20
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Preparation of green-stretchable hydrogel based on succinic acid-based monomer ‎with antibacterial properties

, , , &
Pages 1769-1779 | Received 06 Jan 2024, Accepted 20 May 2024, Published online: 28 May 2024

References

  • Dabbaghi, A.; Jahandideh, A.; Kabiri, K.; Ramazani, A.; Zohuriaan-Mehr, M. J. The Synthesis and Incorporation of a Star-Shaped Bio-Based Modifier in the Acrylic Acid Based Superabsorbent: A Strategy to Enhance the Absorbency Under Load. Polym. Plast. Technol. Eng. 2019, 1678(15), 1678–1690. DOI: 10.1080/25740881.2018.1563140.
  • Sabzevari, A.; Kabiri, K. Converting Date Seed Biomass into Highly Absorbing Hydrogel. Iran. Polym. J. 2016, 25(7), 597. DOI: 10.1007/s13726-016-0450-8.
  • Sabzevari, A.; Rayat Pisheh, H.; Ansari, M.; Salati, A. Progress in Bioprinting Technology for Tissue Regeneration. J. Artif. Organs. 2023, 26(4), 255. DOI: 10.1007/s10047-023-01394-z.
  • Ansari, M.; Darvishi, A.; Sabzevari, A. Frontiers in Bioengineering and Biotechnology. Front. Bioeng. Biotechnol. 2024, 12, 1340893. DOI: 10.3389/fbioe.2024.1340893.
  • Haq, M.; Burgueño, R.; Mohanty, A. K.; Misra, M. Hybrid Bio-Based Composites from Blends of Unsaturated Polyester and Soybean Oil Reinforced with Nanoclay and Natural Fibers. Compos. Sci. Technol. 2008, 68(15–16), 3344. DOI: 10.1016/j.compscitech.2008.09.007.
  • Dabbaghi, A.; Jahandideh, A.; Kabiri, K.; Ramazani, A.; Zohuriaan-Mehr, M. J. Novel Environmentally Friendly Superabsorbent Hydrogel Hybrids from Synthesized Star-Shaped Bio-Based Monomers and Acrylic Acid. J Polym. Environ. 2019, 1988(9), 1988–2000. DOI: 10.1007/s10924-019-01486-z.
  • Sabzevari, A.; Alayi, M.; Kabiri, K.; Mehr, M. J. Z. Phthalic Acid-Derived Diluents As an Effective Alternative to Styrene in Optimization of Vinyl Ester Resins Properties. Polym. Bull. 2022, 80(11), 12333. DOI: 10.1007/s00289-022-04640-1.
  • Dabbaghi, A., Kabiri, K., Ramazani, A., Zohuriaan‐Mehr, M. J., Jahandideh, A. Synthesis of Bio-Based Internal and External Cross-Linkers Based on Tannic Acid for Preparation of Antibacterial Superabsorbents. Polym. Adv. Technol. 2019, 30(11), 2894. DOI: 10.1002/pat.4722.
  • Amiri, F.; Sabzevari, A.; Kabiri, K.; Bouhendi, H.; Siahkamari, M. Conversion of Lignocellulosic Bagasse Biomass into Hydrogel Iranian J. Polymer Sci. Tech. 2017, 29, 453.
  • Aswathy, S.; Narendrakumar, U.; Manjubala, I. Commercial Hydrogels for Biomedical Applications. Heliyon 2020, 6(4), e03719. DOI: 10.1016/j.heliyon.2020.e03719.
  • Zhou, H.; Zheng, L.; Meng, Q.; Tang, R.; Wang, Z.; Dang, B.; Shen, X.; Sun, Q. A Flexible Hydrogel Tactile Sensor with Low Compressive Modulus and Dynamic Piezoresistive Response Regulated by Lignocellulose/Graphene Aerogels. J. Mater. Chem. C 2021, 9(37), 12895. DOI: 10.1039/D1TC02762J.
  • Guo, Y.; Zheng, K.; Wan, P. A Flexible Stretchable Hydrogel Electrolyte for Healable All-In-One Configured Supercapacitors. Small 2018, 14(14), 1704497. DOI: 10.1002/smll.201704497.
  • Zhao, L.; Ren, Z.; Liu, X.; Ling, Q.; Li, Z.; Gu, H. A Multifunctional, Self-Healing, Self-Adhesive, and Conductive Sodium Alginate/Poly(vinyl alcohol) Composite Hydrogel As a Flexible Strain Sensor. ACS Appl. Mater. Interfaces 2021, 2021(9), 11344–11355. DOI: 10.1021/acsami.1c01343.
  • Semsarzadeh, M. A.; Sabzevari, A. Highly Effective Organometallic-Mediated Radical Polymerization of Vinyl Acetate Using Alumina-Supported C O(acac) 2 Catalyst: A Case Study of Adsorption and Polymerization. J. Appl. Polym. Sci. 2018, 135(13), 46057. DOI: 10.1002/app.46057.
  • Semsarzadeh, M. A.; Sabzevari, A. Adsorption Process of Co(acac)2 Catalyst on the Surface of Mesoporous Silica Gel Particles: An Effective Method to Make a New Supported Catalyst for the Controlled Radical Polymerization of Vinyl Acetate. J. Iran. Chem. Soc. 2020, 29, 2293. DOI: 10.1007/s13738-020-01925-y.
  • Semsarzadeh, M. A.; Sabzevari, A.; Razavi, S. M. Synthesis of Highly Pure Poly (vinylacetate) by One-step Controlled Radical Polymerization in the Presence of Cobalt Catalyst Using Cross Linked Suspended Polyvinyl Acetate Particles J. Appl. Res. Chem. 2018, 2, 119.
  • Zhang, F.; Zhou, J.; Gu, Z.; Yang, M.; Li, S.; Song, Y.; Fan, J.-B.; Meng, J.; Wu, P.; Jiang, L. Flexible Dry Hydrogel with Lamella-Like Structure Engineered via Dehydration in Poor Solvent. CCS Chem. 2020, 2(1), 533. DOI: 10.31635/ccschem.019.201900007.
  • Agarwala, S.; Lee, J. M.; Ng, W. L.; Layani, M.; Yeong, W. Y.; Magdassi, S. A Novel 3D Bioprinted Flexible and Biocompatible Hydrogel Bioelectronic Platform. Biosens. Bioelectron. 2018, 102, 365. DOI: 10.1016/j.bios.2017.11.039.
  • Zhou, Z.; He, Z.; Yin, S.; Xie, X.; Yuan, W. Adhesive, Stretchable and Antibacterial Hydrogel with External/self-Power for Flexible Sensitive Sensor Used As Human Motion Detection. Compos. B Eng. 2021, 220, 108984. DOI: 10.1016/j.compositesb.2021.108984.
  • Sun, X.; Qin, Z.; Ye, L.; Zhang, H.; Yu, Q.; Wu, X.; Li, J.; Yao, F. Chem. Eng. J. 2020, 382, 122832. DOI: 10.1016/j.cej.2019.122832.
  • Hu, L.; Wang, Y.; Liu, Q.; Liu, M.; Yang, F.; Wang, C.; Pan, P.; Wang, L.; Chen, L.; Chen, J. Real-Time Monitoring Flexible Hydrogels Based on Dual Physically Cross-Linked Network for Promoting Wound Healing. J. Chen. Chinese Chem. Letters 2023, 34(10), 108262. DOI: 10.1016/j.cclet.2023.108262.
  • Reyes‐Martínez, J. E.; Ruiz‐Pacheco, J. A.; Flores‐Valdéz, M. A.; Elsawy, M. A.; Vallejo‐Cardona, A. A.; Castillo‐Díaz, L. A. Advanced Hydrogels for Treatment of Diabetes. J. Tissue Eng. Regener. Med. 2019, 13(8), 137575–1393. DOI: 10.1002/term.2880.
  • Meng, X.; Ma, J.; Xie, K.; Hong, L.; Zhang, J.; Hu, Z. Tunable Random Laser in Flexible Hydrogel. Opt. Mater. 2021, 115, 111027. DOI: 10.1016/j.optmat.2021.111027.
  • Moini, N.; Zohuriaan-Mehr, M.; Kabiri, K.; Khonakdar, H. “Click” on SAP: Superabsorbent Polymer Surface Modification via CuAAC Reaction Toward Antibacterial Activity and Improved Swollen Gel Strength. Appl. Surf. Sci. 2019, 1131–1144. DOI: 10.1016/j.apsusc.2019.04.243.
  • Zohuriaan-Mehr, M. J.; Kabiri, K. Superabsorbent Polymer Materials: A Review. Iran. Polym. J. 2008, 17, 451.
  • Sabzevari, A.; Kabiri, K.; Siahkamari, M. Induced Superabsorbency in Polyester Fiber. Iran. Polym. J. 2016, 25(7), 635. DOI: 10.1007/s13726-016-0454-4.
  • Beaudoin, G.; Lasri, A.; Zhao, C.; Liberelle, B.; De Crescenzo, G.; Zhu, X.-X. Making Hydrophilic Polymers Thermoresponsive: The Upper Critical Solution Temperature of Copolymers of Acrylamide and Acrylic Acid. Macromolecules 2021, 54(17), 7963. DOI: 10.1021/acs.macromol.1c00952.
  • Xie, R.; Weisen, A. R.; Lee, Y.; Aplan, M. A.; Fenton, A. M.; Masucci, A. E.; Kempe, F.; Sommer, M.; Pester, C. W.; Colby, R., et al. Glass Transition Temperature from the Chemical Structure of Conjugated Polymers. Nat. Commun. 2020, 11(1), 11, 893. DOI: 10.1038/s41467-020-14656-8.
  • Bialik-Wąs, K.; Pluta, K.; Malina, D.; Barczewski, M.; Malarz, K.; Mrozek-Wilczkiewicz, A. The Effect of Glycerin Content in Sodium Alginate/Poly(vinyl alcohol)-Based Hydrogels for Wound Dressing Application. IJMS 2021, 22(21), 22, 12022. DOI: 10.3390/ijms222112022.
  • Jahandideh, A.; Moini, N.; Bajgholi, S.; Zohuriaan‐Mehr, M. J.; Kabiri, K. Making Vinyl Ester Resin Greener: Succinic Acid–Glycerol-derived Reactive Diluent as an Alternative to Styrene. J. Appl. Polym. Sci. 2020, 137(38), 49144. DOI: 10.1002/app.49144.
  • Karami, Z.; Nademi, F.; Zohuriaan‐Mehr, M. J.; Rostami, A. An Efficient Fully Bio-Based Reactive Diluent for Epoxy Thermosets: 2-[(Oxiran-2-Ylmethoxy) Methyl] Furan versus a Petroleum-Based Counterpart. J. Appl. Polym. Sci. 2017, 134(25), 44957. DOI: 10.1002/app.44957.
  • Goiti, E.; Huglin, M. B.; Rego, J. M. Some Observations on the Copolymerization of Styrene with Furfuryl Methacrylate. Polymer 2001, 42(26), 10187. DOI: 10.1016/S0032-3861(01)00577-8.
  • Jahandideh, A.; Esmaeili, N.; Muthukumarappan, K. Effect of Lactic Acid Chain Length on Thermomechanical Properties of Star‐la‐xylitol Resins and Jute Reinforced Biocomposites. Polym. Int. 2017.
  • Tucci, M.; Benghuzzi, H. Evaluation of the Antimicrobial Efficacy of Green Tea Extract (egcg) ‎against Streptococcus Pyogenes in Vitro-biomed. Biomed. Sci. Instrum. 2011, 47, 177.
  • Pandey, A.; Negi, P. S. Phytochemical Composition, in Vitro antioxidant Activity and Antibacterial Mechanisms of Neolamarckia Cadamba fruits Extracts. Nat. Prod. Res. 2018, 32(10), 1189. DOI: 10.1080/14786419.2017.1323209.
  • Kaczmarek, B. Tannic Acid with Antiviral and Antibacterial Activity As a Promising Component of Biomaterials—A Minireview. Materials 2020, 13(14), 3224. DOI: 10.3390/ma13143224.
  • Yang, J.; Han, C.-R.; Duan, J.-F.; Xu, F.; Sun, R.-C. Insitu Grafting Silica Nanoparticles Reinforced Nanocomposite Hydrogels. Nanoscale 2013, 5(22), 10858. DOI: 10.1039/c3nr04252a.
  • Jahandideh, A.; Moini, N.; Kabiri, K.; Zohuriaan-Mehr, M. J. A Green Strategy to Endow Superabsorbents with Stretchability and Self-Healability. Chem. Eng. J. 2019, 370, 274. DOI: 10.1016/j.cej.2019.03.149.
  • Dong, G.; Liu, H.; Yu, X.; Zhang, X.; Lu, H.; Zhou, T.; Cao, J. Antimicrobial and Anti-Biofilm Activity of Tannic Acid Against Staphylococcus Aureus. J. Cao. Nat. Prod. Res. 2018, 32(18), 2225–2228. DOI: 10.1080/14786419.2017.1366485.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.