32
Views
0
CrossRef citations to date
0
Altmetric
Review Article

DMARDS incorporated injectable hydrogels in cartilage tissue regeneration: a review

, , , , , , , & show all
Received 13 Nov 2023, Accepted 22 May 2024, Published online: 04 Jun 2024

References

  • Cheng, G.; Davoudi, Z.; Xing, X.; Yu, X.; Cheng, X.; Li, Z.; Deng, H.; Wang, Q. Advanced Silk Fibroin Biomaterials for Cartilage Regeneration. ACS Biomater. Sci. Eng. Aug 13, 2018, 4(8), 2704–2715. DOI: 10.1021/acsbiomaterials.8b00150.
  • Binch, A. L. A.; Fitzgerald, J. C.; Growney, E. A.; Barry, F. Cell-Based Strategies for IVD Repair: Clinical Progress and Translational Obstacles. Nat. Rev. Rheumatol. Mar 1, 2021, 17(3), 158–175. DOI: 10.1038/s41584-020-00568-w.
  • Vinatier, C.; Guicheux, J. Cartilage Tissue Engineering: From Biomaterials and Stem Cells to Osteoarthritis Treatments. Annals Of Phy. And Rehabilitation Medicine Jun 1, 2016, 59(3), 139–144. DOI: 10.1016/j.rehab.2016.03.002.
  • Brown, T. P.; M Handorf, A.; Bae, J. W.; Li, W. J. Stem Cell-Based Tissue Engineering Approaches for Musculoskeletal Regeneration. Curr. Pharm. Des. 2013, 19(19), 3429–3445. DOI: 10.2174/13816128113199990350.
  • Goldring, M. B.; Otero, M.; Plumb, D. A.; Dragomir, C.; Favero, M.; Ei Hachem, K.; Hashimoto, K.; Roach, H. I.; Olivotto, E.; Borzì, R. M., et al. Roles of Inflammatory and Anabolic Cytokines in Cartilage Metabolism: Signals and Multiple Effectors Converge Upon Mmp-13 Regulation in Osteoarthritis. Eur. Cells Mater. 2011, 21, 202–220. DOI: 10.22203/eCM.v021a16.
  • Vinatier, C. B. C.-M. C. G. J. B. J.-M. J. C. W. P. G. J. N. D.; Bouffi, C.; Merceron, C.; Gordeladze, J.; Brondello, J.-M.; Jorgensen, C.; Weiss, P.; Guicheux, J.; Noel, D. Cartilage Tissue Engineering: Towards a Biomaterial-Assisted Mesenchymal Stem Cell Therapy. Current Stem Cell Res. Therapy 2009, 4(4), 318–329. DOI: 10.2174/157488809789649205.
  • Ng, J.; Bernhard, J.; Vunjak-Novakovic, G. Mesenchymal Stem Cells for Osteochondral Tissue Engineering. Methods Mol. Biol. 2016, 35–54. DOI: 10.1007/978-1-4939-3584-0_3.
  • Bao, W.; Li, M.; Yang, Y.; Wan, Y.; Wang, X.; Bi, N.; Li, C. Advancements and Frontiers in the High Performance of Natural Hydrogels for Cartilage Tissue Engineering. Front. Chem. 8. DOI: 10.3389/fchem.2020.00053. (Feb. 12, 2020).
  • Caplan, A. I. Mesenchymal Stem Cells: Time to Change the Name! Stem Cells Transl. Med. Jun., 2017, 6(6), 1445–1451. DOI: 10.1002/sctm.17-0051.
  • Višňa, P.; Paša, L.; Čižmář, I.; Hart, R.; Hoch, J. Treatment of Deep Cartilage Defects of the Knee Using Autologous Chondrograft Transplantation and by Abrasive Techniques - a Randomized Controlled Study. Acta. Chir. Belg. 2004, 104(6), 709–714. DOI: 10.1080/00015458.2004.11679648.
  • Oldershaw, R. A. Cell Sources for the Regeneration of Articular Cartilage: The Past, the Horizon and the Future. Int. J. Experimental Pathology Dec., 2012, 93(6), 389–400. DOI: 10.1111/j.1365-2613.2012.00837.x.
  • Vinatier, C., Merceron, C., and Guicheux, J. Osteoarthritis: From Pathogenic Mechanisms and Recent Clinical Developments to Novel Prospective Therapeutic Options. Drug. Discovery. Today Dec 1, 2016. 21(12), 1932–1937. DOI: 10.1016/j.drudis.2016.08.011.
  • Schmidt, M. B.; Chen, E. H.; Lynch, S. E. A Review of the Effects of Insulin-Like Growth Factor and Platelet Derived Growth Factor on in vivo Cartilage Healing and Repair. Osteoarthritis. And Cartilage May., 2006, 14(5), 403–412. DOI: 10.1016/j.joca.2005.10.011.
  • Hunziker, E. B. Articular Cartilage Repair: Basic Science and Clinical Progress. A Review of the Current Status and Prospects. Osteoarthritis. And Cartilage. 2002, 10(6), 432–463. DOI: 10.1053/joca.2002.0801.
  • Malda, J.; Murali, A.; Parameswaran, R. 25th Anniversary Article: Engineering Hydrogels for Biofabrication. Adv. Mate. 2013, 25(36), 5011–5028. DOI: 10.1002/adma.201302042.
  • Bian, L.; Fong, J. V.; Lima, E. G.; Stoker, A. M.; Ateshian, G. A.; Cook, J. L.; Hung, C. T. Dynamic Mechanical Loading Enhances Functional Properties of Tissue-Engineered Cartilage Using Mature Canine Chondrocytes. Tissue. Engin. Part A 2010, 16(5), 1781–1790. DOI: 10.1089/ten.tea.2009.0482.
  • Kon, E., Filardo, G., Tschon, M., Fini, M., Giavaresi, G., Reggiani, L. M., Chiari, C., Nehrer, S., Martin, I., Salter, D. M., Ambrosio, L.; et al. Tissue Engineering for Total Meniscal Substitution: Animal Study in Sheep Model—Results at 12 Months. Tissue Engineering. - Part A Aug 1, 2012. 18(15–16) pp. 1573–1582. DOI: 10.1089/ten.tea.2011.0572.
  • Gremese, E.; Alivernini, S.; Tolusso, B.; Zeidler, M. P.; Ferraccioli, G. JAK inhibition by methotrexate (and csDMARDs) may explain clinical efficacy as monotherapy and combination therapy. J. Leukocyte Biol. Nov 1, 2019. 106(5), 1063–1068. DOI: 10.1002/JLB.5RU0519-145R.
  • Zhu, S.; Li, Y.; He, Z.; Ji, L.; Zhang, W.; Tong, Y.; Luo, J.; Yu, D.; Zhang, Q.; Bi, Q. Advanced injectable hydrogels for cartilage tissue engineering. Front. Bioeng. Biotechnol. Sep 8, 2022, 10. DOI: 10.3389/fbioe.2022.954501.
  • Caporali, R.; Caprioli, M.; Bobbio-Pallavicini, F.; Montecucco, C. DMARDS and infections in rheumatoid arthritis. Autoimmunity. Rev. Dec., 2008, 8(2), 139–143. DOI: 10.1016/j.autrev.2008.05.001.
  • Väänänen, T.; Vuolteenaho, K.; Kautiainen, H.; Nieminen, R.; Möttönen, T.; Hannonen, P.; Korpela, M.; Kauppi, M. J.; Laiho, K.; Kaipiainen-Seppänen, O., et al. Glycoprotein YKL-40: A potential biomarker of disease activity in rheumatoid arthritis during intensive treatment with csDMARDs and infliximab. Evidence from the randomised controlled NEO-RACo trial. PLoS. One Aug., 2017, 12(8), e0183294. DOI: 10.1371/journal.pone.0183294.
  • Genovese, M. C.; Genovese, M. C.; Fleischmann, R.; Kivitz, A.; Lee, E. B.; Van Hoogstraten, H.; Kimura, T.; Burmester, G. R. Efficacy and safety of sarilumab in combination with csDMARDs or as monotherapy in subpopulations of patients with moderately to severely active rheumatoid arthritis in three phase III randomized, controlled studies. Arthritis. Res. Ther. 2020, 22(1). DOI: 10.1186/s13075-020-02194-z.
  • Ramiro, S.; Sepriano, A.; Chatzidionysiou, K.; Nam, J. L.; Smolen, J. S.; van der Heijde, D.; Dougados, M.; van Vollenhoven, R.; Bijlsma, J. W.; Burmester, G. R., et al. Safety of synthetic and biological DMARDs: A systematic literature review informing the 2016 update of the EULAR recommendations for management of rheumatoid arthritis. Ann. Rheum. Dis. Jun., 2017, 76(6), 1101–1136. DOI: 10.1136/annrheumdis-2016-210708.
  • Boleto, G.; Kanagaratnam, L.; Dramé, M.; Salmon, J. H. Safety of combination therapy with two bDMARDs in patients with rheumatoid arthritis: A systematic review and meta-analysis. Seminars in Arthritis. and Rheumatism Aug 1, 2019. 49(1), 35–42. DOI: 10.1016/j.semarthrit.2018.12.003.
  • Gaujoux-Viala, C., et al. Current evidence for the management of rheumatoid arthritis with synthetic disease-modifying antirheumatic drugs: A systematic literature review informing the EULAR recommendations for the management of rheumatoid arthritis. Ann. Rheum. Dis. Jun., 2010, 69(6), 1004–1009. DOI: 10.1136/ard.2009.127225.
  • Smolen, J. S.; Landewé, R.; Breedveld, F. C.; Dougados, M.; Emery, P.; Gaujoux-Viala, C.; Gorter, S.; Knevel, R.; Nam, J.; Schoels, M., et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. Ann. Rheum. Dis. Jun., 2010, 69(6), 964–975. DOI: 10.1136/ard.2009.126532.
  • Vinson, D.; Molet-Benhamou, L.; Degboé, Y.; den Broeder, A.; Ibrahim, F.; Pontes, C.; Westhovens, R.; Závada, J.; Pham, T.; Barnetche, T., et al. Impact of tapering targeted therapies (bDMARDs or JAKis) on the risk of serious infections and adverse events of special interest in patients with rheumatoid arthritis or spondyloarthritis: A systematic analysis of the literature and meta-analysis. Arthritis Res. Ther. Apr., 2020, 22(1). DOI: 10.1186/s13075-020-02188-x.
  • Kolasinski, S. L.; Neogi, T.; Hochberg, M. C.; Oatis, C.; Guyatt, G.; Block, J.; Callahan, L.; Copenhaver, C.; Dodge, C.; Felson, D., et al. 2019 American College of Rheumatology/Arthritis Foundation Guideline for the Management of Osteoarthritis of the Hand, Hip, and Knee. Arthritis. Rheumatol. Feb., 2020, 72(2), 220–233. DOI: 10.1002/art.41142.
  • Smolen, J. S.; Landewé, R.; Breedveld, F. C.; Buch, M.; Burmester, G.; Dougados, M.; Emery, P.; Gaujoux-Viala, C.; Gossec, L.; Nam, J., et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2013 update. Ann. Rheum. Dis. Mar., 2014, 73(3), 492–509. DOI: 10.1136/annrheumdis-2013-204573.
  • Rubbert-Roth, A.; Tak, P. P.; Zerbini, C.; Tremblay, J.-L.; Carreno, L.; Armstrong, G.; Collinson, N.; Shaw, T. M. Efficacy and safety of various repeat treatment dosing regimens of rituximab in patients with active rheumatoid arthritis: Results of a Phase III randomized study (MIRROR). Rheumatology. May., 2010, 49(9), 1683–1693. DOI: 10.1093/rheumatology/keq116.
  • Hoffmeister, R. T.; Spokane, W. Methotrexate Therapy in Rheumatoid Arthritis: 15 Years Experience. Am. j. med. 1983, 75(6), 69–73. DOI: 10.1016/0002-9343(83)90477-1.
  • Weiner, G. J. Rituximab: Mechanism of action. Semin. Hematol. Apr., 2010, 47(2), 115–123. DOI: 10.1053/j.seminhematol.2010.01.011.
  • Walsh, D. A.; McWilliams, D. F. Mechanisms, impact and management of pain in rheumatoid arthritis. Nat. Review Rheumatology Jan 1, 2014 10(10), 581–592. DOI: 10.1038/nrrheum.2014.64. ().
  • Wang, L.; Huang, S.; Li, S.; Li, M.; Shi, J.; Bai, W.; Wang, Q.; Zheng, L.; Liu, Y. Efficacy and Safety of Umbilical Cord Mesenchymal Stem Cell Therapy for Rheumatoid Arthritis Patients: A Prospective Phase I/II Study,” Drug. Des. Devel. Ther. vol. 13, pp. 4331–4340, 2019, doi: 10.2147/DDDT.S225613.
  • De Bari, C. Are mesenchymal stem cells in rheumatoid arthritis the good or bad guys? Arthritis. Research. and Therapy May 1, 2015. 17(1). DOI: 10.1186/s13075-015-0634-1.
  • Onrust, S. V.; Lamb, H. M.; Barman Balfour, J. A. Rituximab. Drugs 1999, 58(1), 79–88. DOI: 10.2165/00003495-199958010-00009.
  • Üppers, A. K.; Lein, L. K.; Artin, M. -Eo, L.; Ansmann, H.; Laus, K.; Ajewsky, R. Mechanisms of disease cellular o rigin of h uman b-c ell l ymphomas the human peripheral b-cell repertoire and its generation Antibody Specificity and Selection of B Cells. Cancers 2013, 12(6), 1–14.
  • Parker, D. C. T cell-dependent b cell activation. 1993. [Online]. Available: www.annualreviews.org.
  • “ nejm198311033091805.
  • Kremer, J. M. Toward a Better Understanding of Methotrexate. Arthritis Rheum. May., 2004, 50(5), 1370–1382. DOI: 10.1002/art.20278.
  • Szekanecz, Z.; Besenyei, T.; Szentpétery, Á.; Koch, A. E. Angiogenesis and vasculogenesis in rheumatoid arthritis. Current. Opinion in Rheumatology May., 2010, 22(3), 299–306. DOI: 10.1097/BOR.0b013e328337c95a.
  • Folkman, J. Angiogenesis. Annu. Rev. Med. 2006, 57(1), 1–18. DOI: 10.1146/annurev.med.57.121304.131306.
  • Lee, K. Y.; Mooney, D. J. Hydrogels for tissue engineering. Chem. Rev. Jul., 2001, 101(7), 1869–1879. DOI: 10.1021/cr000108x.
  • Khademhosseini, A.; Langer, R. Microengineered hydrogels for tissue engineering. Biomaterials Dec., 2007, 28(34), 5087–5092. DOI: 10.1016/j.biomaterials.2007.07.021.
  • Nguyen, K. T.; West, J. L. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 2002, 23(22), 4307–4314. DOI: 10.1016/S0142-9612(02)00175-8.
  • Hoffman, A. S. Hydrogels for biomedical applications. Advanced Drug. Delivery Reviews Dec., 2012, 64(Suppl), 18–23. DOI: 10.1016/j.addr.2012.09.010.
  • Peppas, N. A., Bures, P., Leobandung, W., and Ichikawa, H. Hydrogels in pharmaceutical formulations.” [Online]. Available: www.elsevier.com/locate/ejphabio.
  • Parhi, R. Cross-linked hydrogel for pharmaceutical applications: A review. Adv. Pharm. Bull. 2017, 7(4), 515–530. DOI: 10.15171/apb.2017.064.
  • Van Tomme, S. R.; Storm, G.; Hennink, W. E. In situ gelling hydrogels for pharmaceutical and biomedical applications. Int. J. Pharmaceutics May 1, 2008. 355(1–2), 1–18. DOI: 10.1016/j.ijpharm.2008.01.057.
  • Drury, J. L.; Mooney, D. J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 2003, 24(24), 4337–4351. DOI: 10.1016/S0142-9612(03)00340-5.
  • Caló, E.; Khutoryanskiy, V. V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015, 65, 252–267. DOI: 10.1016/j.eurpolymj.2014.11.024.
  • Kline, S. Kinetics of drug release from hydrogel matrices* Ping I. Lee. J. Controlled Release 1985. 5(6), 277–288.
  • Brandl, F.; Kastner, F.; Gschwind, R. M.; Blunk, T.; Teßmar, J.; Göpferich, A. Hydrogel-based drug delivery systems: Comparison of drug diffusivity and release kinetics. J. Controlled. Release Mar., 2010, 142(2), 221–228. DOI: 10.1016/j.jconrel.2009.10.030.
  • Jeznach, O.; Kołbuk, D.; Sajkiewicz, P. Injectable hydrogels and nanocomposite hydrogels for cartilage regeneration. J. Biomedical Materials Research - Part A 106(10), 2762–2776. DOI: 10.1002/jbm.a.36449. (Oct. 1, 2018).
  • Liu, M.; Zeng, X.; Ma, C.; Yi, H.; Ali, Z.; Mou, X.; Li, S.; Deng, Y.; He, N. Injectable hydrogels for cartilage and bone tissue engineering. Bone. Res. May 30, 2017. 5(1). DOI: 10.1038/boneres.2017.14.
  • Wu, J.; Chen, Q.; Deng, C.; Xu, B.; Zhang, Z.; Yang, Y.; Lu, T. Exquisite design of injectable hydrogels in cartilage repair. Theranostics 2020, 10(21), 9843–9864. DOI: 10.7150/thno.46450.
  • Celik, C.; Mogal, V. T.; Hui, J. H. P.; Loh, X. J.; Toh, W. S. Injectable Hydrogels for Cartilage Regeneration; 2018; pp. 315–337. DOI: 10.1007/978-981-10-6077-9_12.
  • Chen, G.; Kawazoe, N.; Ito, Y. “Photo-crosslinkable hydrogels for tissue engineering applications,” in Photochemistry for Biomedical Applications: From Device Fabrication to Diagnosis and Therapy; Springer Singapore, 2018; pp. 277–300. DOI: 10.1007/978-981-13-0152-0_10.
  • Tan, H.; Chu, C. R.; Payne, K. A.; Marra, K. G. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials May., 2009, 30(13), 2499–2506. DOI: 10.1016/j.biomaterials.2008.12.080.
  • Sala, R. L.; Kwon, M. Y.; Kim, M.; Gullbrand, S. E.; Henning, E. A.; Mauck, R. L.; Camargo, E. R.; Burdick, J. A. *Thermosensitive Poly(N-vinylcaprolactam) Injectable Hydrogels for Cartilage Tissue Engineering. Tissue. Eng. Part A Sep., 2017, 23(17–18), 935–945. DOI: 10.1089/ten.tea.2016.0464.
  • Shu, X. Z.; Liu, Y.; Palumbo, F. S.; Luo, Y.; Prestwich, G. D. In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials. 2004, 25(7–8), 1339–1348. DOI: 10.1016/j.biomaterials.2003.08.014.
  • Jeon, O.; Samorezov, J. E.; Alsberg, E. Single and Dual Crosslinked Oxidized Methacrylated Alginate/PEG Hydrogels for Bioadhesive Applications. Acta. Biomater. 2014, 10(1), 47–55. DOI: 10.1016/j.actbio.2013.09.004.
  • Suo, H.; Zhang, D.; Yin, J.; Qian, J.; Wu, Z. L.; Fu, J. Interpenetrating polymer network hydrogels composed of chitosan and photocrosslinkable gelatin with enhanced mechanical properties for tissue engineering. Mater. Sci. Eng. C Nov., 2018, 92, 612–620. DOI: 10.1016/j.msec.2018.07.016.
  • Schuurmans, C. C. L.; Mihajlovic, M.; Hiemstra, C.; Ito, K.; Hennink, W. E.; Vermonden, T. Hyaluronic acid and chondroitin sulfate (meth)acrylate-based hydrogels for tissue engineering: Synthesis, characteristics and pre-clinical evaluation. Biomaterials Jan 1, 2021. 268, 120602. DOI: 10.1016/j.biomaterials.2020.120602.
  • Chen, Z.; Zhao, M.; Liu, K.; Wan, Y.; Li, X.; Feng, G. Novel Chitosan Hydrogel Formed by Ethylene Glycol Chitosan, 1,6-Diisocyanatohexan and Polyethylene Glycol-400 for Tissue Engineering Scaffold: In vitro and in vivo Evaluation. J. Mater. Sci. Mater. Med. 2014, 25(8), 1903–1913. DOI: 10.1007/s10856-014-5223-3.
  • Wang, T.; Nie, J.; Yang, D. Dextran and gelatin based photocrosslinkable tissue adhesive. Carbohydr. Polym. Nov., 2012, 90(4), 1428–1436. DOI: 10.1016/j.carbpol.2012.07.011.
  • Rizzi, S. C.; Hubbell, J. A. Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part I: Development and physicochemical characteristics. Biomacromolecules May., 2005, 6(3), 1226–1238. DOI: 10.1021/bm049614c.
  • Xiang, J.; Shen, L.; Hong, Y. Status and future scope of hydrogels in wound healing: Synthesis, materials and evaluation. Eur. Polym. J. May 5, 2020. 130. DOI: 10.1016/j.eurpolymj.2020.109609.
  • Basu, S.; Pacelli, S.; Paul, A. Self-healing DNA-based injectable hydrogels with reversible covalent linkages for controlled drug delivery. Acta. Biomater Mar., 2020, 105, 159–169. DOI: 10.1016/j.actbio.2020.01.021.
  • Li, H.; Cheng, F.; Wei, X.; Yi, X.; Tang, S.; Wang, Z.; Zhang, Y. S.; He, J.; Huang, Y. Injectable, self-healing, antibacterial, and hemostatic N,O-carboxymethyl chitosan/oxidized chondroitin sulfate composite hydrogel for wound dressing. Mater. Sci. Eng. C Jan., 2021, 118, 111324. DOI: 10.1016/j.msec.2020.111324.
  • Ren, Y.; Zhao, X.; Liang, X.; Ma, P. X.; Guo, B. Injectable hydrogel based on quaternized chitosan, gelatin and dopamine as localized drug delivery system to treat Parkinson’s disease. Int. J. Biol. Macromol. Dec., 2017, 105, 1079–1087. DOI: 10.1016/j.ijbiomac.2017.07.130.
  • Yuan, Y.; Shen, S.; Fan, D. A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing: shape adaptability, injectable self-healing property and enhanced adhesion. Biomaterials Sep., 2021, 276. DOI: 10.1016/j.biomaterials.2021.120838.
  • Khamrai, M.; Banerjee, S. L.; Paul, S.; Samanta, S.; Kundu, P. P. Curcumin entrapped gelatin/ionically modified bacterial cellulose based self-healable hydrogel film: An eco-friendly sustainable synthesis method of wound healing patch. Int. J. Biol. Macromol. Feb., 2019, 122, 940–953. DOI: 10.1016/j.ijbiomac.2018.10.196.
  • Yang, J.; Chen, Y.; Zhao, L.; Feng, Z.; Peng, K.; Wei, A.; Wang, Y.; Tong, Z.; Cheng, B. Preparation of a chitosan/carboxymethyl chitosan/AgNPs polyelectrolyte composite physical hydrogel with self-healing ability, antibacterial properties, and good biosafety simultaneously, and its application as a wound dressing. Compos. B Eng. Sep., 2020, 197, 108139. DOI: 10.1016/j.compositesb.2020.108139.
  • Hu, H.; Xu, F. J. Rational design and latest advances of polysaccharide-based hydrogels for wound healing. Biomater. Sci. Apr 21, 2020. 8(8), 2084–2101. DOI: 10.1039/d0bm00055h.
  • Tronci, G.; Grant, C. A.; Thomson, N. H.; Russell, S. J.; Wood, D. J. Multi-scale mechanical characterization of highly swollen photo-activated collagen hydrogels. J. R. Soc. Interface 2015, 12(102). DOI: 10.1098/rsif.2014.1079.
  • Qu, J.; Zhao, X.; Liang, Y.; Zhang, T.; Ma, P. X.; Guo, B. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials Nov., 2018, 183, 185–199. DOI: 10.1016/j.biomaterials.2018.08.044.
  • Sadeghi-Abandansari, H.; Pakian, S.; Nabid, M. R.; Ebrahimi, M.; Rezalotfi, A. Local co-delivery of 5-fluorouracil and curcumin using Schiff’s base cross-linked injectable hydrogels for colorectal cancer combination therapy. European. Polymer J. Aug., 2021, 157, 110646. DOI: 10.1016/j.eurpolymj.2021.110646.
  • Zhang, Q.; Qiao, Y.; Zhu, J.; Li, Y.; Li, C.; Lin, J.; Li, X.; Han, H.; Mao, J.; Wang, F., et al. Electroactive and antibacterial surgical sutures based on chitosan-gelatin/tannic acid/polypyrrole composite coating. Compos. B Eng. Oct., 2021, 223, 109140. DOI: 10.1016/j.compositesb.2021.109140.
  • Bajpai, S. K.; Sonkusley, J. Hydrogels for oral drug delivery of peptides: Synthesis and characterization. J. Appl. Polym. Sci Feb., 2002, 83(8), 1717–1729. DOI: 10.1002/app.10097.
  • Gupta, H.; Velpandian, T.; Jain, S. Ion-and pH-activated novel in-situ gel system for sustained ocular drug delivery. J. Drug. Target Aug., 2010, 18(7), 499–505. DOI: 10.3109/10611860903508788.
  • Watts, P.; Smith, A. PecSys: In situ gelling system for optimised nasal drug delivery. Expert Opin. Drug Delivery May., 2009, 6(5), 543–552. DOI: 10.1517/17425240902939135.
  • Galankar, V. P.; Patil, S. B.; Upasani, C. D.; Pingale, P. L.; Amrutkar, S. V. Journal of medical pharmaceutical and allied sciences. 1906, 1. DOI: 10.22270/jmpas.2021.IC1I5.1906.
  • Morishita, M.; Goto, T.; Nakamura, K.; Lowman, A. M.; Takayama, K.; Peppas, N. A. Novel oral insulin delivery systems based on complexation polymer hydrogels: Single and multiple administration studies in type 1 and 2 diabetic rats. J. Controlled Release Feb., 2006, 110(3), 587–594. DOI: 10.1016/j.jconrel.2005.10.029.
  • Almeida, H., Amaral, M. H., Lobão, P., and Lobo, J. M. S. In situ gelling systems: A strategy to improve the bioavailability of ophthalmic pharmaceutical formulations. Drug. Discovery Today 2014, 19(4), pp. 400–412. DOI: 10.1016/j.drudis.2013.10.001.
  • Chaturvedi, K.; Ganguly, K.; Nadagouda, M. N.; Aminabhavi, T. M. Polymeric hydrogels for oral insulin delivery. J. Controlled Release Jan 28, 2013. 165(2), 129–138. DOI: 10.1016/j.jconrel.2012.11.005.
  • Morishita, M.; Goto, T.; Takayama, K.; Peppas, N. A. Oral insulin delivery systems based on complexation polymer hydrogels. J. Drug. Delivery Sci. Technol. 2006, 16(1), 19–24. DOI: 10.1016/s1773-2247(06)50003-6.
  • Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R., and Rudzinski, W. E. “Biodegradable polymeric nanoparticles as drug delivery devices,” 2001. [Online]. Available: www.elsevier.com/locate/jconrel.
  • Ghasemiyeh, P.; Mohammadi-Samani, S. Hydrogels as Drug Delivery Systems; Pros and Cons. Trends Pharm. Sci. 2019, 5(1), 7–24.
  • Rupenthal, I. D.; Alany, R. G.; Green, C. R. Ion-activated in situ gelling systems for antisense oligodeoxynucleotide delivery to the ocular surface. Mol. Pharm. Dec., 2011, 8(6), 2282–2290. DOI: 10.1021/mp200140e.
  • Gupta, H.; Jain, S.; Mathur, R.; Mishra, P.; Mishra, A. K.; Velpandian, T. Sustained ocular drug delivery from a temperature and pH triggered novel in situ gel system. Drug. Deliv. Nov., 2007, 14(8), 507–515. DOI: 10.1080/10717540701606426.
  • Sosnik, A.; Seremeta, K. P. Polymeric hydrogels as technology platform for drug delivery applications. Gels Sep 1, 2017. 3(3). DOI: 10.3390/gels3030025.
  • Liow, S. S.; Dou, Q.; Kai, D.; Karim, A. A.; Zhang, K.; Xu, F.; Loh, X. J. Thermogels: In Situ Gelling Biomaterial. ACS Biomater. Sci. Eng. Mar 14, 2016. 2(3), 295–316. DOI: 10.1021/acsbiomaterials.5b00515.
  • Coviello, T.; Matricardi, P.; Marianecci, C.; Alhaique, F. Polysaccharide hydrogels for modified release formulations. J. Controlled Release May 14, 2007. 119(1), 5–24. DOI: 10.1016/j.jconrel.2007.01.004.
  • Ito, T.; Fraser, I. P.; Yeo, Y.; Highley, C. B.; Bellas, E.; Kohane, D. S. Anti-inflammatory function of an in situ cross-linkable conjugate hydrogel of hyaluronic acid and dexamethasone. Biomaterials Apr., 2007, 28(10), 1778–1786. DOI: 10.1016/j.biomaterials.2006.12.012.
  • Merceron, C.; Portron, S.; Masson, M.; Lesoeur, J.; Fellah, B. H.; Gauthier, O.; Geffroy, O.; Weiss, P.; Guicheux, J.; Vinatier, C., et al. The effect of two- and three-dimensional cell culture on the chondrogenic potential of human adipose-derived mesenchymal stem cells after subcutaneous transplantation with an injectable hydrogel. Cell. Transplant. 2011, 20(10), 1575–1588.
  • Khunmanee, S.; Jeong, Y.; Park, H. Crosslinking method of hyaluronic-based hydrogel for biomedical applications. J. Tissue Eng. Jan., 2017, 8. DOI: 10.1177/2041731417726464.
  • Jin, R.; Moreira Teixeira, L. S.; Dijkstra, P. J.; van Blitterswijk, C. A.; Karperien, M.; Feijen, J. Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran-hyaluronic acid conjugates for cartilage tissue engineering. Biomaterials Apr., 2010, 31(11), 3103–3113. DOI: 10.1016/j.biomaterials.2010.01.013.
  • Ma, X.; Xu, T.; Chen, W.; Qin, H.; Chi, B.; Ye, Z. Injectable hydrogels based on the hyaluronic acid and poly (γ-glutamic acid) for controlled protein delivery. Carbohydr. Polym. Jan., 2018, 179, 100–109. DOI: 10.1016/j.carbpol.2017.09.071.
  • Hozumi, T.; Kageyama, T.; Ohta, S.; Fukuda, J.; Ito, T. Injectable Hydrogel with Slow Degradability Composed of Gelatin and Hyaluronic Acid Cross-Linked by Schiff’s Base Formation. Biomacromolecules. Feb., 2018, 19(2), 288–297. DOI: 10.1021/acs.biomac.7b01133.
  • Nakai, T.; Hirakura, T.; Sakurai, Y.; Shimoboji, T.; Ishigai, M.; Akiyoshi, K. Injectable Hydrogel for Sustained Protein Release by Salt-Induced Association of Hyaluronic Acid Nanogel. Macromol. Biosci. Apr., 2012, 12(4), 475–483. DOI: 10.1002/mabi.201100352.
  • Lu, Z.; Liu, S.; Le, Y.; Qin, Z.; He, M.; Xu, F.; Zhu, Y.; Zhao, J.; Mao, C.; Zheng, L. An injectable collagen-genipin-carbon dot hydrogel combined with photodynamic therapy to enhance chondrogenesis. Biomaterials Oct., 2019, 218, 119190. DOI: 10.1016/j.biomaterials.2019.05.001.
  • Wang, H.; Zhu, D.; Paul, A.; Cai, L.; Enejder, A.; Yang, F.; Heilshorn, S. C. Covalently Adaptable Elastin-Like Protein–Hyaluronic Acid (ELP–HA) Hybrid Hydrogels with Secondary Thermoresponsive Crosslinking for Injectable Stem Cell Delivery. Adv. Funct. Mater. Jul., 2017, 27(28). DOI: 10.1002/adfm.201605609.
  • Matricardi, P.; Di Meo, C.; Coviello, T.; Hennink, W. E.; Alhaique, F. Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Advanced. Drug. Delivery Reviews Aug 1, 2013. 65(9), 1172–1187. DOI: 10.1016/j.addr.2013.04.002.
  • Tous, E.; Tous, E.; Ifkovits, J. L.; Koomalsingh, K. J.; Shuto, T.; Soeda, T.; Kondo, N.; Budrick, J. Influence of injectable hyaluronic acid hydrogel degradation behavior on infarction-induced ventricular remodeling. Biomacromolecules 2011, 12(11), 4127–4135. DOI: 10.1021/bm201198x.
  • Arora, A.; Mahajan, A.; Katti, D. S. TGF-β1 presenting enzymatically cross-linked injectable hydrogels for improved chondrogenesis. Colloids Surf. B Biointerfaces Nov., 2017, 159, 838–848. DOI: 10.1016/j.colsurfb.2017.08.035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.