75
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advancements in healthcare materials: unraveling the impact of processing techniques on biocompatibility and performance

, &
Pages 1608-1644 | Received 06 Feb 2024, Accepted 28 Apr 2024, Published online: 11 May 2024

References

  • Karim, N.; Afroj, S.; Lloyd, K.; Oaten, L. C.; Andreeva, D. V.; Carr, C.; Farmery, A. D.; Kim, I.-D.; Novoselov, K. S. Sustainable Personal Protective Clothing for Healthcare Applications: A Review. ACS. Nano. 2020, 14(10), 12313–12340. DOI: 10.1021/acsnano.0c05537.
  • Zadpoor, A. A.; Malda, J. Additive Manufacturing of Biomaterials, Tissues, and Organs. In Annals of Biomedical Engineering; Amir, A. Z., Jos, M., Eds.; The Netherlands: Springer: 2017; Vol. 45, pp. 1–11.
  • Ismail, S. N. A.; Nayan, N. A.; Mohammad Haniff, M. A. S.; Jaafar, R.; May, Z. Wearable Two-Dimensional Nanomaterial-Based Flexible Sensors for Blood Pressure Monitoring: A Review. Nanomaterials. 2023, 13(5), 852. DOI: 10.3390/nano13050852.
  • Li, R.; Li, P.; Wei, G.; Li, J.; Shi, Y.; Wang, Y.; He, S.; Yang, Y.; Ding, W.; Wang, Z., et al. Ultra-Sensitive Low-Temperature Thermometer Regulated by the Crystal Field Strength. Ceram. Int. 2023, 49(5), 7913–7919.
  • Naikoo, G. A.; Bano, M.; Arshad, F.; Hassan, I. U.; BaOmar, F.; Alfagih, I. M.; Tambuwala, M. M. Non-Enzymatic Glucose Sensors Composed of Trimetallic CuO/Ag/NiO Based Composite Materials. Sci. Rep. 2023, 13(1), 6210. DOI: 10.1038/s41598-023-32719-w.
  • He, L.; Hu, G.; Jiang, J.; Wei, W.; Xue, X.; Fan, K.; Huang, H.; Shen, L. Highly Sensitive Tin-Lead Perovskite Photodetectors with Over 450 Days Stability Enabled by Synergistic Engineering for Pulse Oximetry System. Adv. Mater. 2023, 35(10), 2210016. DOI: 10.1002/adma.202210016.
  • Widjiantoro, B. L.; Irwansyah, I.; Wahyuono, R. A. Fabrication of Low-Cost 3D Printed Stethoscope: Material Selections and Acoustical Performance. AIP Conference Proceedings, Surabaya, Indonesia, 2023, vol. 2604, no. 1.
  • Momota, M. M. R.; Morshed, B. I.; Ferdous, T.; Fujiwara, T. Fabrication and Characterization of Inkjet Printed Flexible Dry ECG Electrodes. IEEE Sens. J. 2023, 23(7), 7917–7928. DOI: 10.1109/JSEN.2023.3250103.
  • Li, Z.; Peng, G.; Li, Z.; Xu, Y.; Wang, T.; Wang, H.; Liu, Z.; Wang, G.; Ding, L.; Jin, Z., et al. Hydrogen Bonds Strengthened Metal-Free Perovskite for Degradable X-Ray Detector with Enhanced Stability, Flexibility and Sensitivity. Angew. Chemie. Int. Ed. 2023, 62(10), e202218349.
  • Zhang, R. The Potential Superconducting Materials in MRI Scanner—Comparison Between NbTi and MgB2. Highlights Sci. Eng. Technol. 2023, 29, 308–315. DOI: 10.54097/hset.v29i.4845.
  • Phillips, H.; Franklin, C.; Brearley, J.; Holmes, M.; Genain, M.-A. Natural Ballistic Gelatine Ultrasound Phantoms Are Suitable to Be Used for Student Education and Can Be Produced Cheaply and Effectively. Vet. Radiol. Ultrasound. 2023, 64(4), 733–739. DOI: 10.1111/vru.13235.
  • Sun, Z.; Wong, Y. H.; Yeong, C. H. Patient-Specific 3D-Printed Low-Cost Models in Medical Education and Clinical Practice. Micromachines. 2023, 14(2), 464. DOI: 10.3390/mi14020464.
  • Min, S.; Kim, D. H.; Joe, D. J.; Kim, B. W.; Jung, Y. H.; Lee, J. H.; Lee, B.-Y.; Doh, I.; An, J.; Youn, Y.-N., et al. Clinical Validation of a Wearable Piezoelectric Blood-Pressure Sensor for Continuous Health Monitoring. Adv. Mater. 2023, 35(26), 2301627.
  • Cao, X.; Guo, M.; Feng, Q.; Wang, Y.; Gao, J. A Review of the Factors Influencing the Infusion Accuracy of Medical Infusion Pumps. Second International Conference on Biomedical and Intelligent Systems (IC-BIS 2023), Xiamen, China, 2023, vol. 12724, pp. 224–230.
  • Su, X.; Jia, C.; Xiang, H.; Zhu, M. Research Progress in Preparation, Properties, and Applications of Medical Protective Fiber Materials. Appl. Mater. Today. 2023, 32, 101792. DOI: 10.1016/j.apmt.2023.101792.
  • Kalejs, O.; Maca-Kaleja, A.; Apsite, K.; Abula, A.; Strazdina, L. History of the Development of Automated External Defibrillators. Updates on Cardiac Defibrillation, Cardioversion and AED Development, Endre, Z Ed.; 2023.
  • Singh, S.; Malik, A.; Prakash Rawat, A.; Tevetia, N.; Aggarwal, R.; Goswami, S.; Sharma, K.; Raghavendra Rao, N. G.; Pathak, A. Regulatory Considerations of Material Used for Medical Devices and Combination Products in Different Countries: A Review. Mater. Today Proc. 2023. DOI: 10.1016/j.matpr.2023.10.045.
  • Sawunyavisuth, B.; Sopapol, N.; Tseng, C.-H.; Sawanyawisuth, K. Marketing Factors Associated with a Continuous Positive Airway Pressure Machine Purchasing in Patients with Obstructive Sleep Apnea. Futur. Sci. OA. 2023, 9(3), FSO844. DOI: 10.2144/fsoa-2022-0073.
  • Singh, A. B.; Singh, S.; Dangayach, G. S.; Pant, G.; Lal Meena, M. Fatigue Behaviour Analysis of EN8 Steel Subjected to Various Heat Treatments Created for Shaft. Mater. Today Proc. 2023. DOI: 10.1016/j.matpr.2023.02.165.
  • Ray, R.; Majumdar, R.; Ghosh, N. Auditory Perception in Adult Hearing Aid Users with and without Auditory Training-A Comparative Study. Asian J. Med. Sci. 2023, 14(4). DOI: 10.3126/ajms.v14i4.51534
  • Sahu, S. K.; Anand, M. V.; Kumar, T. C. H. A.; Kumar, A.; Prasad, G. S.; Niraj, V. V. Kerf Width Analysis of Wire Electrical Discharge Machining of Titanium Alloy. Mater. Today Proc. 2023.
  • van de Pol, I.; Roescher, N.; Rigter, S.; Noordzij, P. G. Prolonged Use of Intravenous Administration Sets on Central Line Associated Bloodstream Infection, Nursing Workload and Material Use: A Before-After Study. Intensive Crit. Care Nurs. 2023, 78, 103446. DOI: 10.1016/j.iccn.2023.103446.
  • Vasileva, A. A.; Mamonova, D. V.; Mikhailovskii, V.; Petrov, Y. V.; Toropova, Y. G.; Kolesnikov, I. E.; Leuchs, G.; Manshina, A. A. 3D Nanocomposite with High Aspect Ratio Based on Polyaniline Decorated with Silver NPs: Synthesis and Application As Electrochemical Glucose Sensor. Nanomaterials. 2023, 13(6), 1002. DOI: 10.3390/nano13061002.
  • Nagabushanam, M.; Devade, K.; Aravind Reddy, G.; Nagaraj Goud, B.; Sayed, R. M.; Sood, S.; Sonia, P. Advance Biomedical Engineering–A Fundamental Review of Composite Materials and Its Applications. Mater. Today Proc. 2023. DOI: 10.1016/j.matpr.2023.08.216.
  • Gray, S. Blood Gas Analysis. In Advanced Monitoring and Procedures for Small Animal Emergency and Critical Care, 2nd ed.; Jamie, M., Burkitt, C., Harold, D., Eds.; 2023, pp. 339–346.
  • Ismail\. Iyigün. New Dimensions in Health Medical Material TransportationHealth 4.0 and Medical Supply Chain;Hoboken, New Jersey: Springer, 2023, pp. 135–146.
  • Lin, X.; Liu, L.-L.; Zheng, L.-J.; Yang, C.-Y. Evaluation of Doppler Indices (MCA & UA) and Fetal Outcomes: A Retrospective Case-Control Study in Women with Hypertensive Disorders of Pregnancy. J. Matern. Neonatal Med. 2023, 36(1), 2183471. DOI: 10.1080/14767058.2023.2183471.
  • Bilgin, C.; Hutar, J.; Li, J.; Castaño, O.; Ribo, M.; Kallmes, D. F. Catheter Design Primer for Neurointerventionalists. J. Neurointerv. Surg. 2023, 15(11), 1117–1121. DOI: 10.1136/jnis-2022-019567.
  • Li, Y.; Chen, Y. Review of Noninvasive Continuous Glucose Monitoring in Diabetics. ACS. Sens. 2023, 8(10), 3659–3679. DOI: 10.1021/acssensors.3c01538.
  • Chien, C.-Y.; Tai, S.-Y.; Chan, L.-P.; Wang, H.-M.; Chang, N.-C.; Wang, L.-F.; Ho, K.-Y.; Li, K.-H. Predictive Factors and Audiometric Outcome Comparison Between Titanium Prosthesis and Autologous Incus in Traumatic Ossicular Injury. Ann. Otol. Rhinol. Laryngol. 2023, 133(1), 30–36. DOI: 10.1177/00034894231181746.
  • Doria, C. The Ophthalmoscope and the Physician: Technical Innovations and Professionalization of Medicine. J. Mater. Cult. 2023, 28(2). DOI: 10.1177/13591835221149683.
  • Alahmad, H.; Alnafea, M. Survey of Quality Control of Panoramic X-Ray Machines in Private Dental Clinics in Saudi Arabia. J. Radiat. Res. Appl. Sci. 2023, 16(2), 100571. DOI: 10.1016/j.jrras.2023.100571.
  • Mochalin, V. N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The Properties and Applications of Nanodiamonds. Nat. Nanotechnol. 2012, 7(1), 11–23. DOI: 10.1038/nnano.2011.209
  • Nemani, S. K.; Annavarapu, R. K.; Mohammadian, B.; Raiyan, A.; Heil, J.; Haque, M. A.; Abdelaal, A.; Sojoudi, H. Surface Modification of Polymers: Methods and Applications. Adv. Mater. Interfaces. 2018, 5(24), 1801247.
  • Farah, S.; Anderson, D. G.; Langer, R. Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications—A Comprehensive Review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. DOI: 10.1016/j.addr.2016.06.012.
  • Naahidi, S.; Jafari, M.; Edalat, F.; Raymond, K.; Khademhosseini, A.; Chen, P. Biocompatibility of Engineered Nanoparticles for Drug Delivery. J. Control Release. 2013, 166(2), 182–194. DOI: 10.1016/j.jconrel.2012.12.013.
  • Tiwari, S. K.; Pande, S.; Agrawal, S.; Bobade, S. M. Selection of Selective Laser Sintering Materials for Different Applications. Rapid Prototyp. J. 2015, 21(6), 630–648. DOI: 10.1108/RPJ-03-2013-0027.
  • Leane, M.; Pitt, K.; Reynolds, G.; M. C. S. (MCS) W. Group. A Proposal for a Drug Product Manufacturing Classification System (MCS) for Oral Solid Dosage Forms. Pharm. Dev. Technol. 2015, 20(1), 12–21. DOI: 10.3109/10837450.2014.954728.
  • Elahinia, M. H.; Hashemi, M.; Tabesh, M.; Bhaduri, S. B. Manufacturing and Processing of NiTi Implants: A Review. Prog. Mater. Sci. 2012, 57(5), 911–946. DOI: 10.1016/j.pmatsci.2011.11.001.
  • Told, R.; Ujfalusi, Z.; Pentek, A.; Kerenyi, M.; Banfai, K.; Vizi, A.; Szabo, P.; Melegh, S.; Bovari-Biri, J.; Pongracz, J. E., et al. A State-Of-The-Art Guide to the Sterilization of Thermoplastic Polymers and Resin Materials Used in the Additive Manufacturing of Medical Devices. Mater. Des. 2022, 223, 111119. DOI: 10.1016/j.matdes.2022.111119.
  • Shahrubudin, N.; Koshy, P.; Alipal, J.; Kadir, M. H. A.; Lee, T. C. Challenges of 3D Printing Technology for Manufacturing Biomedical Products: A Case Study of Malaysian Manufacturing Firms. Heliyon. 2020, 6(4), e03734. DOI: 10.1016/j.heliyon.2020.e03734.
  • Kennedy, S.; Robert, R.; Seenikannan, P.; Arunachalam, V.; Amudhan, K. An Investigation on Mechanical Properties of 3D Pen Fused Zones for Additive Manufactured Parts. Eng. Solid Mech. 2023, 11(3), 263–270. DOI: 10.5267/j.esm.2023.3.003.
  • Yoshida, S.; Hagiwara, K.; Hasebe, T.; Hotta, A. Surface Modification of Polymers by Plasma Treatments for the Enhancement of Biocompatibility and Controlled Drug Release. Surf. Coatings Technol. 2013, 233, 99–107. DOI: 10.1016/j.surfcoat.2013.02.042.
  • Harrington, R. E.; Guda, T.; Lambert, B.; Martin, J. Sterilization and Disinfection of Biomaterials for Medical Devices. In Biomaterials Science; William R. W., Shelly E. S.-E., Guigen Z., Michael J. Y., Eds.; Washington, DC: Elsevier, 2020; pp. 1431–1446.
  • de Sousa Iwamoto, L. A.; Duailibi, M. T.; Iwamoto, G. Y.; de Oliveira, D. C.; Duailibi, S. E. Evaluation of Ethylene Oxide, Gamma Radiation, Dry Heat and Autoclave Sterilization Processes on Extracellular Matrix of Biomaterial Dental Scaffolds. Sci. Rep. 2022, 12(1), 4299. DOI: 10.1038/s41598-022-08258-1
  • Li, C.; Guo, C.; Fitzpatrick, V.; Ibrahim, A.; Zwierstra, M. J.; Hanna, P.; Lechtig, A.; Nazarian, A.; Lin, S. J.; Kaplan, D. L., et al. Design of Biodegradable, Implantable Devices Towards Clinical Translation. Nat. Rev. Mater. 2020, 5(1), 61–81.
  • Amarji, B.; Kulkarni, A.; Deb, P. K.; Maheshwari, R.; Tekade, R. K. Package Development of Pharmaceutical Products: Aspects of Packaging Materials Used for Pharmaceutical Products. In Dosage Form Design Parameters; Rakesh K. T. Eds.; Washington, DC: Elsevier, 2018; pp. 521–552.
  • Maharaj, P. S. R. S.; Maheswaran, R.; Vasanthanathan, A. Numerical Analysis of Fractured Femur Bone with Prosthetic Bone Plates. Procedia. Eng. 2013, 64, 1242–1251. DOI: 10.1016/j.proeng.2013.09.204.
  • Ahsan, S. M.; Thomas, M.; Reddy, K. K.; Sooraparaju, S. G.; Asthana, A.; Bhatnagar, I. Chitosan as Biomaterial in Drug Delivery and Tissue Engineering. Int. J Biol. Macromol. 2018, 110, 97–109. DOI: 10.1016/j.ijbiomac.2017.08.140.
  • Kennedy, S. M.; Amudhan, K.; Robert, R. B. J.; Vasanthanathan, A.; Pandian, A. V. M. Experimental and Finite Element Analysis on the Effect of Pores on Bio-Printed Polycaprolactone Bone Scaffolds. Bioprinting. 2023, 34, e00301. DOI: 10.1016/j.bprint.2023.e00301.
  • Tulchinsky, T. H.; Varavikova, E. A. Chapter 1 - a History of Public Health. In The New Public Health (Third Edition) ,Third Edit T. H. T. Varavikova, E. A, (Eds.); Academic Press: San Diego, 2014; pp. 1–42. DOI: 10.1016/B978-0-12-415766-8.00001-X.
  • Bliquez, L. The Tools of Asclepius: Surgical Instruments in Greek and Roman Times. Brill. 2014, 43, IX–439.
  • Holzapfel, B. M.; Reichert, J. C.; Schantz, J.-T.; Gbureck, U.; Rackwitz, L.; Nöth, U.; Jakob, F.; Rudert, M.; Groll, J.; Hutmacher, D. W., et al. How Smart Do Biomaterials Need to Be? A Translational Science and Clinical Point of View. Adv. Drug Deliv. Rev. 2013, 65(4), 581–603.
  • Dehghan-Manshadi, A.; Yu, P.; Dargusch, M.; StJohn, D.; Qian, M. Metal Injection Moulding of Surgical Tools, Biomaterials and Medical Devices: A Review. Powder. Technology. 2020, 364, 189–204. DOI: 10.1016/j.powtec.2020.01.073
  • Kennedy, S. M.; Vasanthanathan, A.; Jeen Robert, R. B.; Vignesh Moorthi Pandian, A. Impact of Mechanical Engineering Innovations in Biomedical Advancements. Vitr. Model. 2024, 3(1), 5–18. DOI: 10.1007/s44164-024-00065-4.
  • da Silva Aquino, K. A. Sterilization by Gamma Irradiation. Gamma. Radiat. 2012, 9, 172–202.
  • Ruston, C. The Use of Ultraviolet-C Light to Decontaminate Materials Frequently Brought Onto Swine Farms and a Staged Loading Procedure to Reduce Frequency of Contamination from Livestock Trailer to Barn; Ames, Iowa, United States: Iowa State University, 2020.
  • Brugnera, M. F.; de Araújo Souza, B. C.; Zanoni, M. V. B. Advanced Oxidation Process Applied to Actinobacterium Disinfection. Actinobacteria Basics Biotechnol. Appl. 2016, 353, 351–372.
  • Zhang, X.; Fussenegger, M. Structural Materials Meet Synthetic Biology in Biomedical Applications. Mater. Today. 2023, 72, 163–182. DOI: 10.1016/j.mattod.2023.12.008.
  • Onem, E.; Yorgancioglu, A. ; Supercritical Fluid Technology for Sustainable Production: Alternative Green Carrier Medium. Environ. Friendly Technol. 2020,1, 201.
  • Deshmukh, S. P.; Patil, S. M.; Mullani, S. B.; Delekar, S. D. Silver Nanoparticles as an Effective Disinfectant: A Review. Mater. Sci. Eng. C. 2019, 97, 954–965. DOI: 10.1016/j.msec.2018.12.102.
  • Mehta, I.; Hsueh, H.-Y.; Taghipour, S.; Li, W.; Saeedi, S. UV Disinfection Robots: A Review. Rob. Auton. Syst. 2023, 161, 104332. DOI: 10.1016/j.robot.2022.104332.
  • Zhou, R. Direct and Indirect Activation of Biological Objects Using Cold Atmospheric Plasma; Brisbane, Australia: Queensland University of Technology, 2019.
  • Liu, Z. Y.; Loh, N. H.; Tor, S. B.; Khor, K. A. Characterization of Powder Injection Molding Feedstock. Mater. Charact. 2002, 49(4), 313–320. DOI: 10.1016/S1044-5803(02)00282-6.
  • Bastos, L.; Marques, R.; Silva, J.; Freitas, R.; Marques, Â.; Gonçalves, N.; Cortez, S.; Coelho, A.; Sousa, L.; Parreira, P., et al. Design and Development of a Novel Double-Chamber Syringe Concept for Venous Catheterization. Med. Eng. Phys. 2022, 100, 103757. DOI: 10.1016/j.medengphy.2022.103757.
  • Aldawood, F. K.; Andar, A.; Desai, S. A Comprehensive Review of Microneedles: Types, Materials, Processes, Characterizations and Applications. Polymers. 2021, 13(16), 2815. DOI: 10.3390/polym13162815.
  • Schicht, H. H. The Design of Cleanrooms for the Medical Device Industry. Cleanroom. Des. 1999, 115–122.
  • Chen, R.; Chang, R. C.; Tai, B.; Huang, Y.; Ozdoganlar, B.; Li, W.; Shih, A. Biomedical Manufacturing: A Review of the Emerging Research and Applications. J. Manuf. Sci. Eng. 2020, 142(11), 110807. DOI: 10.1115/1.4048043
  • Goodship, V. Injection Molding of Thermoplastics. Des. Manuf. Plast. Components Multifunct. Struct. Compos. Inject. Molding. 2015, 3D Print(103), 103–218.
  • Rahimi, A.; Mashak, A. Review on Rubbers in Medicine: Natural, Silicone and Polyurethane Rubbers. Plast. Rubber Compos. 2013, 42(6), 223–230. DOI: 10.1179/1743289811Y.0000000063.
  • Kuang, T.; Esmaeili, A.; Ehsani, M. Eco-Friendly Biodegradable Polymers: Sustainable Future. Polym. Renew. Resour. 2022, 13(1–2), 71–79. DOI: 10.1177/20412479221109875.
  • Ivanova, O.; Williams, C.; Campbell, T. Additive Manufacturing (AM) and Nanotechnology: Promises and Challenges. Rapid Prototyp. J. 2013, 19(5), 353–364. DOI: 10.1108/RPJ-12-2011-0127.
  • Ammar, M.; Haleem, A.; Javaid, M.; Bahl, S.; Verma, A. S. Implementing Industry 4.0 Technologies in Self-Healing Materials and Digitally Managing the Quality of Manufacturing. Mater. Today Proc. 2022, 52, 2285–2294. DOI: 10.1016/j.matpr.2021.09.248.
  • Wilson, M.; Williams, M. A.; Jones, D. S.; Andrews, G. P. Hot-Melt Extrusion Technology and Pharmaceutical Application. Ther. Deliv. 2012, 3(6), 787–797. DOI: 10.4155/tde.12.26.
  • Prendergast, M. E.; Burdick, J. A. Recent Advances in Enabling Technologies in 3D Printing for Precision Medicine. Adv. Mater. 2020, 32(13), 1902516. DOI: 10.1002/adma.201902516.
  • Auriemma, G.; Tommasino, C.; Falcone, G.; Esposito, T.; Sardo, C.; Aquino, R. P. Additive Manufacturing Strategies for Personalized Drug Delivery Systems and Medical Devices: Fused Filament Fabrication and Semi Solid Extrusion. Molecules. 2022, 27(9), 2784. DOI: 10.3390/molecules27092784.
  • Raja, G. M.; Vasanthanathan, A.; Jeyasubramanian, K. Novel Ternary Epoxy Resin Composites Obtained by Blending Graphene Oxide and Polypropylene Fillers: An Avenue for the Enhancement of Mechanical Characteristics. J. Inorg. Organomet. Polym. Mater. 2023, 33(2), 383–397. DOI: 10.1007/s10904-022-02494-8.
  • El Achaby, M.; Arrakhiz, F.-E.; Vaudreuil, S.; el Kacem Qaiss, A.; Bousmina, M.; Fassi-Fehri, O. Mechanical, Thermal, and Rheological Properties of Graphene-Based Polypropylene Nanocomposites Prepared by Melt Mixing. Polym. Compos. 2012, 33(5), 733–744. DOI: 10.1002/pc.22198.
  • Stanley, J.; John, A.; Pušnik Črešnar, K.; Fras Zemljič, L.; Lambropoulou, D. A.; Bikiaris, D. N. Active Agents Incorporated in Polymeric Substrates to Enhance Antibacterial and Antioxidant Properties in Food Packaging Applications. Macromol. 2022, 3(1), 1–27. DOI: 10.3390/macromol3010001
  • Nandi, U.; Trivedi, V.; Ross, S. A.; Douroumis, D. Advances in Twin-Screw Granulation Processing. Pharmaceutics. 2021, 13(5), 624. DOI: 10.3390/pharmaceutics13050624.
  • Moretti, M.; Bianchi, F.; Senin, N. Towards the Development of a Smart Fused Filament Fabrication System Using Multi-Sensor Data Fusion for In-Process Monitoring. Rapid Prototyp. J. 2020, 26(7), 1249–1261. DOI: 10.1108/RPJ-06-2019-0167.
  • Tan, D. K.; Maniruzzaman, M.; Nokhodchi, A. Advanced Pharmaceutical Applications of Hot-Melt Extrusion Coupled with Fused Deposition Modelling (FDM) 3D Printing for Personalised Drug Delivery. Pharmaceutics. 2018, 10(4), 203. DOI: 10.3390/pharmaceutics10040203.
  • Singh, A. B.; Bhakar, V.; Gaurav, G.; Khandelwal, C.; Sarkar, P.; Singh, H.; Dangayach, G. S. Environmental Sustainability of Milk Production: A Comparative Environmental Impact Analysis and Sustainability Evaluation. Front. Sustain. 2024, 5. DOI: 10.3389/frsus.2024.1352572.
  • Ristić, T., Zemljič, L.F., Novak, M., Kunčič, M. K., Sonjak, S., Cimerman, N. G., Strnad, S. Antimicrobial Efficiency of Functionalized Cellulose Fibres As Potential Medical Textiles. Sci. Against Microb. Pathog. Commun. Curr. Res. Technol. Adv. 2011, 6, 36–51.
  • Zhou, H.; Lee, J. Nanoscale Hydroxyapatite Particles for Bone Tissue Engineering. Acta. Biomater. 2011, 7(7), 2769–2781. DOI: 10.1016/j.actbio.2011.03.019.
  • Van Noort, R. The Future of Dental Devices Is Digital. Dent. Mater. 2012, 28(1), 3–12. DOI: 10.1016/j.dental.2011.10.014.
  • Seitz, J.-M.; Durisin, M.; Goldman, J.; Drelich, J. W. Recent Advances in Biodegradable Metals for Medical Sutures: A Critical Review. Adv. Healthc. Mater. 2015, 4(13), 1915–1936. DOI: 10.1002/adhm.201500189.
  • Senthil Maharaj, P.; Vasanthanathan, A. An Insight into the Mechanical and Tribological Behavior of Carbon-Flax Reinforced Bioepoxy Hybrid Composite Bone Plates for Orthopedic Applications. Polymers and Polymer. Compositesquery. 2023, 31, DOI: 10.1177/09673911231178444.
  • Chawla, K. K. Ceramic Matrix Composites; Berlin: Springer Science & Business Media, 2013.
  • Gallardo Fuentes, J. M.; Gümpel, P.; Strittmatter, J. Phase Change Behavior of Nitinol Shape Memory Alloys. Adv. Eng. Mater. 2002, 4(7), 437–452. DOI: 10.1002/1527-2648(20020717)4:7<437:AID-ADEM437>3.0.CO;2-8.
  • Gradinaru, L. M.; Barbalata Mandru, M.; Drobota, M.; Aflori, M.; Butnaru, M.; Spiridon, M.; Doroftei, F.; Aradoaei, M.; Ciobanu, R. C.; Vlad, S. Composite Materials Based on Iron Oxide Nanoparticles and Polyurethane for Improving the Quality of MRI. Polymers. 2021, 13(24), 4316. DOI: 10.3390/polym13244316.
  • Niculescu, A.-G.; Chircov, C.; Bîrcă, A. C.; Grumezescu, A. M. Fabrication and Applications of Microfluidic Devices: A Review. Int. J. Mol. Sci. 2021, 22(4), 2011. DOI: 10.3390/ijms22042011.
  • Kanishka, K.; Acherjee, B. Revolutionizing Manufacturing: A Comprehensive Overview of Additive Manufacturing Processes, Materials, Developments, and Challenges. J. Manuf. Process. 2023, 107, 574–619. DOI: 10.1016/j.jmapro.2023.10.024.
  • Lantada, A. D.; Morgado, P. L. Rapid Prototyping for Biomedical Engineering: Current Capabilities and Challenges. Annu. Rev. Biomed. Eng. 2012, 14(1), 73–96. DOI: 10.1146/annurev-bioeng-071811-150112.
  • Stepanovska, J.; Matejka, R.; Rosina, J.; Bacakova, L.; Kolarova, H. Treatments for Enhancing the Biocompatibility of Titanium Implants. Biomed. Pap. Med. Fac. Palacky Univ. Olomouc. 2020, 164(1), 23–33. DOI: 10.5507/bp.2019.062.
  • Leslie, D. C.; Waterhouse, A.; Berthet, J. B.; Valentin, T. M.; Watters, A. L.; Jain, A.; Kim, P.; Hatton, B. D.; Nedder, A.; Donovan, K., et al. A Bioinspired Omniphobic Surface Coating on Medical Devices Prevents Thrombosis and Biofouling. Nat. Biotechnol. 2014, 32(11), 1134–1140.
  • Wyman, P. Hydrophilic Coatings for Biomedical Applications in and ex vivo. In Coatings for Biomedical Applications; Mike D. Eds.; Sawston, Cambridge: Elsevier, 2012; pp. 3–42.
  • Wu, P.; Grainger, D. W. Drug/Device Combinations for Local Drug Therapies and Infection Prophylaxis. Biomaterials. 2006, 27(11), 2450–2467. DOI: 10.1016/j.biomaterials.2005.11.031.
  • Desrousseaux, C.; Sautou, V.; Descamps, S.; Traoré, O. Modification of the Surfaces of Medical Devices to Prevent Microbial Adhesion and Biofilm Formation. J. Hosp. Infect. 2013, 85(2), 87–93. DOI: 10.1016/j.jhin.2013.06.015.
  • Grill, A. Diamond-Like Carbon Coatings as Biocompatible Materials—An Overview. Diam. Relat. Mater. 2003, 12(2), 166–170. DOI: 10.1016/S0925-9635(03)00018-9.
  • Ebnesajjad, S.; Khaladkar, P. R. Fluoropolymer Applications in the Chemical Processing Industries: The Definitive user’s Guide and Handbook; Elsevier S. Eds.; William Andrew, 2017.
  • Pakdel, E.; Wang, J.; Kashi, S.; Sun, L.; Wang, X. Advances in Photocatalytic Self-Cleaning, Superhydrophobic and Electromagnetic Interference Shielding Textile Treatments. Adv. Colloid Interface Sci. 2020, 277, 102116. DOI: 10.1016/j.cis.2020.102116.
  • Nasution, A. K.; Hermawan, H. Degradable Biomaterials for Temporary Medical Implants. In Biomaterials and Medical Devices, 2016; Vol. 1. pp. 127–160.
  • Lavery, K. S.; Rhodes, C.; Mcgraw, A.; Eppihimer, M. J. Anti-Thrombotic Technologies for Medical Devices. Adv. Drug Deliv. Rev. 2017, 112, 2–11. DOI: 10.1016/j.addr.2016.07.008.
  • Zhang, W.; Wang, G.; Liu, Y.; Zhao, X.; Zou, D.; Zhu, C.; Jin, Y.; Huang, Q.; Sun, J.; Liu, X., et al. The Synergistic Effect of Hierarchical Micro/nano-Topography and Bioactive Ions for Enhanced Osseointegration. Biomaterials. 2013, 34(13), 3184–3195.
  • Balamuralidhara, V.; Pramodkuma, T. M.; Srujana, N.; Venkatesh, M. P.; Gupta, N. V.; Krishna, K. L.; Gangadhara, H. V. pH Sensitive Drug Delivery Systems: A Review. Am. J. Drug Discov. Dev. 2011, 1(1), 24–48. DOI: 10.3923/ajdd.2011.24.48.
  • Nah, C.; Han, S. H.; Lee, M.-H.; Kim, J. S.; Lee, D. S. Characteristics of Polyimide Ultrafine Fibers Prepared Through Electrospinning. Polym. Int. 2003, 52(3), 429–432. DOI: 10.1002/pi.1106.
  • Adeli, H.; Khorasani, M. T.; Parvazinia, M. Wound Dressing Based on Electrospun PVA/Chitosan/Starch Nanofibrous Mats: Fabrication, Antibacterial and Cytocompatibility Evaluation and in vitro Healing Assay. Int. J Biol. Macromol. 2019, 122, 238–254. DOI: 10.1016/j.ijbiomac.2018.10.115.
  • Das Talukdar, A.; Sarker, S. D.; Patra, J. K. Advances in Nanotechnology-Based Drug Delivery Systems; Amsterdam: Elsevier, 2022.
  • Wong, K. C. 3D-Printed Patient-Specific Applications in Orthopedics. Orthop. Res. Rev. 2016, Volume 8, 57–66. DOI: 10.2147/ORR.S99614.
  • Cui, X.; Li, J.; Hartanto, Y.; Durham, M.; Tang, J.; Zhang, H.; Hooper, G.; Lim, K.; Woodfield, T. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks. Adv. Healthc. Mater. 2020, 9(15), 1901648. DOI: 10.1002/adhm.201901648.
  • Lin, J. C.-F.; Wu, C.-C.; Lo, C.; Liang, W.-M.; Cheng, C.-F.; Wang, C.-B.; Chang, Y.-J.; Wu, H.-C.; Leu, T.-H. Mortality and Complications of Hip Fracture in Young Adults: A Nationwide Population-Based Cohort Study. Oct BMC Musculoskelet. Disord. 2014, 15(1). DOI:10.1186/1471-2474-15-362.
  • Chua, K.; Khan, I.; Malhotra, R.; Zhu, D. Additive Manufacturing and 3D Printing of Metallic Biomaterials. Eng. Regen. 2022, 2, 288–299. DOI: 10.1016/j.engreg.2021.11.002.
  • Zhang, Y.; Dong, Z.; Li, C.; Du, H.; Fang, N. X.; Wu, L.; Song, Y. Continuous 3D Printing from One Single Droplet. Nat. Commun. 2020, 11(1), 4685. DOI: 10.1038/s41467-020-18518-1.
  • Kotta, S.; Nair, A.; Alsabeelah, N. 3D Printing Technology in Drug Delivery: Recent Progress and Application. Curr. Pharm. Des. 2018, 24(42), 5039–5048. DOI: 10.2174/1381612825666181206123828.
  • Du, X.; Fu, S.; Zhu, Y. 3D Printing of Ceramic-Based Scaffolds for Bone Tissue Engineering: An Overview. J. Mater. Chem. B. 2018, 6(27), 4397–4412. DOI: 10.1039/C8TB00677F.
  • Buj-Corral, I.; Tejo-Otero, A.; Fenollosa-Artés, F. Development of Am Technologies for Metals in the Sector of Medical Implants. Metals. (Basel). 2020, 10(5), 686. DOI: 10.3390/met10050686.
  • Ali, S.; Shin, W. S.; Song, H. Blockchain-Enabled Open Quality System for Smart Manufacturing: Applications and Challenges. Sustainability. 2022, 14(18), 11677. DOI: 10.3390/su141811677.
  • Valliant, E. M.; Jones, J. R. Softening Bioactive Glass for Bone Regeneration: Sol–Gel Hybrid Materials. Soft Matter. 2011, 7(11), 5083–5095. DOI: 10.1039/c0sm01348j.
  • Maximov, M.; Maximov, O.-C.; Craciun, L.; Ficai, D.; Ficai, A.; Andronescu, E. Bioactive Glass—An Extensive Study of the Preparation and Coating Methods. Coatings. 2021, 11(11), 1386. DOI: 10.3390/coatings11111386.
  • Azadani, R. N.; Sabbagh, M.; Salehi, H.; Cheshmi, A.; Beena Kumari, A. R.; Erabi, G. Sol-Gel: Uncomplicated, Routine and Affordable Synthesis Procedure for Utilization of Composites in Drug Delivery. J. Compos. Compd. 2021, 2(5), 57–70. DOI: 10.52547/jcc.3.1.6.
  • Mantha, S.; Pillai, S.; Khayambashi, P.; Upadhyay, A.; Zhang, Y.; Tao, O.; Pham, H. M.; Tran, S. D. Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Mater. (Basel). 2019, 12(20), 3323. DOI: 10.3390/ma12203323.
  • Bollino, F.; Catauro, M. Sol-Gel Technology to Prepare Advanced Coatings. In Photoenergy and Thin Film Materials, 1st., 2019, 321–378.
  • Gonçalves, M. C. Sol-Gel Silica Nanoparticles in Medicine: A Natural Choice. Design, Synthesis and Products. Molecules. 2018, 23(8), 2021. DOI: 10.3390/molecules23082021.
  • Xu, Z.; Chen, X.; Dong, S. Electrochemical Biosensors Based on Advanced Bioimmobilization Matrices. TrAC Trends Anal. Chem. 2006, 25(9), 899–908. DOI: 10.1016/j.trac.2006.04.008.
  • Panwar, V.; Dutta, T. Diatom Biogenic Silica As a Felicitous Platform for Biochemical Engineering: Expanding Frontiers. ACS Appl. Bio. Mater. 2019, 2(6), 2295–2316. DOI: 10.1021/acsabm.9b00050.
  • Festas, A. J.; Ramos, A.; Davim, J. P. Medical Devices Biomaterials–A Review. Proc. Inst. Mech. Eng. Part L J Mater. Des. Appl. 2020, 234(1), 218–228. DOI: 10.1177/1464420719882458.
  • Pant, G.; Reddy, M. S. S.; Praveen, P.; Parashar, A. K.; Kareem, S. A.; Nijhawan, G., Advanced Casting Techniques for Complex-Shaped Components: Design, Simulation and Process Control. In E3S Web of Conferences, Karnataka, India, 2023, vol. 430, p. 1110.
  • Dessale, M.; Mengistu, G.; Mengist, H. M. Nanotechnology: A Promising Approach for Cancer Diagnosis, Therapeutics and Theragnosis. Int. J. Nanomed. 2022, 17, 3735–3749. DOI: 10.2147/IJN.S378074.
  • Malik, S.; Muhammad, K.; Waheed, Y. Emerging Applications of Nanotechnology in Healthcare and Medicine. Molecules. 2023, 28(18), 6624. DOI: 10.3390/molecules28186624.
  • Dang, Y.; Guan, J. Nanoparticle-Based Drug Delivery Systems for Cancer Therapy. Smart Mater. Med. 2020, 1, 10–19. DOI: 10.1016/j.smaim.2020.04.001.
  • Mbunge, E.; Muchemwa, B.; Batani, J.; Batani, J. Sensors and Healthcare 5.0: Transformative Shift in Virtual Care Through Emerging Digital Health Technologies. Glob. Heal. J. 2021, 5(4), 169–177. others. DOI: 10.1016/j.glohj.2021.11.008.
  • Singh, A.; Amiji, M. M. Application of Nanotechnology in Medical Diagnosis and Imaging. Curr. Opin. Biotechnol. 2022, 74, 241–246. DOI: 10.1016/j.copbio.2021.12.011.
  • Sim, S.; Wong, N. K. Nanotechnology and Its Use in Imaging and Drug Delivery. Biomed. Reports. 2021, 14(5), 1–9. DOI: 10.3892/br.2021.1418.
  • Lal, H. M.; Uthaman, A.; Thomas, S. Silver Nanoparticle As an Effective Antiviral Agent. In Polymer Nanocomposites Based on Silver Nanoparticles, 1st., 2021, 247–265.
  • Erkoc, P.; Ulucan-Karnak, F. Nanotechnology-Based Antimicrobial and Antiviral Surface Coating Strategies. Prosthesis. 2021, 3(1), 25–52. DOI: 10.3390/prosthesis3010005.
  • Pramanik, P. K. D.; Solanki, A.; Debnath, A.; Nayyar, A.; El-Sappagh, S.; Kwak, K.-S. Advancing Modern Healthcare with Nanotechnology, Nanobiosensors, and Internet of Nano Things: Taxonomies, Applications, Architecture, and Challenges. IEEE. Access. 2020, 8, 65230–65266. DOI: 10.1109/ACCESS.2020.2984269.
  • Tang, Y.; Wang, X.; Li, J.; Nie, Y.; Liao, G.; Yu, Y.; Li, C. Overcoming the Reticuloendothelial System Barrier to Drug Delivery with a “Don’t-Eat-Us” Strategy. ACS. Nano. 2019, 13(11), 13015–13026. DOI: 10.1021/acsnano.9b05679.
  • Dirisala, A.; Uchida, S.; Li, J.; Van Guyse, J. F. R.; Hayashi, K.; Vummaleti, S. V. C.; Kaur, S.; Mochida, Y.; Fukushima, S.; Kataoka, K., et al. Effective mRNA Protection by Poly (L-Ornithine) Synergizes with Endosomal Escape Functionality of a Charge-Conversion Polymer Toward Maximizing mRNA Introduction Efficiency. Macromolecular Rapid. Communications. 2022, 43(12), 2100754.
  • Engel, E.; Michiardi, A.; Navarro, M.; Lacroix, D.; Planell, J. A. Nanotechnology in Regenerative Medicine: The Materials Side. Trends. Biotechnol. 2008, 26(1), 39–47. DOI: 10.1016/j.tibtech.2007.10.005.
  • Kumari, G.; Abhishek, K.; Singh, S.; Hussain, A.; Altamimi, M. A.; Madhyastha, H.; Webster, T. J.; Dev, A. A Voyage from 3D to 4D Printing in Nanomedicine and Healthcare: Part II. Nanomed. 2022, 17(4), 255–270. DOI: 10.2217/nnm-2021-0454
  • Wang, Q.; Zhang, Y.; Li, Q.; Chen, L.; Liu, H.; Ding, M.; Dong, H.; Mou, Y. Therapeutic Applications of Antimicrobial Silver-Based Biomaterials in Dentistry. Int. J. Nanomed. 2022, 17, 443–462. DOI: 10.2147/IJN.S349238.
  • Vasiliu, S.; Racovita, S.; Gugoasa, I. A.; Lungan, M.-A.; Popa, M.; Desbrieres, J. The Benefits of Smart Nanoparticles in Dental Applications. Int. J. Mol. Sci. 2021, 22(5), 2585. DOI: 10.3390/ijms22052585.
  • Black, J. Biological Performance of Materials: Fundamentals of Biocompatibility; United States: CRC Press, 2005.
  • Geddes, L. A.; Baker, L. E. Principles of Applied Biomedical Instrumentation; Hoboken, New Jersey: John Wiley & Sons, 1991.
  • Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X.-M. Fiber-Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications. Adv. Mater. 2014, 26(31), 5310–5336. DOI: 10.1002/adma.201400633.
  • Velmurugan, C.; Senthilkumar, V.; Dinesh, S.; Arulkirubakaran, D. Machining of NiTi-Shape Memory Alloys-A Review. Mach. Sci. Technol. 2018, 22(3), 355–401. DOI: 10.1080/10910344.2017.1365894.
  • RB, J. R.; Kennedy, S. M. A Complete Overview of Self-Healing Composites Including Its Models in Aeronautical Systems. Polym. Technol. Mater. 2024, 63(9), 1–32.
  • Barnes, T. A.; Pashby, I. R. Joining Techniques for Aluminium Spaceframes Used in Automobiles: Part II—Adhesive Bonding and Mechanical Fasteners. J. Mater. Process. Technol. 2000, 99(1–3), 72–79. DOI: 10.1016/S0924-0136(99)00361-1.
  • Kim, D.-H.; Lee, H.; Lee, Y. K.; Nam, J.-M.; Levchenko, A. Biomimetic Nanopatterns As Enabling Tools for Analysis and Control of Live Cells. Adv. Mater. 2010, 22(41), 4551–4566. DOI: 10.1002/adma.201000468.
  • Kulkarni, M.; Mazare, A.; Schmuki, P.; Iglič, A.; Seifalian, A. Biomaterial Surface Modification of Titanium and Titanium Alloys for Medical Applications. Nanomed. 2014, 111(615), 111.
  • Jefferies, S. R. Abrasive Finishing and Polishing in Restorative Dentistry: A State-Of-The-Art Review. Dent. Clin. North Am. 2007, 51(2), 379–397. DOI: 10.1016/j.cden.2006.12.002
  • Jem, K. J.; Tan, B. The Development and Challenges of Poly (Lactic Acid) and Poly (Glycolic Acid). Adv. Ind. Eng. Polym. Res. 2020, 3(2), 60–70. DOI: 10.1016/j.aiepr.2020.01.002.
  • Kamaly, N.; Xiao, Z.; Valencia, P. M.; Radovic-Moreno, A. F.; Farokhzad, O. C. Targeted Polymeric Therapeutic Nanoparticles: Design, Development and Clinical Translation. Chem. Soc. Rev. 2012, 41(7), 2971–3010. DOI: 10.1039/c2cs15344k.
  • Maharaj, P. S. R.; Vasanthanathan, A.; Ebenezer, F.; Giriharan, R.; Athithiyan, M., “In situ Bio Printing of Carbon Fiber Reinforced PEEK Hip Implant Stem,” In AIP Conference Proceedings, Vellore, India, 2022, vol. 2653, no. 1.
  • Jani, J. M.; Leary, M.; Subic, A.; Gibson, M. A. A Review of Shape Memory Alloy Research, Applications and Opportunities. Mater. Des. 2014, 56, 1078–1113. DOI: 10.1016/j.matdes.2013.11.084.
  • Montenegro, E. O. S.; Grassi, E. N. D.; Simões, J. B.; da Silva, P. C. S.; De Araújo, C. J. NiTi Shape Memory Alloy Cellular Meshes: Manufacturing by Investment Casting and Characterization. Smart Mater. Struct. 2020, 29(12), 125008. DOI: 10.1088/1361-665X/abadd1.
  • Vahabli, E.; Mann, J.; Heidari, B. S.; Lawrence‐Brown, M.; Norman, P.; Jansen, S.; De‐Juan‐Pardo, E.; Doyle, B. The Technological Advancement to Engineer Next-Generation Stent-Grafts: Design, Material, and Fabrication Techniques. Adv. Healthc. Mater. 2022, 11(13), 2200271. DOI: 10.1002/adhm.202200271.
  • Jemat, A.; Ghazali, M. J.; Razali, M.; Otsuka, Y. Surface Modifications and Their Effects on Titanium Dental Implants. Biomed Res. Int. 2015, 2015, 1–11. DOI: 10.1155/2015/791725.
  • Koh, Y.-G.; Park, K.-M.; Lee, J.-A.; Nam, J.-H.; Lee, H.-Y.; Kang, K.-T. Total Knee Arthroplasty Application of Polyetheretherketone and Carbon-Fiber-Reinforced Polyetheretherketone: A Review. Mater. Sci. Eng. C. 2019, 100, 70–81. DOI: 10.1016/j.msec.2019.02.082.
  • Kennedy, S. M.; Vasanthanathan, A.; Robert RB, J.; Amudhan, K. Advancements and Prospects of Polymer-Based Hybrid Composites for Bone Plate Applications. Polym. Technol. Mater. 2024, 63(1), 68–87. DOI: 10.1080/25740881.2023.2274564.
  • Zhang, W.; Mazzarello, R.; Wuttig, M.; Ma, E. Designing Crystallization in Phase-Change Materials for Universal Memory and Neuro-Inspired Computing. Nat. Rev. Mater. 2019, 4(3), 150–168. DOI: 10.1038/s41578-018-0076-x.
  • Jain, S. Mechanical Properties of Powders for Compaction and Tableting: An Overview. Pharm. Sci. Technolo. Today. 1999, 2(1), 20–31. DOI: 10.1016/S1461-5347(98)00111-4.
  • Singh, S.; Singh, A. B.; Kumar, M.; Meena, M. L.; Dangayach, G. S., “Dissimilar Metal Welds Used in AUSC Power Plant, Fabrication and Structural Integrity Issues,” In IOP Conference Series: Materials Science and Engineering, Jaipur, India, 2021, vol. 1017, no. 1, p. 12022.
  • Balla, V. K.; Kate, K. H.; Satyavolu, J.; Singh, P.; Tadimeti, J. G. D. Additive Manufacturing of Natural Fiber Reinforced Polymer Composites: Processing and Prospects. Compos. Part B Eng. 2019, 174, 106956. DOI: 10.1016/j.compositesb.2019.106956.
  • Mendes, G. C. C.; Brandao, T. R. S.; Silva, C. L. M. Ethylene Oxide Sterilization of Medical Devices: A Review. Am. J. Infect. Control. 2007, 35(9), 574–581. DOI: 10.1016/j.ajic.2006.10.014.
  • AlTawy, R.; Youssef, A. M. Security Tradeoffs in Cyber Physical Systems: A Case Study Survey on Implantable Medical Devices. IEEE. Access. 2016, 4, 959–979. DOI: 10.1109/ACCESS.2016.2521727.
  • Kashyap, U. N.; Gupta, V.; Raghunandan, H. V. Comparison of Drug Approval Process in United States & Europe. J. Pharm. Sci. Res. 2013, 5(6), 131.
  • Norcini, J. J.; McKinley, D. W. Assessment Methods in Medical Education. Teach. Teach. Educ. 2007, 23(3), 239–250. DOI: 10.1016/j.tate.2006.12.021.
  • Singh, A. B.; Singh, S.; Dangayach, G. S.; Meena, M. L.; Kumar, M. Comparative Study of SAW and ASAW Process on ASTM A709 Grade 36 Steel Welds. Mater. Today Proc. 2023.
  • Lohr, K. N.; Schroeder, S. A. Medicare: A Strategy for Quality Assurance, Volume I. New Engl. J. Med. 1990, 322(10), 707–712. DOI: 10.1056/NEJM199003083221031.
  • Lees, F. Lees’ Loss Prevention in the Process Industries: Hazard Identification, Assessment and Control; Oxford, United Kingdom: Butterworth-Heinemann, 2012.
  • Chuah, S. H.-W.; Rauschnabel, P. A.; Krey, N.; Nguyen, B.; Ramayah, T.; Lade, S. Wearable Technologies: The Role of Usefulness and Visibility in Smartwatch Adoption. Comput. Human Behav. 2016, 65, 276–284. DOI: 10.1016/j.chb.2016.07.047.
  • Constant, N.; Douglas-Prawl, O.; Johnson, S.; Mankodiya, K., “Pulse-Glasses: An Unobtrusive, Wearable HR Monitor with Internet-Of-Things Functionality,” In 2015 IEEE 12th international conference on wearable and implantable body sensor networks (BSN), Cambridge, MA, USA, 2015, pp. 1–5.
  • Khandwalla, R. M.; Birkeland, K.; Zimmer, R.; Banet, M.; Pede, S.; Kedan, I. Predicting Heart Failure Events with Home Monitoring: Use of a Novel, Wearable Necklace to Measure Stroke Volume, Cardiac Output and Thoracic Impedance. J. Am. Coll. Cardiol. 2016, 67(13S), 1296. DOI: 10.1016/S0735-1097(16)31297-9.
  • Solovei, D.; Žák, J.; Majzl\’\iková, P.; Sedláček, J.; Hubálek, J. Chemical Sensor Platform for Non-Invasive Monitoring of Activity and Dehydration. Sensors. 2015, 15(1), 1479–1495. DOI: 10.3390/s150101479.
  • Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D., et al. Fully Integrated Wearable Sensor Arrays for Multiplexed in situ Perspiration Analysis. Nature. 2016, 529(7587), 509–514.
  • Huang, H.; Fan, C.; Li, M.; Nie, H.-L.; Wang, F.-B.; Wang, H.; Wang, R.; Xia, J.; Zheng, X.; Zuo, X., et al. COVID-19: A Call for Physical Scientists and Engineers. ACS. Nano. 2020, 14(4), 3747–3754.
  • Weiss, C.; Carriere, M.; Fusco, L.; Capua, I.; Regla-Nava, J. A.; Pasquali, M.; Scott, J. A.; Vitale, F.; Unal, M. A.; Mattevi, C., et al. Toward Nanotechnology-Enabled Approaches Against the COVID-19 Pandemic. ACS. Nano. 2020, 14(6), 6383–6406.
  • Tang, Z.; Kong, N.; Zhang, X.; Liu, Y.; Hu, P.; Mou, S.; Liljeström, P.; Shi, J.; Tan, W.; Kim, J. S., et al. A Materials-Science Perspective on Tackling COVID-19. Nat. Rev. Mater. 2020, 5(11), 847–860.
  • Ivanoska-Dacikj, A.; Stachewicz, U. Smart Textiles and Wearable Technologies–Opportunities Offered in the Fight Against Pandemics in Relation to Current COVID-19 State. Rev. Adv. Mater. Sci. 2020, 59(1), 487–505. DOI: 10.1515/rams-2020-0048.
  • Liu, Q.; Tai, H.; Yuan, Z.; Zhou, Y.; Su, Y.; Jiang, Y. A High-Performances Flexible Temperature Sensor Composed of Polyethyleneimine/Reduced Graphene Oxide Bilayer for Real-Time Monitoring. Adv. Mater. Technol. 2019, 4(3), 1800594. DOI: 10.1002/admt.201800594.
  • Nightingale, A. M., et al. Monitoring Biomolecule Concentrations in Tissue Using a Wearable Droplet Microfluidic-Based Sensor. Nat. Commun. 2019, 10(1), 2741.
  • Acar, G.; Ozturk, O.; Golparvar, A. J.; Elboshra, T. A.; Böhringer, K.; Yapici, M. K. Wearable and Flexible Textile Electrodes for Biopotential Signal Monitoring: A Review. Electronics. 2019, 8(5), 479. DOI: 10.3390/electronics8050479.
  • Khan, S.; Ali, S.; Bermak, A. Recent Developments in Printing Flexible and Wearable Sensing Electronics for Healthcare Applications. Sensors. 2019, 19(5), 1230. DOI: 10.3390/s19051230.
  • Lou, Z.; Wang, L.; Jiang, K.; Wei, Z.; Shen, G. Reviews of Wearable Healthcare Systems: Materials, Devices and System Integration. Mater. Sci. Eng. R Rep. 2020, 140, 100523. DOI: 10.1016/j.mser.2019.100523.
  • Nasiri, S.; Khosravani, M. R. Progress and Challenges in Fabrication of Wearable Sensors for Health Monitoring. Sens. Actuators A Phys. 2020, 312, 112105. DOI: 10.1016/j.sna.2020.112105.
  • Chen, Y.; Kim, Y.-S.; Tillman, B. W.; Yeo, W.-H.; Chun, Y. Advances in Materials for Recent Low-Profile Implantable Bioelectronics. Mater. (Basel). 2018, 11(4), 522. DOI: 10.3390/ma11040522.
  • Munief, W.-M.; Lanche, R.; Lu, X.; Ingebrandt, S.; Pachauri, V. Wafer-Scale Fabrication of Microelectrode Arrays on Optically Transparent Polymer Foils for the Integration of Flexible Nanoscale Devices. Flex. Print. Electron. 2018, 3(4), 44001. DOI: 10.1088/2058-8585/aae3b6.
  • Kim, S.; Zhang, X.; Daugherty, R.; Lee, E.; Kunnen, G.; Allee, D. R.; Forsythe, E.; Chae, J. Design and Implementation of Electrostatic Micro-Actuators in Ultrasonic Frequency on a Flexible Substrate, PEN (Polyethylene Naphthalate). Sens. Actuators. A. Phys. 2013, 195, 198–205. DOI: 10.1016/j.sna.2012.10.010.
  • Go, M.; Hwang, B.; Lim, S. Highly Reliable Mulberry Paper (Hanji)-Based Electrode with Printed Silver Nanowire/Zinc Oxide Hybrid for Soft Electronics. Mater. Manuf. Process. 2019, 34(14), 1605–1611. DOI: 10.1080/10426914.2019.1594266.
  • Wang, L.; Chen, D.; Jiang, K.; Shen, G. New Insights and Perspectives into Biological Materials for Flexible Electronics. Chem. Soc. Rev. 2017, 46(22), 6764–6815. DOI: 10.1039/C7CS00278E.
  • Fan, S.; Zhang, Y.; Huang, X.; Geng, L.; Shao, H.; Hu, X.; Zhang, Y. Silk Materials for Medical, Electronic and Optical Applications. Sci. China Technol. Sci. 2019, 62(6), 903–918. DOI: 10.1007/s11431-018-9403-8.
  • Liu, Z.; Xu, J.; Chen, D.; Shen, G. Flexible Electronics Based on Inorganic Nanowires. Chem. Soc. Rev. 2015, 44(1), 161–192. DOI: 10.1039/C4CS00116H.
  • Wang, C.; Xia, K.; Wang, H.; Liang, X.; Yin, Z.; Zhang, Y. Advanced Carbon for Flexible and Wearable Electronics. Adv. Mater. 2019, 31(9), 1801072. DOI: 10.1002/adma.201801072.
  • Adão Martins, N. R.; Annaheim, S.; Spengler, C. M.; Rossi, R. M. Fatigue Monitoring Through Wearables: A State-Of-The-Art Review. Front. Physiol. 2021, 12, 790292. DOI: 10.3389/fphys.2021.790292
  • Jin, H.; Abu-Raya, Y. S.; Haick, H. Advanced Materials for Health Monitoring with Skin-Based Wearable Devices. Adv. Healthc. Mater. 2017, 6(11), 1700024. DOI: 10.1002/adhm.201700024
  • Yousef, M.; Hafizh, M.; Sassi, S.; Adeli, G. Development of a Wearable Wireless Sensing Device for Characterization of Hand Tremors Through Vibration Frequency Analysis. J. Vib. Eng. Technol. 2023, 11(7), 3109–3120. DOI: 10.1007/s42417-022-00734-2
  • Awolusi, I.; Marks, E.; Hallowell, M. Wearable Technology for Personalized Construction Safety Monitoring and Trending: Review of Applicable Devices. Autom. Constr. 2018, 85, 96–106. DOI: 10.1016/j.autcon.2017.10.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.