43
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Eco-friendly and bio-based approaches for flame-retardant functionalization of textile materials: a review

, ORCID Icon, , , & ORCID Icon
Received 05 Mar 2024, Accepted 30 May 2024, Published online: 21 Jun 2024

References

  • Heesemann, R.; Bettermann, I.; Paul, R.; Rey, M.; Gries, T.; Feng, L.; Schwaneberg, U.; Hummelsheim, C. Development of a Process for Flame Retardant Coating of Textiles with Bio-Hybrid Anchor Peptides. 2023, 41(5). DOI: 10.1116/6.0002776.
  • Salmeia, K. A.; Gaan, S.; Malucelli, G. Recent Advances for Flame Retardancy of Textiles Based on Phosphorus Chemistry. Polymers. 2016, 8(9), 319. DOI: 10.3390/polym8090319.
  • Horrocks, A. Flame Retardant Challenges for Textiles and Fibres: New Chemistry versus Innovatory Solutions. Polym. Degrad. Stab. 2011, 96(3), 377–392. DOI: 10.1016/j.polymdegradstab.2010.03.036.
  • Vahidi, G.; Bajwa, D. S.; Shojaeiarani, J.; Stark, N.; Darabi, A. Advancements in Traditional and Nanosized Flame Retardants for Polymers—A Review. J. Appl. Polym. Sci. 2021, 138(12), 50050. DOI: 10.1002/app.50050.
  • Morgan, A. B. The Future of Flame Retardant Polymers–Unmet Needs and Likely New Approaches. Polym. Rev. 2019, 59(1), 25–54. DOI: 10.1080/15583724.2018.1454948.
  • Uddin, F. J. I. J. S. E. Recent Flame Retardant Consumption: Textiles. 2019, 10, 805–819.
  • Hull, T. R.; Stec, A. A.; Lebek, K.; Price, D. Factors Affecting the Combustion Toxicity of Polymeric Materials. Polym. Degrad. Stab. 2007, 92(12), 2239–2246. DOI: 10.1016/j.polymdegradstab.2007.03.032.
  • Stec, A. A.; Hull, T. R.; Purser, D. A.; Purser, J. A. Fire Toxicity Assessment: Comparison of Asphyxiant Yields from Laboratory and Large Scale Flaming Fires. Fire Safety Sci. 2014, 11, 404–418. DOI: 10.3801/IAFSS.FSS.11-404.
  • Wi, S.; Yang, S.; Yun, B. Y.; Kang, Y.; Kim, S. Fire Retardant Performance, Toxicity and Combustion Characteristics, and Numerical Evaluation of Core Materials for Sandwich Panels. Environ. Pollut. 2022, 312, 120067. DOI: 10.1016/j.envpol.2022.120067.
  • Hirschler, M. M. Flame Retardants and Heat Release: Review of Traditional Studies on Products and on Groups of Polymers. Fire Mater. 2015, 39(3), 207–231. DOI: 10.1002/fam.2243.
  • De Wit, C. A. An Overview of Brominated Flame Retardants in the Environment. Chemosphere. 2002, 46(5), 583–624. DOI: 10.1016/S0045-6535(01)00225-9.
  • Chen, L.; Wang, Y. Z. A Review on Flame Retardant Technology in China. Part I: Development of Flame Retardants. Polymers Adv. Technol 2010, 21(1), 1–26.
  • Horrocks, A. R.; Price, D.; Price, D. Fire Retardant Materials; Woodhead Publishing, 2001.
  • Khandual, A. J. Green Flame Retardants for Textiles. Green Fashion 2016, 171–227.
  • Liang, Y.; Jian, H.; Deng, C.; Xu, J.; Liu, Y.; Park, H.; Wen, M.; Sun, Y. Research and Application of Biomass-Based Wood Flame Retardants: A Review. Polymers 2023, 15(4), 950. DOI: 10.3390/polym15040950.
  • Klingler, W. W.; Bifulco, A.; Polisi, C.; Huang, Z.; Gaan, S. J. C. P. B. E. Recyclable Inherently Flame-Retardant Thermosets: Chemistry, Properties and Applications. Compos. B Eng. 2023, 258, 110667. DOI: 10.1016/j.compositesb.2023.110667.
  • Kundu, C. K.; Li, Z.; Song, L.; Hu, Y. An Overview of Fire Retardant Treatments for Synthetic Textiles: From Traditional Approaches to Recent Applications. Eur. Polym. J. 2020, 137, 109911. DOI: 10.1016/j.eurpolymj.2020.109911.
  • Hull, T. R.; Kandola, B. K. Fire Retardancy of Polymers–New Strategies and Mechanisms; Royal Society of Chemistry, 2009.
  • Wakelyn, P. J. Environmentally Friendly Flame Resistant Textiles. In Advances in Fire Retardant Materials; Elsevier, 2008; pp. 188–212.
  • Mazumder, N. U. S.; Islam, M. T. Flame Retardant Finish for Textile Fibers. Inno. Emerg. Technol. Text. Dye. Finishing. 2021, 373–405.
  • Gaan, S.; Salimova, V.; Rupper, P.; Ritter, A.; Schmid, H. Flame Retardant Functional Textiles. In Functional Textiles for Improved Performance, Protection and Health; Elsevier, 2011; pp. 98–130.
  • Yusuf, M. J. A Review on Flame Retardant Textile Finishing: Current and Future Trends. Curr. Smart Mater. 2018, 3(2), 99–108. DOI: 10.2174/2405465803666180703110858.
  • Lewin, M. Flame Retardance of Fabrics. In Handbook of Fiber Science and Technology Volume 2; Routledge, 2018; pp. 1–141.
  • Rosace, G.; Migani, V.; Guido, E.; Colleoni, C. J. Flame Retardant Finishing for Textiles. In Flame Retardants: Polymer Blends, Composites And Nanocomposites, 2015; pp 209–246.
  • D’silva, K.; Fernandes, A.; Rose, M. J. Brominated Organic Micropollutants—Igniting the Flame Retardant Issue. Crit. Rev. Environ. Sci. Technol. 2004, 34(2), 141–207. DOI: 10.1080/10643380490430672.
  • Ekpe, O. D.; Choo, G.; Barceló, D.; Oh, J.-E. Introduction of Emerging Halogenated Flame Retardants in the Environment. In Comprehensive Analytical Chemistry; Elsevier, 2020; Vol. 88, pp. 1–39.
  • Xu, G.; Zhao, X.; Zhao, S.; Chen, C.; Rogers, M. J.; Ramaswamy, R.; He, J. Insights into the Occurrence, Fate, and Impacts of Halogenated Flame Retardants in Municipal Wastewater Treatment Plants. Environ. Sci. Technol. 2021, 55(8), 4205–4226. DOI: 10.1021/acs.est.0c05681.
  • Gibertini, E.; Carosio, F.; Aykanat, K.; Accogli, A.; Panzeri, G.; Magagnin, L. Silica-Encapsulated Red Phosphorus for Flame Retardant Treatment on Textile. Surf. Interfaces 2021, 25, 101252. DOI: 10.1016/j.surfin.2021.101252.
  • Yaman, N. J. Preparation and Flammability Properties of Hybrid Materials Containing Phosphorous Compounds via Sol-Gel Process. Fibers Polym. 2009, 10(4), 413–418. DOI: 10.1007/s12221-009-0413-1.
  • Kanat, M.; Eren, T. J. Synthesis of Phosphorus‐Containing Flame Retardants and Investigation of Their Flame Retardant Behavior in Textile Applications. J. Appl. Polym. Sci. 2019, 136(36), 47935. DOI: 10.1002/app.47935.
  • Dogan, M.; Dogan, S. D.; Savas, L. A.; Ozcelik, G.; Tayfun, U. Flame Retardant Effect of Boron Compounds in Polymeric Materials. Compos. B Eng. 2021, 222, 109088. DOI: 10.1016/j.compositesb.2021.109088.
  • Visakh, P.; Yoshihiko, A. Flame Retardants: Polymer Blends, Composites and Nanocomposites; Springer, 2015.
  • Visakh, P. Advances in Flame Retardant of Different Types of Nanocomposites: State of Art New Challenges Opportunities. In Flame retardants: polymer blends, composites and nanocomposites, 2015; pp 1–13.
  • Akar, A.; Değirmenci, B.; Köken, N. Fire-Retardant and Smoke-Suppressant Rigid Polyurethane Foam Composites. Pigm. Resin Technol. 2023, 52(2), 237–245. DOI: 10.1108/PRT-06-2021-0062.
  • Jin, L.; Ji, C.; Chen, S.; Song, Z.; Zhou, J.; Qian, K.; Guo, W. Multifunctional Textiles with Flame Retardant and Antibacterial Properties: A Review. Molecules 2023, 28(18), 6628. DOI: 10.3390/molecules28186628.
  • Jin, L.; Ji, C.; Chen, S.; Song, Z.; Zhou, J.; Qian, K.; Guo, W. Multifunctional Textiles with Flame Retardant and Antibacterial Properties: A Review. Molecules 2023, 28(18), 6628–6628. DOI: 10.3390/molecules28186628.
  • Irvine, D.; McCluskey, J.; Robinson, I. M.; Stability. Fire Hazards and Some Common Polymers. Polym. Degrad. Stab. 2000, 67(3), 383–396. DOI: 10.1016/S0141-3910(99)00127-5.
  • Hull, T. R.; Stec, A. A. Polymers and Fire. 2009.
  • Mouritz, A. P.; Gibson, A. G. Fire Properties of Polymer Composite Materials; Springer Science & Business Media, 2007.
  • Shah, M. A.; Pirzada, B. M.; Price, G.; Shibiru, A. L.; Qurashi, A. Applications of Nanotechnology in Smart Textile Industry: A Critical Review. J. Adv. Res. 2022, 38, 55–75. DOI: 10.1016/j.jare.2022.01.008.
  • Watanabe, I.; Sakai, S.-I. Environmental Release and Behavior of Brominated Flame Retardants. Environ. Int. 2003, 29(6), 665–682.
  • Law, R. J.; Allchin, C. R.; de Boer, J.; Covaci, A.; Herzke, D.; Lepom, P.; Morris, S.; Tronczynski, J.; de Wit, C. A. Levels and Trends of Brominated Flame Retardants in the European Environment. Chemosphere 2006, 64(2), 187–208. DOI: 10.1016/j.chemosphere.2005.12.007.
  • Legler, J.; Brouwer, A. Are Brominated Flame Retardants Endocrine Disruptors? Environ. Int. 2003, 29(6), 879–885.
  • Birnbaum, L. S.; Staskal, D. F. Brominated Flame Retardants: Cause for Concern? Environ. Health Perspect. 2004, 112(1), 9–17.
  • Van der Veen, I.; de Boer, J. Phosphorus Flame Retardants: Properties, Production, Environmental Occurrence, Toxicity and Analysis. Chemosphere 2012, 88(10), 1119–1153. DOI: 10.1016/j.chemosphere.2012.03.067.
  • Xu, F.; Zhang, G.; Wang, P.; Dai, F. J. C. A Novel ε-Polylysine-Derived Durable Phosphorus‐Nitrogen‐Based Flame Retardant for Cotton Fabrics. Cellul. 2021, 28, 3807–3822.
  • Singh, H.; Jain, A. K. Ignition, Combustion, Toxicity, and Fire Retardancy of Polyurethane Foams: A Comprehensive Review. J. Appl. Polym. Sci. 2009, 111(2), 1115–1143. DOI: 10.1002/app.29131.
  • Chai, H.; Duan, Q.; Jiang, L.; Sun, J.; Calorimetry. Effect of Inorganic Additive Flame Retardant on Fire Hazard of Polyurethane Exterior Insulation Material. J. Therm. Anal. Calorim. 2019, 135, 2857–2868.
  • Zaikov, G.; Lomakin, S. Ecological Issue of Polymer Flame Retardancy. J. Appl. Polym. Sci. 2002, 86(10), 2449–2462.
  • Chatterjee, S.; Shanmuganathan, K.; Kumaraswamy, G. Fire-Retardant, Self-Extinguishing Inorganic/Polymer Composite Memory Foams. ACS Appl. Mater. Interfaces 2017, 9(51), 44864–44872. DOI: 10.1021/acsami.7b16808.
  • Grover, T.; Khandual, A.; Chatterjee, K.; Jamdagni, R. Flame retardants: An overview. Colourage 2014, 61, 28–36.
  • Rao, W.; Shi, J.; Yu, C.; Zhao, H.-B.; Wang, Y.-Z. Highly Efficient, Transparent, and Environment-Friendly Flame-Retardant Coating for Cotton Fabric. 2021, 424, 130556.
  • Alongi, J.; Carosio, F.; Malucelli, G. Current Emerging Techniques to Impart Flame Retardancy to Fabrics: An Overview. Polym. Degrad. Stab. 2014, 106, 138–149.
  • Becenen, N.; Eyi, G. Investigation of the Flammability Properties of a Cotton and Elastane Blend Denim Fabric in the Presence of Boric Acid, Borax, and Nano-SiO2. J. Text. Inst. 2021, 112(7), 1080–1092.
  • Yasin, S.; Behary, N.; Curti, M.; Rovero, G. Global Consumption of Flame Retardants and Related Environmental Concerns: A Study on Possible Mechanical Recycling of Flame Retardant Textiles. Fibers 2016, 4(4), 16. DOI: 10.3390/fib4020016.
  • Castellano, A.; Colleoni, C.; Iacono, G.; Mezzi, A.; Plutino, M. R.; Malucelli, G.; Rosace, G. Synthesis and Characterization of a Phosphorous/Nitrogen Based Sol-Gel Coating As a Novel Halogen- and Formaldehyde-Free Flame Retardant Finishing for Cotton Fabric. Polym. Degrad. Stab. 2019, 162, 148–159. DOI: 10.1016/j.polymdegradstab.2019.02.006.
  • Sharma, N. K.; Verma, C.; Chariar, V. M.; Prasad, R. Eco-Friendly Flame-Retardant Treatments for Cellulosic Green Building Materials. Indoor And Built Environ. 2015, 24(3), 422–432. DOI: 10.1177/1420326X13516655.
  • Costes, L.; Laoutid, F.; Brohez, S.; Dubois, P. Bio-Based Flame Retardants: When Nature Meets Fire Protection. Mater. Sci. Eng. R Rep. 2017, 117, 1–25. DOI: 10.1016/j.mser.2017.04.001.
  • Mensah, R. A.; Shanmugam, V.; Narayanan, S.; Renner, J. S.; Babu, K.; Neisiany, R. E.; Försth, M.; Sas, G.; Das, O. A Review of Sustainable and Environment-Friendly Flame Retardants Used in Plastics. Polym. Test. 2022, 108, 107511. DOI: 10.1016/j.polymertesting.2022.107511.
  • Kundu, C. K.; Li, Z.; Song, L.; Hu, Y. Flame Retardant Treatments of Nylon Textiles: A Shift Towards Eco-Friendly Approaches. Flame Retardant and Thermally Insulating Polymers, IntechOpen, 2020.
  • Özer, M. S.; Gaan, S. Recent Developments in Phosphorus Based Flame Retardant Coatings for Textiles: Synthesis, Applications and Performance. Prog. Org. Coat. 2022, 171, 107027. DOI: 10.1016/j.porgcoat.2022.107027.
  • Ding, Y.; Stoliarov, S. I.; Kraemer, R. H. Pyrolysis Model Development for a Polymeric Material Containing Multiple Flame Retardants: Relationship Between Heat Release Rate and Material Composition. Combust. Flame 2019, 202, 43–57. DOI: 10.1016/j.combustflame.2019.01.003.
  • Morgan, A. B.; Gilman, J. W. An Overview of Flame Retardancy of Polymeric Materials: Application, Technology, and Future Directions. Fire Mater. 2013, 37(4), 259–279.
  • Dasari, A.; Yu, Z.-Z.; Cai, G.-P.; Mai, Y.-W. Recent Developments in the Fire Retardancy of Polymeric Materials. Prog. Polym. Sci. 2013, 38(9), 1357–1387.
  • Tawfik, S. Y. Flame Retardants: Additives in Plastic Technology. Polym. Polym. Compos.: a reference series 2017, 1–27.
  • Shen, J.; Liang, J.; Lin, X.; Lin, H.; Yu, J.; Wang, S. J. P. The Flame-Retardant Mechanisms and Preparation of Polymer Composites and Their Potential Application in Construction Engineering. Polymers 2021, 14(1), 82. DOI: 10.3390/polym14010082.
  • Shi, X.-H.; Li, X.-L.; Li, Y.-M.; Li, Z.; Wang, D.-Y. Flame-Retardant Strategy and Mechanism of Fiber Reinforced Polymeric Composite: A Review. Compos. B Eng. 2022, 233, 109663. DOI: 10.1016/j.compositesb.2022.109663.
  • Faheem, S.; Nahid, N.; Wiener, J.; Tomková, B.; Pechočiaková, M.; Militký, J.; Mazari, A. Flame Retardancy of Textiles—New Strategies and Mechanisms. In Advanced Multifunctional Materials from Fibrous Structures; Springer, 2023; pp. 279–317.
  • Trovato, V.; Sfameni, S.; Ben Debabis, R.; Rando, G.; Rosace, G.; Malucelli, G.; Plutino, M. R. How to Address Flame-Retardant Technology on Cotton Fabrics by Using Functional Inorganic Sol–Gel Precursors and Nanofillers: Flammability Insights, Research Advances, and Sustainability Challenges. Inorganics 2023, 11(7), 306. DOI: 10.3390/inorganics11070306.
  • Seraji, S. M.; Song, P.; Varley, R. J.; Bourbigot, S.; Voice, D.; Wang, H. Fire-Retardant Unsaturated Polyester Thermosets: The State-Of-The-Art, Challenges and Opportunities. Chem. Eng. J. 2022, 430, 132785. DOI: 10.1016/j.cej.2021.132785.
  • Liu, B. W.; Zhao, H. B.; Wang, Y. Z. Advanced Flame‐Retardant Methods for Polymeric Materials. Adv.Mate. 2022, 34(46), 2107905. DOI: 10.1002/adma.202107905.
  • Lv, Y. F.; Thomas, W.; Chalk, R.; Singamneni, S. Flame retardant polymeric materials for additive manufacturing. Mater. Today Proc. 2020, 33, 5720–5724.
  • Kundu, C. K.; Hossen, M. T.; Islam, T.; Mollick, S.; Song, L.; Hu, Y. Flame retardant coatings from bio-derived chitosan, sodium alginate, and metal salts for polyamide 66 textiles. ACS omega 2022, 7(35), 30841–30848.
  • Soni, R. K.; Teotia, M.; Sharma, A. Cone Calorimetry in Fire-Resistant Materials. Appl. Calorim. 2022, 97.
  • Vahabi, H.; Laoutid, F.; Mehrpouya, M.; Saeb, M. R.; Dubois, P. Flame retardant polymer materials: An update and the future for 3D printing developments. Mater. Sci. Eng. R Rep. 2021, 144, 100604. DOI: 10.1016/j.mser.2020.100604.
  • Lyu, P.; Hu, J.; Liu, Y.; Zhao, L.; Feng, C.; Ma, Y.;Wang, Q.; Zhang, R.; Huang, W. Composites Filled with Metal Organic Frameworks and Their Derivatives: Recent Developments in Flame Retardants. Polym. 2022, 14(23), 5279.
  • Naiker, V. E.; Mestry, S.; Nirgude, T.; Gadgeel, A.; Mhaske, S. Recent developments in phosphorous-containing bio-based flame-retardant (FR) materials for coatings. An attentive Rev. 2023, 20(1), 113–139.
  • Howell, B. A.; Oberdorfer, K. L.; Ostrander, E. A. Phosphorus flame retardants for polymeric materials from gallic acid and other naturally occurring multihydroxybenzoic acids. Int. J. Polym. Sci. 2018, 2018(1), 7237236.
  • Zheng, D.; Zhou, J.; Zhong, L.; Zhang, F.; Zhang, G. J. C. A novel durable and high-phosphorous-containing flame retardant for cotton fabrics. Cellulose 2016, 23(3), 2211–2220. DOI: 10.1007/s10570-016-0949-3.
  • Liao, Y.; Chen, Y.; Wan, C.; Zhang, G.; Zhang, F. An eco-friendly NP flame retardant for durable flame-retardant treatment of cotton fabric. Int. J. Biol. Macromol. 2021, 187, 251–261. DOI: 10.1016/j.ijbiomac.2021.07.130.
  • Šehić, A.; Tomšič, B.; Jerman, I.; Vasiljević, J.; Medved, J.; Simončič, B. Synergistic inhibitory action of P- and Si-containing precursors in sol–gel coatings on the thermal degradation of polyamide 6. Polym. Degrad. Stab. 2016, 128, 245–252. DOI: 10.1016/j.polymdegradstab.2016.03.026.
  • Kundu, C. K.; Wang, X.; Rahman, M. Z.; Song, L.; Hu, Y. Application of chitosan and DOPO derivatives in fire protection of polyamide 66 textiles: towards a combined gas phase and condensed phase activity. Polym. Degrad. Stab. 2020, 176, 109158. DOI: 10.1016/j.polymdegradstab.2020.109158.
  • Rahman, M. Z.; Wang, X.; Song, L.; Hu, Y. A novel green phosphorus-containing flame retardant finishing on polysaccharide-modified polyamide 66 fabric for improving hydrophilicity and durability. Int. J. Biol. Macromol. 2023, 239, 124252.
  • Zhang, Y.; Ren, Y.; Liu, X.; Huo, T.; Qin, Y. Preparation of durable flame retardant PAN fabrics based on amidoximation and phosphorylation. Appl. Surf. Sci. 2018, 428, 395–403.
  • Ren, Y.; Jiang, L.; Tian, T.; Liu, X.; Han, Z. Durable flame retardant polyacrylonitrile fabric via UV-induced grafting polymerization and surface chemical modification. RSC advances 2018, 8(72), 41389–41396.
  • Nazir, R.; Gooneie, A.; Lehner, S.; Jovic, M.; Rupper, P.; Ott, N.; Hufenus, R.; Gaan, S. Alkyl sulfone bridged phosphorus flame-retardants for polypropylene. Mater. Des. 2021, 200, 109459. DOI: 10.1016/j.matdes.2021.109459.
  • Mitrophanov, A. Y.; Szlam, F.; Sniecinski, R. M.; Levy, J. H.; Reifman, J. A Step Toward Balance: Thrombin Generation Improvement via Procoagulant Factor and Antithrombin Supplementation. Anes. analg. 2016, 123(3), 535–546. DOI: 10.1213/ANE.0000000000001361.
  • Vasiljević, J.; Jerman, I.; Jakša, G.; Alongi, J.; Malucelli, G.; Zorko, M.; Tomšič, B.; Simončič, B. Functionalization of cellulose fibres with DOPO-polysilsesquioxane flame retardant nanocoating. Cellulose 2015, 22(3), 1893–1910. DOI: 10.1007/s10570-015-0599-x.
  • Liu, Y.; Pan, Y.-T.; Wang, X.; Acuña, P.; Zhu, P.; Wagenknecht, U.; Heinrich, G.; Zhang, X.-Q.; Wang, R.; Wang, D.-Y., et al. Effect of Phosphorus-Containing Inorganic–Organic Hybrid Coating on the Flammability of Cotton Fabrics: Synthesis, Characterization and Flammability. Chem. Eng. J. 2016, 294, 167–175. DOI: 10.1016/j.cej.2016.02.080.
  • Wang, S.; Sui, X.; Li, Y.; Li, J.; Xu, H.; Zhong, Y.; Zhang, L.; Mao, Z. Durable flame retardant finishing of cotton fabrics with organosilicon functionalized cyclotriphosphazene. Polym. Degrad. Stab. 2016, 128, 22–28. DOI: 10.1016/j.polymdegradstab.2016.02.009.
  • Nguyen, T.-M.; Chang, S.; Condon, B.; Slopek, R.; Graves, E.; Yoshioka-Tarver, M. Structural effect of phosphoramidate derivatives on the thermal and flame retardant behaviors of treated cotton cellulose. Ind. Eng. Chem. Res. 2013, 52(13), 4715–4724. DOI: 10.1021/ie400180f.
  • Wan, C.; Liu, M.; He, P.; Zhang, G.; Zhang, F. A novel reactive flame retardant for cotton fabric based on a thiourea-phosphoric acid polymer. Ind. Crops Prod. 2020, 154, 112625. DOI: 10.1016/j.indcrop.2020.112625.
  • Zhao, B.; Liu, Y.-T.; Zhang, C.-Y.; Liu, D.-Y.; Li, F.; Liu, Y.-Q. A novel phosphoramidate and its application on cotton fabrics: synthesis, flammability and thermal degradation. J. Anal. Appl. Pyrolysis 2017, 125, 109–116. DOI: 10.1016/j.jaap.2017.04.011.
  • Jiang, D.; Sun, C.; Zhou, Y.; Wang, H.; Yan, X.; He, Q.; Guo, J.; Guo, Z. Enhanced flame retardancy of cotton fabrics with a novel intumescent flame-retardant finishing system. Fibers Polym. 2015, 16(2), 388–396. DOI: 10.1007/s12221-015-0388-z.
  • Nguyen, T.-M.; Chang, S.; Condon, B.; Smith, J. Fire self-extinguishing cotton fabric: Development of piperazine derivatives containing phosphorous-sulfur-nitrogen and their flame retardant and thermal behaviors. 2014, 5(11), 789. DOI: 10.4236/msa.2014.511079.
  • Hajj, R.; El Hage, R.; Sonnier, R.; Otazaghine, B.; Gallard, B.; Rouif, S.; Nakhl, M.; Lopez-Cuesta, J.-M. Grafting of phosphorus flame retardants on flax fabrics: Comparison between two routes. Polym. Degrad. Stab. 2018, 147, 25–34.
  • Qin, R.; Song, Y.; Niu, M.; Xue, B.; Liu, L. Construction of flame retardant coating on polyester fabric with ammonium polyphosphate and carbon microspheres. Polym. Degrad. Stab. 2020, 171, 109028. DOI: 10.1016/j.polymdegradstab.2019.109028.
  • Sag, J.; Goedderz, D.; Kukla, P.; Greiner, L.; Schönberger, F.; Döring, M. J. M. Phosphorus-Containing Flame Retardants from Biobased Chemicals and Their Application in Polyesters and Epoxy Resins. Molecules. 2019, 24(20), 3746. DOI: 10.3390/molecules24203746.
  • Zhao, S.; Xu, B.; Shan, H.; Zhang, Q.; Wang, X. How Do Phosphorus Compounds with Different Valence States Affect the Flame Retardancy of PET? Polym. 2023, 15(8), 1917.
  • Chen, Y.; Sun, B.; Zhang, H.; Zhou, X. Synthesis and application of a sulfur‐containing phosphoric amide flame retardant for nylon fabric. Fire Mater. 2016, 40(7), 959–972. DOI: 10.1002/fam.2354.
  • Zhou, X.; Sun, Y.; Chen, Y.; Sun, B. Synthesis and application of a polyamide-containing phosphorous and sulfur flame-retardant for nylon fabric폴리머. 2018, 42(2), 157–166.
  • Keskin, E.; Köken, N.; Kızılcan, N.; Akar, A. Copolymers and terpolymers of vinyl phosphonic acid, acrylonitrile, methyl acrylate, and vinyl acetate. Thermal oxidative stabilization and their nanofiber. Polym. Plast. Technol. Eng. 2023, 62(15), 2030–2042.
  • Köken, N.; Akşit, E.; Yilmaz, M. Nanofibers from chitosan/polyacrylonitrile/sepiolite nanocomposites. Polym. Plast. Technol. Eng. 2021, 60(16), 1–13. DOI: 10.1080/25740881.2021.1934014.
  • Yılmaz, M.; Akar, A.; Köken, N.; Kızılcan, N. Polymers of Vinylphosphonic Acid, Acrylonitrile, and Methyl Acrylate and Their Nanofibers. J. Appl. Polym. Sci. 2020, 137(35), 49023. DOI: 10.1002/app.49023.
  • Gao, Y.-J.; Jin, W.-J.; Hu, B.-Q.; Cheng, X.-W.; Guan, J.-P. Preparation of a Reactive Phosphorus/nitrogen-Based Intumescent Flame Retardant Coating for Cotton Fabrics. J. Nat. Fibers. 2023, 20(1), 2153195.
  • Li, N. Novel eco-friendly flame retardants based on nitrogen–silicone Schiff base and application in cellulose. ACS Sustainable Chem. Eng. 2019, 8(1), 290–301.
  • Maroufi, P.; Moghadam, P. N.; Vahabi, H. New nitrogen-rich flame retardant based on conductive poly (aniline-co-melamine). React. Funct. Polym. 2020, 150, 104548.
  • Jia, Y.; Hu, Y.; Zheng, D.; Zhang, G.; Zhang, F.; Liang, Y. Synthesis and evaluation of an efficient, durable, and environmentally friendly flame retardant for cotton. Cellul. 2017, 24, 1159–1170.
  • Tian, P.; Lu, Y.; Wang, D.; Zhang, G.; Zhang, F. Synthesis of a new N–P durable flame retardant for cotton fabrics. Polym. Degrad. Stab. 2019, 165, 220–228. DOI: 10.1016/j.polymdegradstab.2019.04.024.
  • Ülkü, G.; Köken, N.; Akar, A.; Kızılcan, N.; Yaman, D. Tris (1-chloro-2-propyl) phosphate (TCPP) microcapsules for the preparation of flame-retardant rigid polyurethane foam. Polym. Plast. Technol. Eng. 2021, 60(5), 562–570.
  • Li, J.; Zhao, H.; Liu, H.; Sun, J.; Wu, J.; Liu, Q.; Zheng, Y.; Zheng, P. Recent advances in metal-family flame retardants: a review. Rsc. Adv. 2023, 13(33), 22639–22662. DOI: 10.1039/D3RA03536K.
  • Horrocks, A. R. Flame retardant/resistant textile coatings and laminates. In Advances in fire retardant materials; Elsevier, 2008; pp. 159–187.
  • Zhang, H.; Wang, H.; Wang, H. Flame retardant mechanism and surface modification of magnesium hydroxide flame retardant. IOP Conference Series: Earth and Environmental Science, IOP Publishing, 2018; Vol. 170, pp 032028.
  • Mohd Sabee, M. M. S.; Itam, Z.; Beddu, S.; Zahari, N. M.; Mohd Kamal, N. L.; Mohamad, D.; Zulkepli, N. A.; Shafiq, M. D.; Abdul Hamid, Z. A. Flame retardant coatings: additives, binders, and fillers. Polymers 2022, 14(14), 2911. DOI: 10.3390/polym14142911.
  • Zhang, C.; Cheng, X.-W.; Guan, J.-P.; Chen, G. Preparation of nano-Mg (OH) 2 for surface coating of silk fabric with improved flame retardancy and smoke suppression. Colloids Surf. A Physicochem. Eng. Aspects 2021, 625, 126868.
  • Ji, W.; Wang, H.; Yao, Y.; Wang, R. Mg (OH) 2 and PDMS-coated cotton fabrics for excellent oil/water separation and flame retardancy. Cellulose 2019, 26, 6879–6890.
  • Ai, L.; Chen, S.; Yang, L.; Liu, P. Synergistic Flame Retardant Effect of Organic Boron Flame Retardant and Aluminum Hydroxide on Polyethylene. Fibers Polym. 2021, 22(2), 354–365. DOI: 10.1007/s12221-021-9385-6.
  • Barik, S.; Khandual, A.; Behera, L.; Badamali, S. K.; Luximon, A. Nano-Mg–al-Layered Double Hydroxide Application to Cotton for Enhancing Mechanical, UV Protection and Flame Retardancy at Low Cytotoxicity Level. Cellulose. 2017, 24(2), 1107–1120. DOI: 10.1007/s10570-016-1134-4.
  • Vasile, C.; Baican, M. Lignins As Promising Renewable Biopolymers and Bioactive Compounds for High-Performance Materials. Polymers. 2023, 15(15), 3177. DOI: 10.3390/polym15153177.
  • Mariana, M.; Alfatah, T.; Hps, A. K.; Yahya, E. B.; Olaiya, N. G.; Nuryawan, A.; Mistar, E. M.; Abdullah, C. K.; Abdulmadjid, S. N.; Ismail, H., et al. A Current Advancement on the Role of Lignin As Sustainable Reinforcement Material in Biopolymeric Blends. J. Mater. Res. Technol. 2021, 15, 2287–2316. DOI: 10.1016/j.jmrt.2021.08.139.
  • Baker, D. A.; Hosseinaei, O. High glass transition lignins and lignin derivatives for the manufacture of carbon and graphite fibers,” ed: Google Patents, 2014.
  • Solihat, N. N.; Hidayat, A. F.; Taib, M. N. A. M.; Hussin, M. H.; Lee, S. H.; Ghani, M. A. A.; Edrus, S. S. O. A.; Vahabi, H.; Fatriasari, W. Recent developments in flame-retardant lignin-based biocomposite: manufacturing, and characterization. J. Polym. Environ. 2022, 30(11), 4517–4537. DOI: 10.1007/s10924-022-02494-2.
  • Ridho, M. R.; Agustiany, E. A.; Rahmi Dn, M.; Madyaratri, E. W.; Ghozali, M.; Restu, W. K.; Falah, F.; Rahandi Lubis, M. A.; Syamani, F. A.; Nurhamiyah, Y., et al. Lignin As Green Filler in Polymer Composites: Development Methods, Characteristics, and Potential Applications. Adv. Mater. Sci. Eng. 2022, 2022, 1–33. DOI: 10.1155/2022/1363481.
  • Kubo, S.; Kadla, J. F. Poly (ethylene oxide)/organosolv lignin blends: Relationship between thermal properties, chemical structure, and blend behavior. Macromolecules 2004, 37(18), 6904–6911.
  • Mandlekar, N. An overview on the use of lignin and its derivatives in fire retardant polymer systems. Lignin-trends and Appl. 2018, 9, 207–231.
  • Greil, P.; Fey, T.; Zollfrank, C. Biomorphous ceramics from lignocellulosic preforms. Handbook of Adv. Ceramics. Elsevier Inc 2013, 527–555.
  • Brebu, M.; Tamminen, T.; Spiridon, I. Thermal degradation of various lignins by TG-MS/FTIR and Py-GC-MS. J. Anal. Appl. Pyrolysis. 2013, 104, 531–539. DOI: 10.1016/j.jaap.2013.05.016.
  • Huang, C.; He, J.; Liang, C.; Tang, S.; Yong, Q. Progress in applications of high value-added lignin materials. J. Forestry Eng. 2019, 4(1), 17–26.
  • Dai, P.; Liang, M.; Ma, X.; Luo, Y.; He, M.; Gu, X.; Gu, Q.; Hussain, I.; Luo, Z. Highly efficient, environmentally friendly lignin-based flame retardant used in epoxy resin. ACS omega 2020, 5(49), 32084–32093. DOI: 10.1021/acsomega.0c05146.
  • Singh, B. Rice husk ash. In Waste and supplementary cementitious materials in concrete; Elsevier, 2018; pp. 417–460.
  • Li, M.; Prabhakar, M.; Song, J. I. Effect of Synthesized Lignin-Based Flame Retardant Liquid on the Flame Retardancy and Mechanical Properties of Cotton Textiles. 2023.
  • Petkovska, J.; Mladenovic, N.; Leising, W.; Baidak, A.; Temkov, M.; Mirakovski, D.; Dimova, V.; Jordanov, I. Egg white proteins/lignin-DAP intumescent multilayer nanocoating for flame retardant cotton fabric. Prog. Org. Coat. 2024, 186, 107983. DOI: 10.1016/j.porgcoat.2023.107983.
  • Hahn, T.; Tafi, E.; Paul, A.; Salvia, R.; Falabella, P.; Zibek, S. Current State of Chitin Purification and Chitosan Production from Insects. J. Chem. Technol. Biotechnol. 2020, 95(11), 2775–2795. DOI: 10.1002/jctb.6533.
  • Chen, C.; Gu, X.; Jin, X.; Sun, J.; Zhang, S. The effect of chitosan on the flammability and thermal stability of polylactic acid/ammonium polyphosphate biocomposites. Carbohydr. Polym. 2017, 157, 1586–1593. DOI: 10.1016/j.carbpol.2016.11.035.
  • Xiao, Y.; Zheng, Y.; Wang, X.; Chen, Z.; Xu, Z. Preparation of a chitosan‐based flame‐retardant synergist and its application in flame‐retardant polypropylene. J of Appl. Polymer Sci 2014, 131(19). DOI: 10.1002/app.40845.
  • Patankar, K. C.; Biranje, S.; Pawar, A.; Maiti, S.; Shahid, M.; More, S.; Adivarekar, R. V. Fabrication of chitosan-based finishing agent for flame-retardant, UV-protective, and antibacterial cotton fabrics. Mater. Today Commun. 2022, 33, 104637. DOI: 10.1016/j.mtcomm.2022.104637.
  • Pan, H.; Wang, W.; Pan, Y.; Song, L.; Hu, Y.; Liew, K. M. Formation of Self-Extinguishing Flame Retardant Biobased Coating on Cotton Fabrics via Layer-By-Layer Assembly of Chitin Derivatives. Carbohydr. Polym. 2015, 115, 516–524. DOI: 10.1016/j.carbpol.2014.08.084.
  • Kundu, C. K.; Wang, X.; Hou, Y.; Hu, Y. Construction of flame retardant coating on polyamide 6.6 via UV grafting of phosphorylated chitosan and sol–gel process of organo-silane. Carbohydr. Polym. 2018, 181, 833–840.
  • Li, P.; Wang, B.; Liu, Y.-Y.; Xu, Y.-J.; Jiang, Z.-M.; Dong, C.-H.; Zhang, L.; Liu, Y.; Zhu, P. Fully bio-based coating from chitosan and phytate for fire-safety and antibacterial cotton fabrics. Carbohydr. Polym. 2020, 237, 116173. DOI: 10.1016/j.carbpol.2020.116173.
  • Zhang, Z.; Ma, Z.; Leng, Q.; Wang, Y. Eco-friendly flame retardant coating deposited on cotton fabrics from bio-based chitosan, phytic acid and divalent metal ions. Int. J. Biol. Macromol. 2019, 140, 303–310.
  • Fang, Y.; Liu, X.; Tao, X. Intumescent flame retardant and anti-dripping of PET fabrics through layer-by-layer assembly of chitosan and ammonium polyphosphate. Prog. Org. Coat. 2019, 134, 162–168. DOI: 10.1016/j.porgcoat.2019.05.010.
  • Li, X.-L.; Shi, X.-H.; Chen, M.-J.; Liu, Q.-Y.; Li, Y.-M.; Li, Z.; Huang, Y.-H.; Wang, D.-Y. Biomass-based coating from chitosan for cotton fabric with excellent flame retardancy and improved durability. Cellulose 2022, 29(9), 5289–5303. DOI: 10.1007/s10570-022-04566-x.
  • Alipal, J. A review of gelatin: Properties, sources, process, applications, and commercialisation. Materials Today: Proceedings, 2021; Vol. 42, pp 240–250.
  • Zhu, F.; Chen, L.; Feng, Q. Waste gelatin based layer by layer assembly for sustainable solution to cotton fabrics flame retardancy. Prog. Org. Coat. 2022, 163, 106688. DOI: 10.1016/j.porgcoat.2021.106688.
  • Tang, R.; Xie, M.; Yan, X.; Qian, L.; Giesy, J. P.; Xie, Y. A nitrocellulose/cotton fiber hybrid composite membrane for paper-based biosensor. Cellulose 2023, 1–13. DOI: 10.1007/s10570-023-05288-4.
  • Fang, Y.; Wu, J.; Chang, S.; Wu, L. Flame retardant and anti-dripping polyethylene terephthalate fabric based on bio-based phytic acid/gelatine coating. Surf. Eng. 2023, 39(1), 49–55. DOI: 10.1080/02670844.2023.2193004.
  • Dejene, B. K.; Fenta, T. B.; Korra, C. G. Development of flame retardant cotton and acrylic blend textile fabric finish with Enset pseudostem sap. RJTA 2023, 27(2), 189–215. DOI: 10.1108/RJTA-06-2021-0082.
  • Faysal, G. M.; Kowser, M. A.; Jalil, M. A. Recent Development of Sustainable Ecological Flame Retardant Textile Composite Material: A Review. MSCE 2022, 10(6), 30–44. DOI: 10.4236/msce.2022.106004.
  • Basak, S.; Samanta, K. K.; Saxena, S.; Chattopadhyay, S. K.; Narkar, R.; Mahangade, R.; Hadge, G. B. Flame resistant cellulosic substrate using banana pseudostem sap. Pol. J. Chem. Technol. 2015, 17(1), 123–133. DOI: 10.1515/pjct-2015-0018.
  • Ajala, E.; Eletta, O.; Ajala, M.; Oyeniyi, S. Characterization and evaluation of chicken eggshell for use as a bio-resource. Arid Zone J. Eng. Technol. and Environ. 2018, 14(1), 26–40.
  • Tseghai, G. B.; Berhe, B. T.; Wakjira, Y. T. Producing fire retardant cotton fabric using chicken eggshell. J. Textile Sci. Eng. 2019, 9(2).
  • Korgaonkar, S. R.; Sayed, U. Formulation of sustainable flame retardant from waste egg shell. 2021.
  • Basak, S.; Raja, A. Combustion Properties of Paper Treated with Chicken Egg Shell: A Potential Solid Waste. Sustainable Chem. Pharm. 2023, 32, 100930. DOI: 10.1016/j.scp.2022.100930.
  • Long, X. Effect of chicken eggshell on the flame-retardant and smoke suppression properties of an epoxy-based traditional APP-PER-MEL system. Polymer Composites 2018, 40(7), 2.
  • Sykam, K.; Försth, M.; Sas, G.; Restas, Á.; Das, O. Phytic acid: A bio-based flame retardant for cotton and wool fabrics. Ind. Crops Prod. 2021, 164, 113349. DOI: 10.1016/j.indcrop.2021.113349.
  • Fang, Y.; Sun, W.; Li, L.; Wang, Q. Bio-Based Phytic Acid/Chitosan and Polycarboxylic Acid for Eco-Friendly Flame Retardant and Anti-Crease of Cotton Fabric. J. Nat. Fibers. 2022, 19(14), 8297–8308. DOI: 10.1080/15440478.2021.1964123.
  • Song, W.-M.; Zhang, L.-Y.; Li, P.; Liu, Y. High-Efficient Flame-Retardant Finishing of Cotton Fabrics Based on Phytic Acid. Int. J. Mol. Sci. 2023, 24(2), 1093. DOI: 10.3390/ijms24021093.
  • Fang, Y.; Sun, W.; Li, J.; Liu, H.; Liu, X. Eco-friendly flame retardant and dripping-resistant of polyester/cotton blend fabrics through layer-by-layer assembly fully bio-based chitosan/phytic acid coating. Int. J. Biol. Macromol. 2021, 175, 140–146. DOI: 10.1016/j.ijbiomac.2021.02.023.
  • Zilke, O.; Plohl, D.; Opwis, K.; Mayer-Gall, T.; Gutmann, J. S. A Flame-Retardant Phytic-Acid-Based LbL-Coating for Cotton Using Polyvinylamine. Polymers. 2020, 12(5), 1202. DOI: 10.3390/polym12051202.
  • Westman, E.-H.; Ek, M.; Wågberg, L. Antimicrobial activity of polyelectrolyte multilayer-treated cellulose films 2ndICC 2007, Tokyo, Japan, October 25–29, 2007. Holzforschung: Int. J. Biol. Chem. Phys. & Technol. of Wood 2009, 63(1), 33–39. DOI: 10.1515/HF.2009.009.
  • Cheng, X.-W.; Guan, J.-P.; Chen, G.; Yang, X.-H.; Tang, R.-C. J. P. Adsorption and flame retardant properties of bio-based phytic acid on wool fabric. Polymers 2016, 8(4), 122. DOI: 10.3390/polym8040122.
  • Cheng, X.-W.; Guan, J.-P.; Yang, X.-H.; Tang, R.-C.; Fan, Y. Phytic acid/silica organic-inorganic hybrid sol system: a novel and durable flame retardant approach for wool fabric. J. Mater. Res. Technol. 2020, 9(1), 700–708. DOI: 10.1016/j.jmrt.2019.11.011.
  • Cheng, X.-W.; Guan, J.-P.; Yang, X.-H.; Tang, R.-C. Durable flame retardant wool fabric treated by phytic acid and TiO2 using an exhaustion-assisted pad-dry-cure process. Thermochim. Acta. 2018, 665, 28–36. DOI: 10.1016/j.tca.2018.05.011.
  • Sykam, K.; Försth, M.; Sas, G.; Restas, Á.; Das, O. Phytic acid: A bio-based flame retardant for cotton and wool fabrics. Ind. Crops Prod. 2021, 164, 113349. DOI: 10.1016/j.indcrop.2021.113349.
  • Kovačević, Z.; Flinčec Grgac, S.; Bischof, S. Progress in biodegradable flame retardant nano-biocomposites. Polymers 2021, 13(5), 741. DOI: 10.3390/polym13050741.
  • Kang, M.; Chen, S.; Yang, R.; Li, D.; Zhang, W. J. P. Fabrication of an Eco-Friendly Clay-Based Coating for Enhancing Flame Retardant and Mechanical Properties of Cotton Fabrics via LbL Assembly. Polymers 2022, 14(22), 4994. DOI: 10.3390/polym14224994.
  • Jose, S.; Shanmugam, N.; Das, S.; Kumar, A.; Pandit, P. Coating of lightweight wool fabric with nano clay for fire retardancy. J. Text. Inst. 2019, 110(5), 764–770. DOI: 10.1080/00405000.2018.1516529.
  • Kundu, C. K.; Wang, X.; Liu, L.; Song, L.; Hu, Y. Few layer deposition and sol-gel finishing of organic-inorganic compounds for improved flame retardant and hydrophilic properties of polyamide 66 textiles: A hybrid approach. Prog. Org. Coat. 2019, 129, 318–326. DOI: 10.1016/j.porgcoat.2019.01.010.
  • Cheng, X.-W.; Tang, R.-C.; Guan, J.-P.; Zhou, S.-Q. An eco-friendly and effective flame retardant coating for cotton fabric based on phytic acid doped silica sol approach. Prog. Org. Coat. 2020, 141, 105539. DOI: 10.1016/j.porgcoat.2020.105539.
  • Grancaric, A. M.; Colleoni, C.; Guido, E.; Botteri, L.; Rosace, G. Thermal behaviour and flame retardancy of monoethanolamine-doped sol-gel coatings of cotton fabric. Prog. Org. Coat. 2017, 103, 174–181. DOI: 10.1016/j.porgcoat.2016.10.035.
  • Malucelli, G. J. C. Sol-Gel and layer-by-layer coatings for flame-retardant cotton fabrics: Recent advances. Coatings. 2020, 10(4), 333. DOI: 10.3390/coatings10040333.
  • Bifulco, A.; Imparato, C.; Aronne, A.; Malucelli, G. Flame retarded polymer systems based on the sol-gel approach: Recent advances and future perspectives. J. Sol-Gel Sci. Technol. 2022, 1–25. DOI: 10.1007/s10971-022-05918-6.
  • Lin, D.; Zeng, X.; Li, H.; Lai, X.; Wu, T. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction. J. Colloid Interface Sci. 2019, 533, 198–206. DOI: 10.1016/j.jcis.2018.08.060.
  • Wang, S.; Xu, D.; Liu, Y.; Jiang, Z.; Zhu, P. Preparation and mechanism of phosphoramidate-based sol-gel coating for flame-retardant viscose fabric. Polym. Degrad. Stab. 2021, 190, 109620. DOI: 10.1016/j.polymdegradstab.2021.109620.
  • Sampath, W.; Fernando, C.; Edirisinghe, D. Review on carbon black and graphite derivatives-based natural rubber composites. 2021.
  • Yang, Y.; Díaz Palencia, J. L.; Wang, N.; Jiang, Y.; Wang, D.-Y. Nanocarbon-Based Flame Retardant Polymer Nanocomposites. Molecules. 2021, 26(15), 4670. DOI: 10.3390/molecules26154670.
  • Qu, Q.; Xu, J.; Wang, H.; Yu, Y.; Dong, Q.; Zhang, X.; He, Y. Carbon Nanotube-Based Intumescent Flame Retardants Achieve High-Efficiency Flame Retardancy and Simultaneously Avoid Mechanical Property Loss. Polymers 2023, 15(6), 1406. DOI: 10.3390/polym15061406.
  • Araby, S.; Philips, B.; Meng, Q.; Ma, J.; Laoui, T.; Wang, C. H. Recent advances in carbon-based nanomaterials for flame retardant polymers and composites. Compos. B Eng. 2021, 212, 108675. DOI: 10.1016/j.compositesb.2021.108675.
  • Xiao, Y.; Yang, Y.; Luo, Q.; Tang, B.; Guan, J.; Tian, Q. J. Construction of carbon-based flame retardant composite with reinforced and toughened property and its application in polylactic acid. RSC Adv. 2022, 12(34), 22236–22243. DOI: 10.1039/D2RA04130H.
  • Xiao, L.; Xu, L.; Yang, Y.; Zhang, S.; Huang, Y.; Bielawski, C. W.; Geng, J. Core–shell structured polyamide 66 nanofibers with enhanced flame retardancy. ACS omega 2017, 2(6), 2665–2671. DOI: 10.1021/acsomega.7b00397.
  • Zhu, F.; Feng, Q.; Xu, Y.; Hu, J. Intumescent flame retardant coating for polyamide 6, 6 (PA 6, 6) fabrics containing carbon nanotubes: Synergistic effect of filler on thermal stability and flame retardancy. Text. Res. J. 2019, 89(10), 2031–2040.
  • Chen, C.; Zhao, X.; Shi, C.; Chen, J. Synergistic effect between carbon nanoparticle and intumescent flame retardant on flammability and smoke suppression of copolymer thermoplastic polyurethane. J. Mater. Sci. 2018, 53(8), 6053–6064. DOI: 10.1007/s10853-017-1970-0.
  • Xu, L.; Jiang, J.; Jia, X.; Hu, Y.; Ni, L.; Li, C.; Guo, W. Preparation and study on the flame-retardant properties of CNTs/PMMA microspheres. ACS omega 2022, 7(1), 1347–1356. DOI: 10.1021/acsomega.1c05606.
  • Chavali, K. S.; Pethsangave, D. A.; Patankar, K. C.; Khose, R. V.; Wadekar, P. H.; Maiti, S.; Adivarekar, R. V.; Some, S. Graphene-based intumescent flame retardant on cotton fabric. J. Mater. Sci. 2020, 55(29), 14197–14210. DOI: 10.1007/s10853-020-04989-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.