36
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Nanoclay Reinforced Thermoplastic Polymeric Nanocomposite Membranes—State-of-the-Art and Progresses

Pages 1819-1841 | Received 21 Mar 2024, Accepted 22 May 2024, Published online: 04 Jun 2024

References

  • Habibolah Zargar, M. R.; Ehsani, M.; Ebrahimzade, A.; Nobre, M. A.; Mousavi Shoushtari, S. A.; Khonakdar, H. A. Resiliency and Dyeability of Environmentally Friendly Polypropylene/Poly (Trimethylene Terephthalate)/Nanoclay Blend Nanocomposite Fibers. Polym. Plast. Technol. Eng. 2024, 63(1), 55–67. DOI: 10.1080/25740881.2023.2274561.
  • Balçık Tamer, Y. Development of Citric Acid Crosslinked Biodegradable Chitosan/Hydroxyethyl Cellulose/organo-Modified Nanoclay Composite Films as Sustainable Food Packaging Materials. Polym. Plast. Technol. Eng. 2023, 62(9), 1138–1156. DOI: 10.1080/25740881.2023.2195908.
  • Idumah, C. I.; Ogbu, J. E. Flame Retardant Mechanisms of Montmorillonites, Layered Double Hydroxides and Molybdenum Disulfide Polymeric Nanoarchitectures for Safety in Extreme Environments. Polym. Plast. Technol. Eng. 2024, 63(1), 1–28. DOI: 10.1080/25740881.2023.2267097.
  • Kim, H. C.; Kwon, Y. R.; Kim, J. S.; Kim, J.-H.; Kim, D. H. Surface-Crosslinking in the Presence of Nanoclay and Characteristics of the Itaconic Acid-Based Superabsorbent Polymer Composites. Polym. Plast. Technol. Eng. 2023, 62(6), 701–711. DOI: 10.1080/25740881.2022.2133613.
  • Bose, B. A.; Bhadrapriya, B.; Kalarikkal, N. ‘An Exploration of Some Essential Inorganic Nanofillers Apart from Metal Oxides, Metallic Particles, and Carbon-Based Nanofillers’: ‘Nanofillers’; CRC Press: Florida, USA, 2023; pp 85–97.
  • Idumah, C. I.; Okonkwo, U.; Obele, C. Recently Emerging Advancements in Montmorillonite Polymeric Nanoarchitectures and Applications. Clean. Mater. 2022, 4, 100071. DOI: 10.1016/j.clema.2022.100071.
  • Ejeta, L. O. Nanoclay/Organic Filler-Reinforced Polymeric Hybrid Composites As Promising Materials for Building, Automotive, and Construction Applications-A State-Of-The-Art Review. Compos. Interfaces 2023, 30(12), 1–24. DOI: 10.1080/09276440.2023.2220217.
  • Tripathi, M.; Singh, B. ‘Synthesis of Green Nanocomposite Material for Engineering application’: ‘Sustainable Nanotechnology for Environmental Remediation’; Elsevier: Netherlands, 2022; pp 135–157.
  • Shokrani, H.; Shokrani, A.; Jouyandeh, M.; Seidi, F.; Gholami, F.; Kar, S.; Munir, M. T.; Kowalkowska-Zedler, D.; Zarrintaj, P.; Rabiee, N. Green Polymer Nanocomposites for Skin Tissue Engineering. Acs Appl. Bio. Mater. 2022, 5(5), 2107–2121. DOI: 10.1021/acsabm.2c00313.
  • Kumar, J.; Jatoi, A. S.; Mazari, S. A.; Ali, E. Y.; Hossain, N.; Abro, R.; Mubarak, N. M.; Sabzoi, N. ‘Advanced Green Nanocomposite Materials for Wastewater treatment’: ‘Sustainable Nanotechnology for Environmental Remediation’; Elsevier: Netherlands, 2022; pp 297–321.
  • Zanini, N. C.; Ferreira, R. R.; Barbosa, R. F.; de Souza, A. G.; Camani, P. H.; Oliveira, S. A.; Mulinari, D. R.; Rosa, D. S. Two Different Routes to Prepare Porous Biodegradable Composite Membranes Containing Nanoclay. J. Appl. Polym. Sci. 2023, 140, e54630.
  • Wu, Q.; Liao, J.; Yang, H. Recent Advances in Kaolinite Nanoclay as Drug Carrier for Bioapplications: A Review. Adv. Sci. 2023, 10(25), 2300672. DOI: 10.1002/advs.202300672.
  • Mousavi, M.; Fini, E. H.; Hung, A. M. Underlying Molecular Interactions Between Sodium Montmorillonite Clay and Acidic Bitumen. J. Phys. Chem. C. 2019, 123(25), 15513–15522. DOI: 10.1021/acs.jpcc.9b01960.
  • Sudhakar, P.; Rao, R.; Dave, H.; Vasveliya, V. ‘Clays and Their Polymer Nanocomposites’: ‘Clay Composites: Environmental Applications’; Springer: Singapore, 2023; pp 319–340.
  • Guo, F.; Aryana, S.; Han, Y.; Jiao, Y. A Review of the Synthesis and Applications of Polymer–Nanoclay Composites. Appl. Sci. 2018, 8(9), 1696. DOI: 10.3390/app8091696.
  • Mazloomi, F.; Jalali, M. Effects of Vermiculite, Nanoclay and Zeolite on Ammonium Transport Through Saturated Sandy Loam Soil: Column Experiments and Modeling Approaches. Catena. 2019, 176, 170–180. DOI: 10.1016/j.catena.2019.01.014.
  • Aouinti, L.; Belbachir, M. A Maghnite-Clay-H/polymer Membrane for Separation of Ethanol–Water Azeotrope. Appl. Clay Sci. 2008, 39(1–2), 78–85. DOI: 10.1016/j.clay.2007.04.014.
  • Aouinti, L.; Roizard, D. Pervaporation of Toluene—N-heptane Mixtures with Hybrid PVC Membranes Containing Inorganic Particles. J. Earth Sci. Eng. 2015, 5(8), 473–481. DOI: 10.17265/2159-581X/2015.08.002.
  • Aouinti, L.; Roizard, D.; Hu, G.; Thomas, F.; Belbachir, M. Investigation of Pervaporation Hybrid Polyvinylchloride Membranes for the Separation of Toluene–N-heptane Mixtures—Case of Clays As Filler. Desalination 2009, 241(1–3), 174–181. DOI: 10.1016/j.desal.2007.12.049.
  • Bokobza, L. Elastomer Nanocomposites: Effect of Filler–Matrix and Filler–Filler Interactions. Polymers. 2023, 15(13), 2900. DOI: 10.3390/polym15132900.
  • Sabir, F.; Kanwal, H.; Laraib, U.; Simge, E. ‘Functionalized Nanoparticles-Based Polymer Nanocomposites: Synthesis, Characterizations, and Biodegradability aspects’: ‘Biodegradable and Biocompatible Polymer Nanocomposites’; Elsevier: Netherlands, 2023; pp 205–240.
  • Wypych, F.; Bergaya, F.; Schoonheydt, R. A. ‘From Polymers to Clay Polymer nanocomposites’: ‘Developments in Clay Science’; Elsevier: Netherlands, 2018; pp 331–359.
  • Motawie, A.; Madany, M.; El-Dakrory, A.; Osman, H.; Ismail, E.; Badr, M.; El-Komy, D.; Abulyazied, D. Physico-Chemical Characteristics of Nano-Organo Bentonite Prepared Using Different Organo-Modifiers. Egypt. J. Pet. 2014, 23(3), 331–338. DOI: 10.1016/j.ejpe.2014.08.009.
  • Zawrah, M.; Khattab, R.; Saad, E.; Gado, R. Effect of Surfactant Types and Their Concentration on the Structural Characteristics of Nanoclay. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2014, 122, 616–623. DOI: 10.1016/j.saa.2013.11.076.
  • Misaelides, P. ‘Clay Minerals and Zeolites for Radioactive Waste Immobilization and Containment: A Concise verview’: ‘Modified Clay and Zeolite Nanocomposite Materials’; Elsevier: Netherlands, 2019; pp 243–274.
  • Peramune, D.; Peduruhewa, P.; Hewawardhana, S.; Perera, W. Y.; Sandaruwan, H.; Manatunga, D. C.; Dassanayake, R. S. ‘Enriched Clay-Polymer Composites and Their Applications’: ‘Clay Composites: Environmental Applications’; Springer: Singapore, 2023; pp 279–295.
  • Thakur, V.; Satapathy, B. K. Robust Tear-Resistant Blown Nanocomposite Films for Barrier Packaging: Role of Clay Platelet Thickness in Tear Mechanics and Barrier Performances. Acs Appl. Polym. Mater. 2023, 5(8), 6529–6539. DOI: 10.1021/acsapm.3c01099.
  • Payandehpeyman, J.; Mazaheri, M. Geometrical and Physical Effects of Nanofillers on Percolation and Electrical Conductivity of Polymer Carbon-Based Nanocomposites: A General Micro-Mechanical Model. Soft Matter. 2023, 19(3), 530–539. DOI: 10.1039/D2SM01168A.
  • Silori, G. K.; Thoka, S.; Ho, K.-C. Morphological Features of SiO2 Nanofillers Address Poor Stability Issue in Gel Polymer Electrolyte-Based Electrochromic Devices. ACS Appl. Mater. Interfaces. 2023, 15(21), 25791–25805. DOI: 10.1021/acsami.3c04685.
  • Tullio, S.; Chalcraft, D. Converting Natural Nanoclay into Modified Nanoclay Augments the Toxic Effect of Natural Nanoclay on Aquatic Invertebrates. Ecotoxicol. Environ. Saf. 2020, 197, 110602. DOI: 10.1016/j.ecoenv.2020.110602.
  • Aghdam, A. A.; Niaki, M. H.; Sakkaki, M. Effect of Basalt Fibers on Fracture Properties of Nanoclay Reinforced Polymer Concrete After Exposure to Elevated Temperatures. J. Build. Eng. 2023, 76, 107329. DOI: 10.1016/j.jobe.2023.107329.
  • Barmouz, M.; Seyfi, J.; Givi, M. K. B.; Hejazi, I.; Davachi, S. M. A Novel Approach for Producing Polymer Nanocomposites by in-Situ Dispersion of Clay Particles via Friction Stir Processing. Mater. Sci. Eng. A. 2011, 528(6), 3003–3006. DOI: 10.1016/j.msea.2010.12.083.
  • Usuki, A.; Kawasumi, M.; Kojima, Y.; Okada, A.; Kurauchi, T.; Kamigaito, O. Swelling Behavior of Montmorillonite Cation Exchanged for ω-Amino Acids by∊-Caprolactam. J. Mater. Res. 1993, 8(5), 1174–1178. DOI: 10.1557/JMR.1993.1174.
  • Omanović-Mikličanin, E.; Badnjević, A.; Kazlagić, A.; Hajlovac, M. Nanocomposites: A brief review. Health Technol. 2020, 10(1), 51–59. DOI: 10.1007/s12553-019-00380-x.
  • Motaung, T. E.; Linganiso, L. Z. Critical Review on Agrowaste Cellulose Applications for Biopolymers. Int. J. Plast. Technol. 2018, 22(2), 1–32. DOI: 10.1007/s12588-018-9219-6.
  • Gul, S.; Kausar, A.; Muhammad, B.; Jabeen, S. Research Progress on Properties and Applications of Polymer/Clay Nanocomposite. Polym.-Plast. Technol. Eng. 2016, 55(7), 684–703. DOI: 10.1080/03602559.2015.1098699.
  • Kiliaris, P.; Papaspyrides, C. Polymer/Layered Silicate (Clay) Nanocomposites: An Overview of Flame Retardancy. Prog. Polym. Sci. 2010, 35(7), 902–958. DOI: 10.1016/j.progpolymsci.2010.03.001.
  • Boruah, J. S.; Chowdhury, D. Advances in Carbon Nanomaterial–Clay Nanocomposites for Diverse Applications. Minerals. 2022, 13(1), 26. DOI: 10.3390/min13010026.
  • Mu, B.; Wang, A. ‘Fabrication and Applications of Carbon/Clay Mineral Nanocomposites’: ‘Nanomaterials from Clay Minerals’; Elsevier: Netherlands, 2019; pp 537–587.
  • Kononova, S. V.; Gubanova, G. N.; Korytkova, E. N.; Sapegin, D. A.; Setnickova, K.; Petrychkovych, R.; Uchytil, P. Polymer Nanocomposite Membranes. Appl. Sci. 2018, 8(7), 1181. DOI: 10.3390/app8071181.
  • Mendes-Felipe, C.; Veloso-Fernández, A.; Vilas-Vilela, J. L.; Ruiz-Rubio, L. Hybrid Organic–Inorganic Membranes for Photocatalytic Water Remediation. Catalysts. 2022, 12(2), 180. DOI: 10.3390/catal12020180.
  • Mohamed, A.; Yousef, S.; Tonkonogovas, A.; Makarevicius, V.; Stankevičius, A. High Performance of PES-GNs MMMs for Gas Separation and Selectivity. Arabian J. Chem. 2022, 15(2), 103565. DOI: 10.1016/j.arabjc.2021.103565.
  • Behboudi, A.; Mohammadi, T.; Ulbricht, M. High Performance Antibiofouling Hollow Fiber Polyethersulfone Nanocomposite Membranes Incorporated with Novel Surface-Modified Silver Nanoparticles Suitable for Membrane Bioreactor Application. J. Ind. Eng. Chem. 2023, 119, 298–314. DOI: 10.1016/j.jiec.2022.11.049.
  • Wang, C.; Park, M. J.; Yu, H.; Matsuyama, H.; Drioli, E.; Shon, H. K. Recent Advances of Nanocomposite Membranes Using Layer-By-Layer Assembly. J. Membr. Sci. 2022, 661, 120926. DOI: 10.1016/j.memsci.2022.120926.
  • Patel, H. D.; Acharya, N. K. Transport, Spectroscopic, and Electrical Properties of Thermally Rearranged Nanocomposite Membranes. Chem. Eng. Technol. 2022, 45(12), 2223–2233. DOI: 10.1002/ceat.202200281.
  • Yaqoob, A. A.; Parveen, T.; Umar, K.; Mohamad Ibrahim, M. N. Role of Nanomaterials in the Treatment of Wastewater: A Review. Water. 2020, 12(2), 495. DOI: 10.3390/w12020495.
  • Mishra, S.; Sundaram, B. Efficacy and Challenges of Carbon Nanotube in Wastewater and Water Treatment. Environ. Nanotechnol. Monit. Manage. 2023, 19, 100764. DOI: 10.1016/j.enmm.2022.100764.
  • Faucher, S.; Kuehne, M.; Oliaei, H.; Misra, R. P.; Li, S. X.; Aluru, N. R.; Strano, M. S. Observation and Isochoric Thermodynamic Analysis of Partially Water-Filled 1.32 and 1.45 Nm Diameter Carbon Nanotubes. Nano. Lett. 2023, 23(2), 389–397. DOI: 10.1021/acs.nanolett.2c00911.
  • Khan, I. A.; Ahmad, N. M. Activated Carbon, CNTs and GO Based Polymeric Nanocomposites Membranes for Textile Wastewater Treatment: Preparation, Performance, and Fouling Control. Environ. Scie. Proc. 2023, 25(1), 77.
  • Chen, K.; Li, J.; Zhang, L.; Xing, R.; Jiao, T.; Gao, F.; Peng, Q. Facile Synthesis of Self-Assembled Carbon Nanotubes/Dye Composite Films for Sensitive Electrochemical Determination of Cd (II) Ions. Nanotechnology. 2018, 29(44), 445603. DOI: 10.1088/1361-6528/aadbf7.
  • Vatanpour, V.; Jouyandeh, M.; Akhi, H.; Khadem, S. S. M.; Ganjali, M. R.; Moradi, H.; Mirsadeghi, S.; Badiei, A.; Esmaeili, A.; Rabiee, N. Hyperbranched Polyethylenimine Functionalized Silica/Polysulfone Nanocomposite Membranes for Water Purification. Chemosphere. 2022, 290, 133363. DOI: 10.1016/j.chemosphere.2021.133363.
  • Barzegar, T.; Hassanajili, S. Fabrication and Characterization of Dual Layer PEBAX‐SiO2/polyethersulfone Nanocomposite Membranes for Separation of CO2/CH4 Gases. J. Appl. Polym. Sci. 2022, 139(6), 51624. DOI: 10.1002/app.51624.
  • Bassyouni, M.; Abdel-Aziz, M.; Zoromba, M. S.; Abdel-Hamid, S.; Drioli, E. A Review of Polymeric Nanocomposite Membranes for Water Purification. J. Ind. Eng. Chem. 2019, 73, 19–46. DOI: 10.1016/j.jiec.2019.01.045.
  • Wen, Y.; Yuan, J.; Ma, X.; Wang, S.; Liu, Y. Polymeric Nanocomposite Membranes for Water Treatment: A Review. Environ. Chem. Lett. 2019, 17(4), 1539–1551. DOI: 10.1007/s10311-019-00895-9.
  • Castro-Muñoz, R.; González-Melgoza, L. L.; García-Depraect, O. Ongoing Progress on Novel Nanocomposite Membranes for the Separation of Heavy Metals from Contaminated Water. Chemosphere. 2021, 270, 129421. DOI: 10.1016/j.chemosphere.2020.129421.
  • Lai, G.; Lau, W.; Goh, P.; Ismail, A.; Tan, Y.; Chong, C.; Krause-Rehberg, R.; Awad, S. Tailor-Made Thin Film Nanocomposite Membrane Incorporated with Graphene Oxide Using Novel Interfacial Polymerization Technique for Enhanced Water Separation. Chem. Eng. J. 2018, 344, 524–534. DOI: 10.1016/j.cej.2018.03.116.
  • Liao, Y.; Loh, C.-H.; Tian, M.; Wang, R.; Fane, A. G. Progress in Electrospun Polymeric Nanofibrous Membranes for Water Treatment: Fabrication, Modification and Applications. Prog. Polym. Sci. 2018, 77, 69–94. DOI: 10.1016/j.progpolymsci.2017.10.003.
  • Esfahani, M. R.; Aktij, S. A.; Dabaghian, Z.; Firouzjaei, M. D.; Rahimpour, A.; Eke, J.; Escobar, I. C.; Abolhassani, M.; Greenlee, L. F.; Esfahani, A. R. Nanocomposite Membranes for Water Separation and Purification: Fabrication, Modification, and Applications. Sep. Purif. Techn. 2019, 213, 465–499. DOI: 10.1016/j.seppur.2018.12.050.
  • Katibi, K. K.; Yunos, K. F.; Che Man, H.; Aris, A. Z.; Bin Mohd nor, M. Z.; Binti Azis, R. S. Recent Advances in the Rejection of Endocrine-Disrupting Compounds from Water Using Membrane and Membrane Bioreactor Technologies: A Review. Polymers. 2021, 13(3), 392. DOI: 10.3390/polym13030392.
  • Al Aani, S.; Mustafa, T. N.; Hilal, N. Ultrafiltration Membranes for Wastewater and Water Process Engineering: A Comprehensive Statistical Review Over the Past Decade. J. Water Process Eng. 2020, 35, 101241. DOI: 10.1016/j.jwpe.2020.101241.
  • Golmakani, A.; Nabavi, S. A.; Wadi, B.; Manovic, V. Advances, Challenges, and Perspectives of Biogas Cleaning, Upgrading, and Utilisation. Fuel. 2022, 317, 123085. DOI: 10.1016/j.fuel.2021.123085.
  • Al-Najar, B.; Peters, C. D.; Albuflasa, H.; Hankins, N. P. Pressure and Osmotically Driven Membrane Processes: A Review of the Benefits and Production of Nano-Enhanced Membranes for Desalination. Desalination. 2020, 479, 114323. DOI: 10.1016/j.desal.2020.114323.
  • Mavukkandy, M. O.; McBride, S. A.; Warsinger, D. M.; Dizge, N.; Hasan, S. W.; Arafat, H. A. Thin Film Deposition Techniques for Polymeric Membranes–A Review. J. Membr. Sci. 2020, 610, 118258. DOI: 10.1016/j.memsci.2020.118258.
  • Khalid, F.; Tabish, M.; Bora, K. A. I. Novel Poly (Vinyl Alcohol) Nanofiltration Membrane Modified with Dopamine Coated Anatase TiO2 Core Shell Nanoparticles. J. Water Process Eng. 2020, 37, 101486. DOI: 10.1016/j.jwpe.2020.101486.
  • Krishnan, M. R.; Omar, H.; Almohsin, A.; Alsharaeh, E. H. An Overview on Nanosilica–Polymer Composites As High-Performance Functional Materials in Oil Fields. Polym. Bull. 2023, 81(5), 1–51. DOI: 10.1007/s00289-023-04934-y.
  • Babatunde, D. E.; Denwigwe, I. H.; Babatunde, O. M.; Agboola, O.; Akinsipe, G. D. Relevance of chemically functionalized nano-fillers and modified nanocomposite in energy systems. In Polymer Nanocomposites for Advanced Engineering and Military Applications; Ramdani N., Ed. IGI Global: Hershey, USA, 2019; pp 10–65.
  • Dlamini, D. S.; Li, J.; Mamba, B. B. Critical Review of Montmorillonite/Polymer Mixed-Matrix Filtration Membranes: Possibilities and Challenges. Appl. Clay Sci. 2019, 168, 21–30. DOI: 10.1016/j.clay.2018.10.016.
  • Paillaud, J. L.; Caullet, P.; Brendlé, J.; Simon‐Masseron, A.; Patarin, J. The Fluoride Route: A Good Opportunity for the Preparation of 2D and 3D Inorganic Microporous Frameworks. In Funct. Inorg. Fluor: Synth. Charact. & Prop. Nanostruct. Solids; Tressaud A., Ed. Wiley: USA, 2010; pp 489–518.
  • Bangar, S. P.; Akhila, V.; Chaudhary, P. P.; Sunooj, K. V. Recent Functionality Developments in Montmorillonite As a Nanofiller in Food Packaging. Trends Food Sci. & Technol. 2023, 140, 104148. DOI: 10.1016/j.tifs.2023.104148.
  • Dana, K.; Sarkar, M. Organophilic Nature of nanoclay’: ‘Clay Nanoparticles’; Elsevier: Netherlands, 2020; pp 117–138.
  • Morimune-Moriya, S.; Yada, S.; Kuroki, N.; Ito, S.; Hashimoto, T.; Nishino, T. Strong Reinforcement Effects of Nanodiamond on Mechanical and Thermal Properties of Polyamide 66. Compos. Sci. Technol. 2020, 199, 108356. DOI: 10.1016/j.compscitech.2020.108356.
  • Dudko, V.; Khoruzhenko, O.; Weiß, S.; Daab, M.; Loch, P.; Schwieger, W.; Breu, J. Repulsive Osmotic Delamination: 1D Dissolution of 2D Materials. Adv. Mater. Technol. 2023, 8(3), 2200553. DOI: 10.1002/admt.202200553.
  • Abou El Fadl, F. I.; Ibrahim, S. M. The Effect of Ag and Clay Nanoparticles on the Antimicrobial Activity of Gamma-Irradiated Alginate/Pectin Beads. J. Nanostruct. Chem. 2020, 10(3), 243–253. DOI: 10.1007/s40097-020-00345-x.
  • Guo, Y.; Peng, F.; Wang, H.; Huang, F.; Meng, F.; Hui, D.; Zhou, Z. Intercalation Polymerization Approach for Preparing Graphene/Polymer Composites. Polymers. 2018, 10(1), 61. DOI: 10.3390/polym10010061.
  • Mohammed, Z.; Tcherbi-Narteh, A.; Jeelani, S. Effect of Graphene Nanoplatelets and Montmorillonite Nanoclay on Mechanical and Thermal Properties of Polymer Nanocomposites and Carbon Fiber Reinforced Composites. SN Appl. Sci. 2020, 2(12), 1–14. DOI: 10.1007/s42452-020-03780-1.
  • Najeeb, J.; Naeem, S. ‘Biodegradable Food Packaging Materials’: ‘Handbook of Biodegradable Materials’; Springer: Cham, Germany, 2022; pp 1–29.
  • Garusinghe, U. M.; Varanasi, S.; Raghuwanshi, V. S.; Garnier, G.; Batchelor, W. Nanocellulose-Montmorillonite Composites of Low Water Vapour Permeability. Colloids Surf. A Physicochem. Eng. Aspects. 2018, 540, 233–241. DOI: 10.1016/j.colsurfa.2018.01.010.
  • David, P. P., Jr. Review on the Preparation, Structure and Property Relation of Clay-Based Polymer Nanocomposites. KIMIKA 2017, 28(1), 44–56. DOI: 10.26534/kimika.v28i1.44-56.
  • Dhakal, N.; Salinas-Rodriguez, S. G.; Hamdani, J.; Abushaban, A.; Sawalha, H.; Schippers, J. C.; Kennedy, M. D. Is Desalination a Solution to Freshwater Scarcity in Developing Countries? Membranes. 2022, 12(4), 381. DOI: 10.3390/membranes12040381.
  • Gude, V. G. Desalination and Sustainability–An Appraisal and Current Perspective. Water Res. 2016, 89, 87–106. DOI: 10.1016/j.watres.2015.11.012.
  • Dou, J.; Huang, Q.; Huang, H.; Gan, D.; Chen, J.; Deng, F.; Wen, Y.; Zhu, X.; Zhang, X.; Wei, Y. Mussel-Inspired Preparation of Layered Double Hydroxides Based Polymer Composites for Removal of Copper Ions. J. Coll. Interf. Sci. 2019, 533, 416–427. DOI: 10.1016/j.jcis.2018.08.064.
  • Ahmadi, E.; McLellan, B.; Mohammadi-Ivatloo, B.; Tezuka, T. The Role of Renewable Energy Resources in Sustainability of Water Desalination As a Potential Fresh-Water Source: An Updated Review. Sustainability. 2020, 12(13), 5233. DOI: 10.3390/su12135233.
  • Guan, K.; Fang, S.; Zhou, S.; Fu, W.; Li, Z.; Gonzales, R. R.; Xu, P.; Mai, Z.; Hu, M.; Zhang, P. Thin Film Composite Membrane with Improved Permeance for Reverse Osmosis and Organic Solvent Reverse Osmosis. J. Membr. Sci. 2023, 688, 122104. DOI: 10.1016/j.memsci.2023.122104.
  • Gryta, M.; Woźniak, P. Application of Polypropylene Microfiltration Membranes for Separation of Wastewater from Car Wash. Sep. Purif. Techn. 2024, 331, 125707. DOI: 10.1016/j.seppur.2023.125707.
  • Francis, V. N.; Chong, J. Y.; Yang, G.; Che, L.; Wang, R. Robust Polyamide-PTFE Hollow Fibre Membranes for Harsh Organic Solvent Nanofiltration. Chem. Eng. J. 2023, 452, 139333. DOI: 10.1016/j.cej.2022.139333.
  • Zong, Y.; Zhang, R.; Gao, S.; Chang, H.; Van der Bruggen, B.; Tian, J. Anti-Drying Nanofiltration (NF) Membranes Constructed on PTFE Microfiltration (MF) Substrate via Novel Interfacial Polymerization. J. Membr. Sci. 2021, 638, 119721. DOI: 10.1016/j.memsci.2021.119721.
  • Hou, D.; Wang, Z.; Wang, K.; Wang, J.; Lin, S. Composite Membrane with Electrospun Multiscale-Textured Surface for Robust Oil-Fouling Resistance in Membrane Distillation. J. Membr. Sci. 2018, 546, 179–187. DOI: 10.1016/j.memsci.2017.10.017.
  • Guo, Q.; Huang, Y.; Xu, M.; Huang, Q.; Cheng, J.; Yu, S.; Zhang, Y.; Xiao, C. PTFE Porous Membrane Technology: A Comprehensive Review. J. Membr. Sci. 2022, 664, 121115. DOI: 10.1016/j.memsci.2022.121115.
  • Zotalis, K.; Dialynas, E. G.; Mamassis, N.; Angelakis, A. N. Desalination Technologies: Hellenic Experience. Water. 2014, 6(5), 1134–1150. DOI: 10.3390/w6051134.
  • Mamah, S. C.; Goh, P. S.; Ismail, A. F.; Yogarathinam, L. T.; Suzaimi, N. D.; Opia, A. C.; Ojo, S.; Ngwana, N. E. Bio‐Polymer Modified Nanoclay Embedded Forward Osmosis Membranes with Enhanced Desalination Performance. J. Appl. Polym. Sci. 2022, 139(27), e52473. DOI: 10.1002/app.52473.
  • Zaidi, S. J.; Fadhillah, F.; Saleem, H.; Hawari, A.; Benamor, A. Organically Modified Nanoclay Filled Thin-Film Nanocomposite Membranes for Reverse Osmosis Application. Materials. 2019, 12(22), 3803. DOI: 10.3390/ma12223803.
  • Bojnourd, F. M.; Pakizeh, M. Preparation and Characterization of a Nanoclay/PVA/PSf Nanocomposite Membrane for Removal of Pharmaceuticals from Water. Appl. Clay Sci. 2018, 162, 326–338. DOI: 10.1016/j.clay.2018.06.029.
  • Maalige, R. N.; Aruchamy, K.; Mahto, A.; Sharma, V.; Deepika, D.; Mondal, D.; Nataraj, S. K. Low Operating Pressure Nanofiltration Membrane with Functionalized Natural Nanoclay as Antifouling and Flux Promoting Agent. Chem. Eng. J. 2019, 358, 821–830. DOI: 10.1016/j.cej.2018.10.087.
  • Ramakoti, I. S.; Panda, A. K.; Gouda, N. A Brief Review on Polymer Nanocomposites: Current Trends and Prospects. J. Polymer Eng. 2023, 43(8), 651–679. DOI: 10.1515/polyeng-2023-0103.
  • Yang, X.-J.; Zhang, P.; Li, P.; Li, Z.; Xia, W.; Zhang, H.; Di, Z.; Wang, M.; Zhang, H.; Niu, Q. J. Layered Double Hydroxide/Polyacrylamide Nanocomposite Hydrogels: Green Preparation, Rheology and Application in Methyl Orange Removal from Aqueous Solution. J. Mol. Liq. 2019, 280, 128–134. DOI: 10.1016/j.molliq.2019.02.033.
  • Xu, R.; Mao, J.; Peng, N.; Luo, X.; Chang, C. Chitin/Clay Microspheres with Hierarchical Architecture for Highly Efficient Removal of Organic Dyes. Carbohydr. Polym. 2018, 188, 143–150. DOI: 10.1016/j.carbpol.2018.01.073.
  • Bée, A.; Obeid, L.; Mbolantenaina, R.; Welschbillig, M.; Talbot, D. Magnetic Chitosan/Clay Beads: A Magsorbent for the Removal of Cationic Dye from Water. J. Magn. Magn. Mater. 2017, 421, 59–64. DOI: 10.1016/j.jmmm.2016.07.022.
  • Vanamudan, A.; Pamidimukkala, P. Chitosan, Nanoclay and Chitosan–Nanoclay Composite As Adsorbents for Rhodamine-6G and the Resulting Optical Properties. Int. J. Biol. Macromol. 2015, 74, 127–135. DOI: 10.1016/j.ijbiomac.2014.11.009.
  • Khalil, A. M.; Kenawy, S. H. Hybrid Membranes Based on Clay-Polymer for Removing Methylene Blue from Water. Acta Chim. Slov. 2020, 67(1), 96–104. DOI: 10.17344/acsi.2019.5227.
  • Fatiha, M.; Belkacem, B. Adsorption of Methylene Blue from Aqueous Solutions Using Natural Clay. J. Mater. Environ. Sci. 2016, 7(1), 285–292.
  • Anirudhan, T.; Suchithra, P. S.; Radhakrishnan, P. Synthesis and Characterization of Humic Acid Immobilized-Polymer/bentonite Composites and Their Ability to Adsorb Basic Dyes from Aqueous Solutions. Appl. Clay Sci. 2009, 43(3–4), 336–342. DOI: 10.1016/j.clay.2008.09.015.
  • de Sousa, E. P.; de Araujo, D. T.; Peixoto, V. G.; Ferreira, B. F.; de Faria, E. H.; Molina, E. F. Effect of Sodium Bentonite Content on Structural-Properties of Ureasil Poly (Ethylene Oxide)-PEO Hybrid: A Perspective for Water Treatment. Appl. Clay Sci. 2020, 191, 105605. DOI: 10.1016/j.clay.2020.105605.
  • Saleh, T. A.; Mustaqeem, M.; Khaled, M. Water Treatment Technologies in Removing Heavy Metal Ions from Wastewater: A Review. Environ. Nanotechnol. Monit. Manage. 2022, 17, 100617. DOI: 10.1016/j.enmm.2021.100617.
  • Urbano, B. F.; Rivas, B. L.; Martinez, F.; Alexandratos, S. D. Water-Insoluble Polymer–Clay Nanocomposite Ion Exchange Resin Based on N-Methyl-D-Glucamine Ligand Groups for Arsenic Removal. React. Funct. Polym. 2012, 72(9), 642–649. DOI: 10.1016/j.reactfunctpolym.2012.06.008.
  • Sundaram, E. S.; Dharmalingam, P. Synthesis and Characterization of Magnetized Clay Polymer Nanocomposites and Its Adsorptive Behaviour in Removal of Cr (VI) from Aqueous Phase. Asian J. Chem 2018, 30(3), 667–672. DOI: 10.14233/ajchem.2018.21100.
  • Ravikumar, K.; Udayakumar, J. Preparation and Characterisation of Green Clay-Polymer Nanocomposite for Heavy Metals Removal. Chem. Ecol. 2020, 36(3), 270–291. DOI: 10.1080/02757540.2020.1723559.
  • Wang, Y.-M.; Duan, L.; Sun, Y.; Hu, N.; Gao, J.-Y.; Wang, H.; Xie, X.-M. Adsorptive Removal of Cr (VI) from Aqueous Solutions with an Effective Adsorbent: Cross-Linked Chitosan/Montmorillonite Nanocomposites in the Presence of Hydroxy-Aluminum Oligomeric Cations. Desalinat. Water Treat. 2016, 57(23), 10767–10775. DOI: 10.1080/19443994.2015.1040465.
  • Kinoti, I. K.; Karanja, E. M.; Nthiga, E. W.; M’thiruaine, C. M.; Marangu, J. M.; Vosoughi, M. Review of Clay-Based Nanocomposites As Adsorbents for the Removal of Heavy Metals. J. Chem. 2022, 2022, 1–25. DOI: 10.1155/2022/7504626.
  • Kumararaja, P.; Manjaiah, K.; Datta, S.; Ahammed Shabeer, T.; Sarkar, B. Chitosan-G-Poly (Acrylic Acid)-Bentonite Composite: A Potential Immobilizing Agent of Heavy Metals in Soil. Cellulose. 2018, 25(7), 3985–3999. DOI: 10.1007/s10570-018-1828-x.
  • Song, J.; Huang, G.; Han, D.; Hou, Q.; Gan, L.; Zhang, M. A Review of Reactive Media within Permeable Reactive Barriers for the Removal of Heavy Metal (Loid) S in Groundwater: Current Status and Future Prospects. J. Cleaner Prod. 2021, 319, 128644. DOI: 10.1016/j.jclepro.2021.128644.
  • Nunes, P.; Nagy, N. V.; Alegria, E. C.; Pombeiro, A. J.; Correia, I. The Solvation and Electrochemical Behavior of Copper Acetylacetonate Complexes in Ionic Liquids. J. Mol. Struct. 2014, 1060, 142–149. DOI: 10.1016/j.molstruc.2013.12.025.
  • Kordbacheh, F.; Heidari, G. Water Pollutants and Approaches for Their Removal. Mater. Chem. Horiz 2023, 2(2), 139–153.
  • Wołejko, E.; Wydro, U.; Butarewicz, A.; Jabłońska-Trypuć, A. Methods Used in situ for Removal of Waterborne Pathogens. In Waterborne Pathogens; Vara Prasad M.N., Grobelak A., Eds. Elsevier: UK, 2020; pp 321–337.
  • Kaya, A. U.; Güner, S.; Ryskin, M.; Lameck, A. S.; Benitez, A. R.; Shuali, U.; Nir, S. Effect of Microwave Radiation on Regeneration of a Granulated Micelle–Clay Complex After Adsorption of Bacteria. Appl. Sci. 2020, 10(7), 2530. DOI: 10.3390/app10072530.
  • Farré, M. J.; Insa, S.; Lamb, A.; Cojocariu, C.; Gernjak, W. Occurrence of N-Nitrosamines and Their Precursors in Spanish Drinking Water Treatment Plants and Distribution Systems. Environ. Sci. 2020, 6(1), 210–220. DOI: 10.1039/C9EW00912D.
  • Shahadat, M.; Isamil, S. Regeneration Performance of Clay-Based Adsorbents for the Removal of Industrial Dyes: A Review. Rsc. Adv. 2018, 8(43), 24571–24587. DOI: 10.1039/C8RA04290J.
  • Hernández-Hernández, K. A.; Illescas, J.; Del Carmen Díaz-Nava, M.; Martínez-Gallegos, S.; Muro-Urista, C.; Ortega-Aguilar, R. E.; Rodríguez-Alba, E.; Rivera, E. Preparation of Nanocomposites for the Removal of Phenolic Compounds from Aqueous Solutions. Appl. Clay Sci. 2018, 157, 212–217. DOI: 10.1016/j.clay.2018.01.020.
  • Bruna, J.; Peñaloza, A.; Guarda, A.; Rodríguez, F.; Galotto, M. Development of MtCu2+/LDPE Nanocomposites with Antimicrobial Activity for Potential Use in Food Packaging. Appl. Clay Sci. 2012, 58, 79–87. DOI: 10.1016/j.clay.2012.01.016.
  • Undabeytia, T.; Posada, R.; Nir, S.; Galindo, I.; Laiz, L.; Saiz-Jimenez, C.; Morillo, E. Removal of Waterborne Microorganisms by Filtration Using Clay–Polymer Complexes. J. Hazard. Mater. 2014, 279, 190–196. DOI: 10.1016/j.jhazmat.2014.07.006.
  • Kalfa, A.; Rakovitsky, N.; Tavassi, M.; Ryskin, M.; Ben-Ari, J.; Etkin, H.; Shuali, U.; Nir, S. Removal of Escherichia coli and Total Bacteria from Water by Granulated Micelle-Clay Complexes: Filter Regeneration and Modeling of Filtration Kinetics. Appl. Clay Sci. 2017, 147, 63–68. DOI: 10.1016/j.clay.2017.06.023.
  • Unuabonah, E. I.; Ugwuja, C. G.; Omorogie, M. O.; Adewuyi, A.; Oladoja, N. A. Clays for Efficient Disinfection of Bacteria in Water. Appl. Clay Sci. 2018, 151, 211–223. DOI: 10.1016/j.clay.2017.10.005.
  • Han, Y.-S.; Lee, S.-H.; Choi, K. H.; Park, I. Preparation and Characterization of Chitosan–Clay Nanocomposites with Antimicrobial Activity. J. Phys. Chem. Solids. 2010, 71(4), 464–467. DOI: 10.1016/j.jpcs.2009.12.012.
  • Murugesan, S.; Scheibel, T. Chitosan‐Based Nanocomposites for Medical Applications. J. Polym. Sci. 2021, 59(15), 1610–1642. DOI: 10.1002/pol.20210251.
  • Motshekga, S. C.; Ray, S. S.; Onyango, M. S.; Momba, M. N. Preparation and Antibacterial Activity of Chitosan-Based Nanocomposites Containing Bentonite-Supported Silver and Zinc Oxide Nanoparticles for Water Disinfection. Appl. Clay Sci. 2015, 114, 330–339. DOI: 10.1016/j.clay.2015.06.010.
  • Zhan, Y.; Zeng, W.; Jiang, G.; Wang, Q.; Shi, X.; Zhou, Z.; Deng, H.; Du, Y. Construction of Lysozyme Exfoliated Rectorite‐Based Electrospun Nanofibrous Membranes for Bacterial Inhibition. J. Appl. Polym. Sci. 2015, 132(8). DOI: 10.1002/app.41496.
  • Shameli, K.; Ahmad, M. B.; Zargar, M.; Yunus, W. M. Z. W.; Ibrahim, N. A.; Shabanzadeh, P.; Moghaddam, M. G. Synthesis and Characterization of Silver/Montmorillonite/Chitosan Bionanocomposites by Chemical Reduction Method and Their Antibacterial Activity. Int. J. Nanomed. 2011, 271–284. DOI: 10.2147/IJN.S16043.
  • Xu, Z.; Liao, J.; Tang, H.; Li, N. Antifouling Polysulfone Ultrafiltration Membranes with Pendent Sulfonamide Groups. J. Membr. Sci. 2018, 548, 481–489. DOI: 10.1016/j.memsci.2017.11.064.
  • Sanusi, O. M.; Benelfellah, A.; Hocine, N. A. Clays and Carbon Nanotubes As Hybrid Nanofillers in Thermoplastic-Based Nanocomposites–A Review. Appl. Clay Sci. 2020, 185, 105408. DOI: 10.1016/j.clay.2019.105408.
  • Alsohaimi, I. H.; Kumar, M.; Algamdi, M. S.; Khan, M. A.; Nolan, K.; Lawler, J. Antifouling Hybrid Ultrafiltration Membranes with High Selectivity Fabricated from Polysulfone and Sulfonic Acid Functionalized TiO2 Nanotubes. Chem. Eng. J. 2017, 316, 573–583. DOI: 10.1016/j.cej.2017.02.001.
  • Wu, H.; Tang, B.; Wu, P. Development of Novel SiO2–GO Nanohybrid/Polysulfone Membrane with Enhanced Performance. J. Membr. Sci. 2014, 451, 94–102. DOI: 10.1016/j.memsci.2013.09.018.
  • Mukhopadhyay, R.; Bhaduri, D.; Sarkar, B.; Rusmin, R.; Hou, D.; Khanam, R.; Sarkar, S.; Biswas, J. K.; Vithanage, M.; Bhatnagar, A. Clay–Polymer Nanocomposites: Progress and Challenges for Use in Sustainable Water Treatment. J. Hazard. Mater. 2020, 383, 121125. DOI: 10.1016/j.jhazmat.2019.121125.
  • Chai, P.; Mahmoudi, E.; Teow, Y.; Mohammad, A. Preparation of Novel Polysulfone-Fe3O4/GO Mixed-Matrix Membrane for Humic Acid Rejection. J. Water Process Eng. 2017, 15, 83–88. DOI: 10.1016/j.jwpe.2016.06.001.
  • Rodrigues, R.; Mierzwa, J. C.; Vecitis, C. D. Mixed Matrix Polysulfone/Clay Nanoparticles Ultrafiltration Membranes for Water Treatment. J. Water Process Eng. 2019, 31, 100788. DOI: 10.1016/j.jwpe.2019.100788.
  • Barakan, S.; Aghazadeh, V. The Advantages of Clay Mineral Modification Methods for Enhancing Adsorption Efficiency in Wastewater Treatment: A Review. Environ. Sci. Pollut. Res. 2021, 28(3), 2572–2599. DOI: 10.1007/s11356-020-10985-9.
  • Kausar, A. A Review of Fundamental Principles and Applications of Polymer Nanocomposites Filled with Both Nanoclay and Nano-Sized Carbon Allotropes–Graphene and Carbon Nanotubes. J. Plast. Film Sheeting. 2020, 36(2), 209–228. DOI: 10.1177/8756087919884607.
  • Hu, B.; Miao, L.; Zhao, Y.; Lü, C. Azide-Assisted Crosslinked Quaternized Polysulfone with Reduced Graphene Oxide for Highly Stable Anion Exchange Membranes. J. Membr. Sci. 2017, 530, 84–94. DOI: 10.1016/j.memsci.2017.02.023.
  • Dhamodharan, D.; Dhinakaran, V.; Nagavaram, R.; Ghoderao, P. P.; Byun, H.-S.; Wu, L. Experimental and Numerical Study on Smectic Aligned Zirconium Phosphate Decorated Graphene Oxide Hybrids Effects Over Waterborne Epoxy Multi-Functional Properties Enhancement. J. Ind. Eng. Chem. 2022, 107, 165–179. DOI: 10.1016/j.jiec.2021.11.043.
  • Jiang, Y.; Zeng, Q.; Biswas, P.; Fortner, J. D. Graphene Oxides as Nanofillers in Polysulfone Ultrafiltration Membranes: Shape Matters. J. Membr. Sci. 2019, 581, 453–461. DOI: 10.1016/j.memsci.2019.03.056.
  • Pech-Pisté, R.; Cen-Puc, M.; Balam, A.; May-Pat, A.; Avilés, F. Multifunctional Sensing Properties of Polymer Nanocomposites Based on Hybrid Carbon Nanostructures. Mater. Today Commun. 2020, 25, 101472. DOI: 10.1016/j.mtcomm.2020.101472.
  • Zunita, M. Graphene Oxide-Based Nanofiltration for Hg Removal from Wastewater: A Mini Review. Membranes. 2021, 11(4), 269. DOI: 10.3390/membranes11040269.
  • Yang, Z.; Yuan, Z.; Shang, Z.; Ye, S. Multi-Functional Membrane Based on Montmorillonite/Graphene Oxide Nanocomposites with High Actuating Performance and Wastewater Purification. Appl. Clay Sci. 2020, 197, 105781. DOI: 10.1016/j.clay.2020.105781.
  • Rimamnya, N. D.; Samson, A. O.; Bunmi, D. C.; Abass, G. F.; Olaniyan, A. J.; Samson, I. A.; Moyofoluwa, O. O.; Kolawole, B. T. Evolution of Carbon Nanotubes, Their Methods, and Application As Reinforcements in Polymer Nanocomposites: A Review. J. Adv. Mech. Eng. Appl 2023, 4(1), 49–63. DOI: 10.30880/jamea.2023.04.01.007.
  • Saleh, T. A.; Parthasarathy, P.; Irfan, M. Advanced Functional Polymer Nanocomposites and Their Use in Water Ultra-Purification. Trends Environ. Anal. Chem. 2019, 24, e00067. DOI: 10.1016/j.teac.2019.e00067.
  • Xu, L.; He, J.; Yu, Y.; Chen, J. P. Effect of CNT Content on Physicochemical Properties and Performance of CNT Composite Polysulfone Membranes. Chem. Eng. Res. Des. 2017, 121, 92–98. DOI: 10.1016/j.cherd.2017.01.031.
  • Vatanpour, V.; Haghighat, N. Improvement of Polyvinyl Chloride Nanofiltration Membranes by Incorporation of Multiwalled Carbon Nanotubes Modified with Triethylenetetramine to Use in Treatment of Dye Wastewater. J. Environ. Manage. 2019, 242, 90–97. DOI: 10.1016/j.jenvman.2019.04.060.
  • Alosaimi, A. M. Polysulfone Membranes Based Hybrid Nanocomposites for the Adsorptive Removal of Hg (II) Ions. Polymers. 2021, 13(16), 2792. DOI: 10.3390/polym13162792.
  • Shunmugasamy, V. C.; Xiang, C.; Gupta, N. ‘Clay/Polymer Nanocomposites: Processing, Properties, and applications’: ‘Hybrid and Hierarchical Composite Materials’; Springer: Cham, Germany, 2015; pp 161–200.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.