hydrolysis Time. Carbohydr. Polym. 2009, 76(4), 607–615. DOI: 10.1016/j.carbpol.2008.11.030.
  • Chen, Y.; Liu, C.; Chang, P. R.; Anderson, D. P.; Huneault, M. A. Pea Starch-Based Composite Films with Pea Hull Fibers and Pea Hull Fiber-Derived Nanowhiskers. Polym. Eng.\& Sci. 2009, 49(2), 369–378. DOI: 10.1002/pen.21290.
  • Xie, F.; Avérous, L.; Halley, P. J.; Liu, P. Mechanical Performance of Starch-Based Biocomposites. In Biocomposites; Amsterdam: Elsevier, 2015; pp. 53–92. DOI: 10.1016/B978-1-78242-373-7.00011-1.
  • Nazrin, A.; Sapuan, S. M.; Zuhri, M. Y. M.; Ilyas, R. A.; Syafiq, R.; Sherwani, S. F. K. Nanocellulose Reinforced Thermoplastic Starch (TPS), Polylactic Acid (PLA), and Polybutylene Succinate (PBS) for Food Packaging Applications. Front Chem. 2020, 8(April), 1–12. DOI: https://doi.org/10.3389/fchem.2020.00213.
  • Bagde, P.; Nadanathangam, V. M. Mechanical, Antibacterial and Biodegradable Properties of Starch Film Containing Bacteriocin Immobilized Crystalline Nanocellulose. Carbohydr. Polym. 2019, 222, 115021. DOI: 10.1016/j.carbpol.2019.115021.
  • Ilyas, R. A.; Sapuan, S. M.; Ibrahim, R.; Abral, H.; Ishak, M. R.; Zainudin, E. S.; Atiqah, A.; Atikah, M. S. N.; Syafri, E.; Asrofi, M., et al. Thermal, Biodegradability and Water Barrier Properties of Bio-Nanocomposites Based on Plasticised Sugar Palm Starch and Nanofibrillated Celluloses from Sugar Palm Fibres. J. Biobased Mater. Bioenergy. 2020, 14(2), 234–248.
  • Criado, P.; Hossain, F. M. J.; Salmieri, S.; Lacroix, M. Nanocellulose in Food Packaging. Compos. Mater. Food Packag. 2018, 297–329. DOI: 10.1002/9781119160243.ch10.
  • Montero, B.; Rico, M.; Rodr\’\iguez-Llamazares, S.; Barral, L.; Bouza, R. Effect of Nanocellulose as a Filler on Biodegradable Thermoplastic Starch Films from Tuber, Cereal and Legume. Carbohydr. Polym. 2017, 157, 1094–1104. DOI: 10.1016/j.carbpol.2016.10.073.
  • Chen, Q.; Liu, Y.; Chen, G. A Comparative Study on the Starch-Based Biocomposite Films Reinforced by Nanocellulose Prepared from Different Non-Wood Fibers. Cellulose. 2019, 26(4), 2425–2435. DOI: 10.1007/s10570-019-02254-x.
  • Jumaidin, R.; Sapuan, S. M.; Ilyas, R. A. Physio-Mechanical Properties of Thermoplastic Starch Composites: A Review. Pros. Semin. Enau Kebangs. 2019, (April), 104–108.
  • Dejene, B. K.; Geletaw, T. M. A Review of Plant-Mediated Synthesis of Zinc Oxide Nanoparticles for Self-Cleaning Textiles. Res. J. Text. Appar. 2023. DOI: 10.1108/RJTA-12-2022-0154.
  • Dejene, B. K.; Fenta, T. B.; Korra, C. G. Development of Fl Ame Retardant Cotton and Acrylic Blend Textile Fabric Fi Nish with Enset Pseudostem Sap. Res. J. Text. Appar. 2023, 27(2), 189–215. DOI: 10.1108/RJTA-06-2021-0082.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.