0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A Comprehensive Review on the Characterization of Nanomaterials for the Suppression of Electromagnetic Interference Across Diverse Frequency bands

& ORCID Icon
Received 12 Feb 2024, Accepted 30 May 2024, Published online: 17 Jun 2024

References

  • Yadav, R. S.; Kuřitka, I.; Vilčáková, J. 4 - Polymer-Based Nanocomposites. In Advanced Spinel Ferrite Nanocomposites for Electromagnetic Interference Shielding Applications, Yadav, R. S., Kuřitka, I. Vilčáková, J., Eds.; Elsevier, 2021; pp. 77–91. DOI: 10.1016/B978-0-12-821290-5.00009-5.
  • Tambe, P.; Lakshmi, N. V.; Vivek, R. Chapter 9 - Polymeric Blends As EMI Shielding Materials. In Materials for Potential EMI Shielding Applications, Joseph, K., Wilson, R. George, G., Eds.; Elsevier, 2020; pp. 145–164. DOI: 10.1016/B978-0-12-817590-3.00009-9.
  • Saha, P.; Debnath, T.; Das, S.; Chatterjee, S.; Sutradhar, S. β-Phase Improved Mn-Zn-Cu-Ferrite-PVDF Nanocomposite Film: A Metamaterial for Enhanced Microwave Absorption. Mater. Sci. Eng. 2019, 245, 17–29. DOI: 10.1016/j.mseb.2019.05.006.
  • Geetha, S.; Satheesh Kumar, K. K.; Rao, C. R. K.; Vijayan, M.; Trivedi, D. C. EMI Shielding: Methods and Materials—A Review. J. Appl. Polym. Sci. 2009, 112(4), 2073–2086. DOI: 10.1002/app.29812.
  • Contessa, G. M.; D’Agostino, S.; Falsaperla, R.; Grandi, C.; Polichetti, A. Issues in the Implementation of Directive 2013/35/EU Regarding the Protection of Workers Against Electromagnetic Fields. Int. J. Environ. Res. Public Health 2021, 18(20), 10673. DOI: 10.3390/ijerph182010673.
  • Christ, A.; Douglas, M.; Nadakuduti, J.; Kuster, N. Assessing Human Exposure to Electromagnetic Fields from Wireless Power Transmission Systems. Proc. IEEE. 2013, 101(6), 1482–1493. DOI: 10.1109/JPROC.2013.2245851.
  • “EMI Shielding Textile Materials Based on Conducting Polymers - ScienceDirect. [Online]. https://www.sciencedirect.com/science/article/abs/pii/B9780128175903000178. (accessed Dec 30, 2023).
  • Rao, D. K.; Veerabhadraiah, S. Effects of EMI/EMC on Electronic Devices. IETE Technical. Rev. 1990, 7(1), 70–74. DOI: 10.1080/02564602.1990.11438586.
  • Feng, D.; Liu, P.; Wang, Q. Selective Microwave Sintering to Prepare Multifunctional Poly (Ether Imide) Bead Foams Based on Segregated Carbon Nanotube Conductive Network. Ind. Eng. Chem. Res. 2020, 59(13), 5838–5847. DOI: 10.1021/acs.iecr.0c00090.
  • Manobalan, S.; Bose, S.; Sumangala, T. P. Effect of Thickness on the EMI Shielding Effectiveness of Epoxy Composites with Cobalt Ferrite and Graphene. Mater. Today Proc. 2023, 90, 128–132. DOI: 10.1016/j.matpr.2023.05.078.
  • Mutlu, G.; Yıldırım, F.; Ulus, H.; Eskizeybek, V. Coating Graphene Nanoplatelets Onto Carbon Fabric with Controlled Thickness for Improved Mechanical Performance and EMI Shielding Effectiveness of Carbon/Epoxy Composites. Eng. Fract. Mech. 2023, 284, 109271. DOI: 10.1016/j.engfracmech.2023.109271.
  • Das, M.; Sethy, P. P.; Sundaray, B. EMI Shielding Performance of Graphene Oxide Reinforced Polyaniline/Polystyrene Solution Cast Thin Films. Synth. Met. 2023, 296, 117369. DOI: 10.1016/j.synthmet.2023.117369.
  • Erfanian, E.; Moaref, R.; Ajdary, R.; Tam, K. C.; Rojas, O. J.; Kamkar, M.; Sundararaj, U. Electrochemically Synthesized Graphene/tempo-Oxidized Cellulose Nanofibrils Hydrogels: Highly Conductive Green Inks for 3D Printing of Robust Structured EMI Shielding Aerogels. Carbon. 2023, 210, 118037. DOI: 10.1016/j.carbon.2023.118037.
  • Wilson, R.; George, G.; Joseph, K. Chapter 1 - an Introduction to Materials for Potential EMI Shielding Applications: Status and Future. In Materials for Potential EMI Shielding Applications, Joseph, K., Wilson, R. George, G., Eds.; Elsevier, 2020; pp. 1–8. DOI: 10.1016/B978-0-12-817590-3.00001-4.
  • Sahoo, R.; Sundara, R.; Venkatachalam, S. Morphology Dependent EMI Shielding Performance of Ag-Ni Core-Shell Nanowires. J. Alloys Compound. 2024, 981, 173693. DOI: 10.1016/j.jallcom.2024.173693.
  • Zhang, H.; Gong, X.; Dai, X.; Yong, Z.; Ramakrishna, S. Robust Ultrahigh Electromagnetic Interference Shielding Effectiveness Based on Engineered Structures of Carbon Nanotube Films. iScience. iScience. 2024, 27(5), 109525. DOI: 10.1016/j.isci.2024.109525.
  • Wei, Z.; Cai, Y.; Zhan, Y.; Meng, Y.; Pan, N.; Jiang, X.; Xia, H. Ultra-Low Loading of Ultra-Small Fe3O4 Nanoparticles on Nonmodified CNTs to Improve Green EMI Shielding Capability of Rubber Composites. Small. 2024, 20(9), 2307148. DOI: 10.1002/smll.202307148.
  • Karim, S. S.; Murtaza, Z.; Farrukh, S.; Umer, M. A.; Ali, S. S.; Younas, M.; Mubashir, M.; Saqib, S.; Ayoub, M.; Bokhari, A., et al. Future Advances and Challenges of Nanomaterial-Based Technologies for Electromagnetic Interference-Based Technologies: A Review. Environ. Res. 2022, 205, 112402. DOI: 10.1016/j.envres.2021.112402.
  • Barnes, J. R. EMC/EMI/ESD TestsEMC/EMI/ESD and safetySafety. InRobust Electronic Design Reference Book, Barnes, J. R., Ed.; Springer US, 2004; pp. 985–991. DOI: 10.1007/1-4020-7830-7_45.
  • Chen, J.; Wang, Y.; Liu, Y.; Tan, Y.; Zhang, J.; Liu, P.; Kong, J. Fabrication of Macroporous Magnetic Carbon Fibers via the Cooperative Etching-Electrospinning Technology Toward Ultra-Light Microwave Absorption. Carbon. 2023, 208, 82–91. DOI: 10.1016/j.carbon.2023.03.043.
  • Liu, P.; Zhang, G.; Xu, H.; Cheng, S.; Huang, Y.; Ouyang, B.; Che, R.; Zhang, R.; Che, R. Synergistic Dielectric–Magnetic Enhancement via Phase-Evolution Engineering and Dynamic Magnetic Resonance. Adv. Funct. Mater 2023, 33(13), 2211298. 1–9. DOI: 10.1002/adfm.202211298.
  • Souto, L. F. C.; Soares, B. G. Electromagnetic Wave Absorption, EMI Shielding Effectiveness and Electrical Properties of Ethylene–Vinyl Acetate (EVA)/Polyaniline (PAni) Blends Prepared by in situ Polymerization. Synth. Met. 2023, 298, 117441. DOI: 10.1016/j.synthmet.2023.117441.
  • Mohammad, N.; Khanna, D.; Phalswal, P.; Khanna, P. K. One-Pot Synthesis of CIS Nanoparticles and Their EMI Shielding Studies. Mater. Lett. 2023, 347, 134597. DOI: 10.1016/j.matlet.2023.134597.
  • Sista, K. S.; Dwarapudi, S.; Kumar, D.; Sinha, G. R.; Moon, A. P. Carbonyl Iron Powders as Absorption Material for Microwave Interference Shielding: A Review. J. Alloys Compound. 2021, 853, 157251. DOI: 10.1016/j.jallcom.2020.157251.
  • Anwar, U.; Sultan, N.; Yasmeen, G.; Shati, K.; Nadeem, M. Temperature-Dependent Conduction Mechanism of NiO@ Carbon@ Polypyrrole Nanomaterial with EMI Shielding Characteristics. Heliyon. 2023, 9(12), e23193. DOI: 10.1016/j.heliyon.2023.e23193.
  • Cao, M. S.; Cai, Y. Z.; He, P.; Shu, J. C.; Cao, W. Q.; Yuan, J. 2D MXenes: Electromagnetic Property for Microwave Absorption and Electromagnetic Interference Shielding. Chem. Eng. J. 2019, 359, 1265–1302. DOI: 10.1016/j.cej.2018.11.051.
  • Verma, R.; Thakur, P.; Chauhan, A.; Jasrotia, R.; Thakur, A. A Review on MXene and Its Composites for Electromagnetic Interference (EMI) Shielding Applications. Carbon 2023, 208, 170–190. DOI: 10.1016/j.carbon.2023.03.050.
  • Dj, B. G.; Wessley, G. J. J. A Study on EMI Shielding in Aircraft: Introduction, Methods and Significance of Using Electrospun Nanocomposites. J. Space Safety Eng. 2024, 11(1), 150–160. DOI: 10.1016/j.jsse.2024.01.001.
  • Gao, Z.; Iqbal, A.; Hassan, T.; Hui, S.; Wu, H.; Koo, C. M. Tailoring Built-In Electric Field in a Self-Assembled Zeolitic Imidazolate Framework/MXene Nanocomposites for Microwave Absorption. Adv. Mate. 2024, 36(19), 2311411. DOI: 10.1002/adma.202311411.
  • Deeraj, B. D. S.; Jayan, J. S.; Raman, A.; Saritha, A.; Joseph, K. Recent Prospects and Trends on Zeolitic Imidazolate Frameworks for Microwave Absorption and EMI Shielding Applications. Synth. Met. 2023, 296, 117354. DOI: 10.1016/j.synthmet.2023.117354.
  • Kondawar, S. B.; Modak, P. R. Chapter 2 - Theory of EMI Shielding. In Materials for Potential EMI Shielding Applications, Joseph, K., Wilson, R. George, G., Eds.; Elsevier, 2020; pp. 9–25. DOI: 10.1016/B978-0-12-817590-3.00002-6.
  • Batoo, K. M.; Hadi, M.; Verma, R.; Chauhan, A.; Kumar, R.; Singh, M.; Aldossary, O. M. Improved Microwave Absorption and EMI Shielding Properties of Ba-Doped Co–Zn Ferrite. Ceram. Int. 2022, 48(3), 3328–3343. DOI: 10.1016/j.ceramint.2021.10.108.
  • Altin, Y.; Bedeloglu, A. Chapter 11 - Nanomaterials with Potential EMI Shielding Properties. In Materials for Potential EMI Shielding Applications, Joseph, K., Wilson, R. George, G., Eds.; Elsevier, 2020; pp. 179–199. DOI: 10.1016/B978-0-12-817590-3.00011-7.
  • Griffiths, D. J.; Inglefield, C. Introduction to Electrodynamics. Am. J. Phys. 2005, 73(6), 574–574. DOI: 10.1119/1.4766311.
  • Hong, J.; Kwon, J.; Im, D.; Ko, J.; Nam, C. Y.; Yang, H. G.; Lee, A. S.; Hong, S. M.; Hwang, S. S.; Yoon, H. G. Best Practices for Correlating Electrical Conductivity with Broadband EMI Shielding in Binary Filler-Based Conducting Polymer Composites. Chem. Eng. J. 2023, 455, 140528. DOI: 10.1016/j.cej.2022.140528.
  • Shamshirgar, A. S.; Álvarez, M. F.; Del Campo, A.; Fernández, J. F.; Hernández, R. E. R.; Ivanov, R.; Rosen, J.; Hussainova, I. Versatile Graphene-Alumina Nanofibers for Microwave Absorption and EMI Shielding. Carbon. 2023, 210, 118057. DOI: 10.1016/j.carbon.2023.118057.
  • Xi, X.; Öztürk, M.; Cai, J.; Wang, L.; Zhao, Z.; Chu, H.; Ran, Q. First Study of Quantitative Relationship Between Electric Polarization and Electromagnetic Interference (EMI) Shielding Effectiveness of CFRP. Carbon. 2024, 225, 119095. DOI: 10.1016/j.carbon.2024.119095.
  • Hong, X.; Xu, Z.; Lv, Z. P.; Lin, Z.; Ahmadi, M.; Cui, L.; Ikkala, O.; Dudko, V.; Sheng, J.; Cui, X. High-Permittivity Solvents Increase MXene Stability and Stacking Order Enabling Ultraefficient Terahertz Shielding. Adv. Sci. 2024, 11(5), 2305099. DOI: 10.1002/advs.202305099.
  • Al-Saleh, M. H.; Sundararaj, U. Electromagnetic Interference Shielding Mechanisms of CNT/Polymer Composites. Carbon. 2009, 47(7), 1738–1746. DOI: 10.1016/j.carbon.2009.02.030.
  • Wilner, J. T.; Morris, R. M. National Association of Broadcasters Report on Loudness. J. SMPTE 1968, 77(12), 1321–1324. DOI: 10.5594/J10903.
  • Headrick, J. M.; Anderson, S. J.; Skolnik, M. HF Over-The-Horizon Radar. Radar handbook 2008, 20, 24.15.
  • Bruder, J.; Carlo, J.; Gurney, J.; Gorman, J. IEEE Standard for Letter Designations for Radar-Frequency Bands; IEEE Aerospace & Electronic Systems Society, 2003; pp. 1–3.
  • Bruder, J. A. IEEE Radar Standards and the Radar Systems Panel. 2013,19–22. DOI: 10.1109/MAES.2013.6559377.
  • Sankaran, S.; Deshmukh, K.; Ahamed, M. B.; Pasha, S. K. Recent Advances in Electromagnetic Interference Shielding Properties of Metal and Carbon Filler Reinforced Flexible Polymer Composites: A Review. Compos. Part A Appl. Sci. Manuf. 2018, 114, 49–71. DOI: 10.1016/j.compositesa.2018.08.006.
  • Mishra, R. K.; Thomas, M. G.; Abraham, J.; Joseph, K.; Thomas, S. Electromagnetic Interference Shielding Materials for Aerospace Application: A State of the Art. Adv. Mat. Electromagnet. Shield: Fundament. Propert. Applicat. 2018, 15, 327–365.
  • Ohring, M. Materials Science of Thin Films, Deposition and Structure, 2002.
  • Reddy, S. B., et al. EMI Shielding Performance of Electroless Coated Iron Nanoparticles on Graphite in Low-Density Polyethylene Composite for X-Band Applications. J. Indian Chem. Soc. 2023, 100(4), 100962.
  • Chahal, R.; Dalal, Y.; Dahiya, S.; Punia, R.; Maan, A. S.; Singh, K.; Ohlan, A. Insitu Assembly of Fe3O4@ FeNi3 Spherical Mesoporous Nanoparticles Embedded on 2D Reduced Graphene Oxide (RGO) Layers As Protective Barrier for EMI Pollution. Appl. Sur. Sci. Adv. 2024, 19, 100545. DOI: 10.1016/j.apsadv.2023.100545.
  • Sanandiya, N. D.; Pai, A. R.; Seyedin, S.; Tang, F.; Thomas, S.; Xie, F. Chitosan-Based Electroconductive Inks without Chemical Reaction for Cost-Effective and Versatile 3D Printing for Electromagnetic Interference (EMI) Shielding and Strain-Sensing Applications. Carbohydr. Polym. 2024, 337, 122161. DOI: 10.1016/j.carbpol.2024.122161.
  • Duan, N.; Shi, Z.; Wang, J.; Wang, G.; Zhang, X. Strong and Flexible Carbon Fiber Fabric Reinforced Thermoplastic Polyurethane Composites for High‐Performance EMI Shielding Applications. Macro Mater. Eng. 2020, 305(6), 1900829. DOI: 10.1002/mame.201900828.
  • Sorgucu, U. Enhancing the Electromagnetic Shielding Effectiveness of Alumina (AL2O4) by Coating with Nano Gold (AuNp). Opt. Mater. 2024, 148, 114795. DOI: 10.1016/j.optmat.2023.114795.
  • Mondal, D.; Bhattacharya, D.; Mondal, T.; Kundu, M.; Sarkar, S.; Mandal, T. K.; Paul, B. K.; Das, S. Rare Earth Ion-Infused α-MnO2 Nano-Rods for Excellent EMI Shielding Efficiency: Experimental and Theoretical Insights. Sus. Mater. Technol. 2023, 38, e00772. DOI: 10.1016/j.susmat.2023.e00772.
  • Khan, T.; Khalid, M. Y.; Andrew, J. J.; Ali, M. A.; Zheng, L.; Umer, R. Co-Cured GNP Films with Liquid Thermoplastic/Glass Fiber Composites for Superior EMI Shielding and Impact Properties for Space Applications. Compos. Commun. 2023, 44, 101767. DOI: 10.1016/j.coco.2023.101767.
  • Hong, J.; Luo, N.; Zhang, Z.; Zhang, L.; Zhang, G.; Ye, L.; Ray, S. S.; Li, Y. Regulated Orientation and Exfoliation of Flaky Fillers by Close Packing Structures in Polymer Composites for Excellent Thermal Conduction and EMI Shielding. Compos. B Eng. 2024, 275, 111357. DOI: 10.1016/j.compositesb.2024.111357.
  • Jia, F.; Lu, Z.; Li, S.; Zhang, J.; Liu, Y.; Wang, H.; Xu, X.; Du, A.; Guo, D.; Yan, N. Asymmetric C-MWCNT/AgNws/PANFs Hybrid Film Constructed by Tailoring Conductive-Blocks Strategy for Efficient EMI Shielding. Carbon. 2024, 217, 118600. DOI: 10.1016/j.carbon.2023.118600.
  • Sorgucu, U.; Afsin Kariper, I. Investigation of Electromagnetic Shielding Effectiveness of Nano Silver Coated Stainless Steels. Opt. Mater. 2024, 149, 115098. DOI: 10.1016/j.optmat.2024.115098.
  • Tai Sin Electric Limited. Electrical Conductivity Table. Tai Sin Electric Limited. 2024. https://www.taisin.com.sg/electrical-conductivity/.
  • Bobsin, A.; Rodrigues, T. C.; Fernandes, I. J.; Ferreira, S. B.; Peter, C. R.; Hasenkamp, W.; Moraes, C. A. Copper and Silver Microparticles for High-Performance Conductive Inks in Electronic Chip Shielding. Mater. Chem. Phys. 2024, 315, 129007. DOI: 10.1016/j.matchemphys.2024.129007.
  • Guo, Z.; Li, X.; Li, N.; Liu, X.; Hao, L.; Wang, Y.; Chen, Z.; Bai, H.; Liang, J.; Chen, Z. Silver Nanowires/Cellulose Flexible Transparent Conductive Films for Electromagnetic Interference Shielding and Electrothermal Conversion. Phys. Chem. Chem. Phys. 2024, 26(5), 4524–4532. DOI: 10.1039/d3cp05506j.
  • Kazmi, S. J.; Nadeem, M.; Warsi, M. A.; Manzoor, S.; Shabbir, B.; Hussain, S. PVDF/CFO-Anchored CNTs Ternary Composite System with Enhanced EMI Shielding and EMW Absorption Properties. J. Alloys Compound. 2022, 903, 163938. DOI: 10.1016/j.jallcom.2022.163938.
  • Dabas, S.; Chahar, M.; Thakur, O. P. Electromagnetic Interference Shielding Properties of CoFe2o4/Polyaniline/Poly (Vinylidene Fluoride) Nanocomposites. Mater. Chem. Phys. 2022, 278, 125579. DOI: 10.1016/j.matchemphys.2021.125579.
  • Wang, Y.; Wang, H.; Ye, J.; Shi, L.; Feng, X. Magnetic CoFe Alloy@ C Nanocomposites Derived from ZnCo-MOF for Electromagnetic Wave Absorption. Chem. Eng. J. 2020, 383, 123096. DOI: 10.1016/j.cej.2019.123096.
  • Moazen, S.; Sahebian, S.; Haddad-Sabzevar, M. Low Percolation Behavior of HDPE/CNT Nanocomposites for EMI Shielding Application: Random Distribution to Segregated Structure. Synth. Met. 2021, 281, 116900. DOI: 10.1016/j.synthmet.2021.116900.
  • Gargama, H.; Thakur, A. K.; Chaturvedi, S. K. Polyvinylidene Fluoride/Nanocrystalline Iron Composite Materials for EMI Shielding and Absorption Applications. J. Alloys Compound. 2016, 654, 209–215. DOI: 10.1016/j.jallcom.2015.09.059.
  • Panda, S.; Acharya, B. PDMS/MWCNT Nanocomposites as Capacitive Pressure Sensor and Electromagnetic Interference Shielding Materials. J. Mater. Sci. Mater. Electron. 2021, 32(12), 16215–16229. DOI: 10.1007/s10854-021-06170-4.
  • Joseph, N.; Sebastian, M. T. Electromagnetic Interference Shielding Nature of PVDF-Carbonyl Iron Composites. Mater. Lett. 2013, 90, 64–67. DOI: 10.1016/j.matlet.2012.09.014.
  • Pakdel, E.; Wang, J.; Kashi, S.; Sun, L.; Wang, X. Advances in Photocatalytic Self-Cleaning, Superhydrophobic and Electromagnetic Interference Shielding Textile Treatments. Adv. Coll. Interf. Sci. 2020, 277, 102116. DOI: 10.1016/j.cis.2020.102116.
  • Gupta, K. K.; Abbas, S. M.; Abhyankar, A. C. Carbon Black/Polyurethane Nanocomposite-Coated Fabric for Microwave Attenuation in X & Ku-Band (8–18 GHz) Frequency Range. J. Ind. Text. 2016, 46(2), 510–529. DOI: 10.1177/1528083715589752.
  • Ashfaq, M. Z.; Ashfaq, A.; Majeed, M. K.; Saleem, A.; Wang, S.; Ahmad, M.; Hussain, M. M.; Zhang, Y.; Gong, H. Confined Tailoring of CoFe2o4/MWCNTs Hybrid-Architectures to Tune Electromagnetic Parameters and Microwave Absorption with Broadened Bandwidth. Ceram. Int. 2022, 48(7), 9569–9578. DOI: 10.1016/j.ceramint.2021.12.155.
  • Yadav, P.; Rattan, S.; Tripathi, A.; Kumar, S. Tailoring of Complex Permittivity, Permeability, and Microwave-Absorbing Properties of CoFe2o4/NG/PMMA Nanocomposites Through Swift Heavy Ions Irradiation. Ceram. Int. 2020, 46(1), 317–324. DOI: 10.1016/j.ceramint.2019.08.265.
  • Li, P.; Wang, H.; Ju, Z.; Jin, Z.; Ma, J.; Yang, L.; Liu, Y. Ti3c2tx MXene-And Sulfuric Acid-Treated Double-Network Hydrogel with Ultralow Conductive Filler Content for Stretchable Electromagnetic Interference Shielding; ACS Nano, 2024. DOI: 10.1021/acsnano.3c07233.
  • Duan, C.; Han, L.; Yang, G.; Schubert, D. W.; Zhang, T. Multi-Functional PDMS/MMT Coating on Magnesium Substrates: Hydrophobicity, Durability, and EMI Shielding. Mater. Today Commun. 2024, 39, 108603. DOI: 10.1016/j.mtcomm.2024.108603.
  • Rönnebro, E. C.; Oelrich, R. L.; Gates, R. O. Recent Advances and Prospects in Design of Hydrogen Permeation Barrier Materials for Energy Applications—A Review. Molecules 2022, 27(19), 6528. DOI: 10.3390/molecules27196528.
  • Parmar, S.; Ray, B.; Ashok, A.; Shilpa, U.; Datar, S. Highly Tunable rGO Composites for EMI Shielding Inks: A Tailored Approach to Modulate Broadband EMI Shielding. Synth. Met. 2024, 301, 117536. DOI: 10.1016/j.synthmet.2023.117536.
  • Zhou, C.; Wang, X.; Luo, H.; Deng, L.; Wang, S.; Wei, S.; Liu, J.; Jia, Q.; Liu, J. Interfacial Design of Sandwich-Like CoFe@ Ti3C2Tx Composites As High Efficient Microwave Absorption Materials. Appl. Surf. Sci. 2019, 494, 540–550. DOI: 10.1016/j.apsusc.2019.07.278.
  • Liu, G.; Wang, L.; Zhang, H.; Du, Z.; Zhou, X.; Wang, K.; Sun, Y.; Gao, S. Cage-Structured CoFe2o4@ CNTs from Fe–Co-mof Confined Growth in CNTs for High Electromagnetic Wave Absorption Performances. Compos. Commun. 2021, 27, 100910. DOI: 10.1016/j.coco.2021.100910.
  • Zhang, L.; Stalin, N.; Tran, N.; Mehrez, S.; Badran, M. F.; Mohanavel, V.; Xu, Q. Development of High-Efficient Double-Layer Microwave Absorbers Based on 3D Cabbage-Like CoFe2o4 and Cauliflower-Like Polypyrrole. Ceram. Int. 2022, 48(11), 16374–16385. DOI: 10.1016/j.ceramint.2022.02.188.
  • Jaiswal, R.; Agarwal, K.; Pratap, V.; Soni, A.; Kumar, S.; Mukhopadhyay, K.; Prasad, N. E. Microwave-Assisted Preparation of Magnetic Ternary Core-Shell Nanofiller (CoFe2o4/rGO/SiO2) and Their Epoxy Nanocomposite for Microwave Absorption Properties. Mater. Sci. Eng. 2020, 262, 114711. DOI: 10.1016/j.mseb.2020.114711.
  • Yuan, Y.; Wei, S.; Liang, Y.; Wang, B.; Wang, Y.; Xin, W.; Zhang, Y.; Zhang, Y. Solvothermal Assisted Synthesis of CoFe2o4/CNTs Nanocomposite and Their Enhanced Microwave Absorbing Properties. J. Alloys Compound. 2021, 867, 159040. DOI: 10.1016/j.jallcom.2021.159040.
  • Dalal, J.; Malik, S.; Dahiya, S.; Punia, R.; Singh, K.; Maan, A. S.; Dhawan, S. K.; Ohlan, A. One Pot Synthesis and Electromagnetic Interference Shielding Behavior of Reduced Graphene Oxide Nanocomposites Decorated with Ni0. 5Co0. 5Fe2O4 Nanoparticles. J. Alloys Compound. 2021, 887, 161472. DOI: 10.1016/j.jallcom.2021.161472.
  • Gandhi, N.; Singh, K.; Ohlan, A.; Singh, D. P.; Dhawan, S. K. Thermal, Dielectric and Microwave Absorption Properties of Polyaniline–CoFe2o4 Nanocomposites. Compos. Sci. Technol. 2011, 71(15), 1754–1760. DOI: 10.1016/j.compscitech.2011.08.010.
  • Ren, F.; Guo, Z.; Shi, Y.; Jia, L.; Qing, Y.; Ren, P.; Yan, D. Lightweight and Highly Efficient Electromagnetic Wave-Absorbing of 3D CNTs/GNS@ CoFe2o4 Ternary Composite Aerogels. J. Alloys Compound. 2018, 768, 6–14. DOI: 10.1016/j.jallcom.2018.07.209.
  • Heidarian, A.; Naderi-Samani, H.; Razavi, R. S.; Jabbari, M. N.; Naderi-Samani, E. Synthesis of Nickel Particles for Use in Nickel/Silicone Rubber Composites for the Application of Electromagnetic Interference Shielding Gaskets. Heliyon. 2024, 10(2), e24690. DOI: 10.1016/j.heliyon.2024.e24690.
  • Meena, S.; Kumari, N.; Gahlaut, V.; Shekhar, C.; Mitra, S.; Kumar Dwivedi, U. Ferroelectric, Dielectric, and EMI Attenuation Characteristics of BaFe2o4/MWCNTs/Epoxy Nanocomposites. Compos. Interfaces. 2024, 31(5), 601–619. DOI: 10.1080/09276440.2023.2273094.
  • Balajikrishnabharathi, A.; Jayabalakrishnan, D. Characterization of Mechanical, Dielectric, EMI Shielding Properties of Abaca Bract Biocarbon and Pineapple Fiber Reinforced Rigid Vinyl Ester Composite. Polym. Bull. 2024, 1–19. DOI: 10.1007/s00289-024-05301-1.
  • Anu, K. S.; Vishnumurthy, K. A.; Mahesh, A.; Natarajan, K. Carbon Fiber-Reinforced, Activated Carbon-Embedded Copper Oxide Nanoparticles/Epoxy Hybrid Composites for EMI Shielding in Aircraft Applications. Polym. Bull. 2024, 1–28. DOI: 10.1007/s00289-023-05112-w.
  • He, Z.; Zhang, W.; Zhang, J.; Xie, J.; Su, F.; Li, Y.; Yao, D.; Wang, Y.; Zheng, Y. Enhancing the Electromagnetic Interference Shielding of Epoxy Resin Composites with Hierarchically Structured Graphite/MXene Aerogel. Compos. B Eng. 2024, 274, 111230. DOI: 10.1016/j.compositesb.2024.111230.
  • Praveen, M., et al. The Role of Magnetic Nano CoFe2o4 and Conductive MWCNT/Graphene in LDPE-Based Composites for Electromagnetic Interference Shielding in X-Band. Diamond Relat. Mater. 2022, 130, 109501. DOI: 10.1016/j.diamond.2022.109501.
  • Mensah, E. E.; Abbas, Z.; Ibrahim, N. A.; Khamis, A. M.; Abdalhadi, D. M.; Abdalhadi, D. M. Complex Permittivity and Power Loss Characteristics of α-Fe2O3/polycaprolactone (PCL) Nanocomposites: Effect of Recycled α-Fe2O3 Nanofiller. Heliyon 2020, 6(12), e05595. DOI: 10.1016/j.heliyon.2020.e05595.
  • Wan, C.; Li, J. Synthesis and Electromagnetic Interference Shielding of Cellulose-Derived Carbon Aerogels Functionalized with α-Fe2O3 and Polypyrrole. Carbohydr. Polym. 2017, 161, 158–165. DOI: 10.1016/j.carbpol.2017.01.003.
  • Tong, G.; Wu, W.; Guan, J.; Qian, H.; Yuan, J.; Li, W. Synthesis and Characterization of Nanosized Urchin-Like α-Fe2O3 and Fe3O4: Microwave Electromagnetic and Absorbing Properties. J. Alloys Compound. 2011, 509(11), 4320–4326. DOI: 10.1016/j.jallcom.2011.01.058.
  • Varshney, S.; Singh, K.; Ohlan, A.; Jain, V. K.; Dutta, V. P.; Dhawan, S. K. Synthesis, Characterization and Surface Properties of Fe2O3 Decorated Ferromagnetic Polypyrrole Nanocomposites. J. Alloys Compound. 2012, 538, 107–114. DOI: 10.1016/j.jallcom.2012.05.119.
  • Singh, K.; Ohlan, A.; Kotnala, R. K.; Bakhshi, A. K.; Dhawan, S. K. Dielectric and Magnetic Properties of Conducting Ferromagnetic Composite of Polyaniline with γ-Fe2O3 Nanoparticles. Mater. Chem. Phys. 2008, 112(2), 651–658. DOI: 10.1016/j.matchemphys.2008.06.026.
  • Wu, G.; Cheng, Y.; Ren, Y.; Wang, Y.; Wang, Z.; Wu, H. Synthesis and Characterization of γ-Fe2O3@ C Nanorod-Carbon Sphere Composite and Its Application as Microwave Absorbing Material. J. Alloys Compound. 2015, 652, 346–350. DOI: 10.1016/j.jallcom.2015.08.236.
  • Chen, K. Y.; Gupta, S.; Tai, N. H. Reduced Graphene Oxide/Fe2O3 Hollow Microspheres Coated Sponges for Flexible Electromagnetic Interference Shielding Composites. Compos. Commun. 2021, 23, 100572. DOI: 10.1016/j.coco.2020.100572.
  • Bhaskaran, K.; Bheema, R. K.; Etika, K. C. The Influence of Fe3O4@ GNP Hybrids on Enhancing the EMI Shielding Effectiveness of Epoxy Composites in the X-Band. Synth. Met. 2020, 265, 116374. DOI: 10.1016/j.synthmet.2020.116374.
  • Manjappa, P.; Rajan, H. K.; Mahesh, M. G.; Sadananda, K. G.; Channegowda, M.; Shivashankar, G. K.; Mutt, N. B. Effective Attenuation of Electromagnetic Waves by Synergetic Effect of α-Fe2O3 and MWCNT/Graphene in LDPE-Based Composites for EMI Applications. Materials. 2022, 15(24), 9006. DOI: 10.3390/ma15249006.
  • Petrychuk, M. V.; Oliynyk, V. V.; Zagorodnii, V. V.; Ogurtsov, N. A.; Pud, A. A. PVDF/Poly (3-Methylthiophene)/mwcnt Nanocomposites for EMI Shielding in the Microwave Range. Heliyon. 2023, 9(12), e23101. DOI: 10.1016/j.heliyon.2023.e23101.
  • Machovský, M.; Masař, M.; Urbánek, M.; Šuly, P.; Hanulíková, B.; Vilčáková, J.; Yadav, R. S.; Kuřitka, I.; Yadav, R. S. Optimization of CoFe2o4 Nanoparticles and Graphite Fillers to Endow Thermoplastic Polyurethane Nanocomposites with Superior Electromagnetic Interference Shielding Performance. Nanoscale Adv. 2024, 6(8), 2149–2165. DOI: 10.1039/D3NA01053H.
  • Liu, J.; Zhang, J.; Cui, X.; Gu, W.; Liu, Q.; Li, H.; Gu, X.; Sun, J.; Zhang, S. Eco-Friendly Wearable Textiles: Asymmetric Structures for EMI Shielding, Thermal Management, and Fire Safety. Chem. Eng. J. 2024, 491, 152097. DOI: 10.1016/j.cej.2024.152097.
  • Chopra, A.; Arya, N.; Amir, M.; Bairagi, S.; Baykal, A.; Khan, G. S.; Ali, S. W. Leveraging BaFe12o19/PANI Nanocomposite Incorporated Cotton Fabric As an Effective EMI Shielding Flexible Material for X-Band Frequency. Acs Appl. Electron. Mater. 2024, 6(4), 2242–2257. DOI: 10.1021/acsaelm.3c01715.
  • Luo, N.; Zhang, Y. Y.; Zhang, H.; Liu, T. L.; Wang, Y.; Chen, F.; Fu, Q. Electromagnetic Interference Shielding Performance of Lightweight Aramid Nanofiber/Graphene Composite Aerogels. J. Mater. Chem. A. 2024, 12(17), 10359–10368. DOI: 10.1039/D3TA07473K.
  • Wang, Y.; Zhu, L.; Wang, J.; Shangguan, Y.; Zheng, Q. Flexible, High Thermal Conductivity, and EMI Shielding Performance Thermoplastic Polyurethane Composites Through Reinforced-Orientation Carbon Fiber. Acs Appl. Polym. Mater. 2024, 6(10), 6057–6067. DOI: 10.1021/acsapm.4c00786.
  • Peng, Y.; Dong, J.; Long, J.; Zhang, Y.; Tang, X.; Lin, X.; Huang, Y.; Liu, T.; Fan, W.; Liu, T. Thermally Conductive and UV-EMI Shielding Electronic Textiles for Unrestricted and Multifaceted Health Monitoring. Nano-Micro Lett. 2024, 16(1), 199. DOI: 10.1007/s40820-024-01429-x.
  • Liu, J.; Gao, Y.; Fan, Y.; Zhou, W. Fabrication of Porous Metal by Selective Laser Melting as Catalyst Support for Hydrogen Production Microreactor. Int. J. Hydrogen Energy. 2020, 45(1), 10–22. DOI: 10.1016/j.ijhydene.2019.10.173.
  • Guo, Z.; Zhao, Y.; Luo, P.; Chen, Z.; Song, P.; Jin, Y.; Ren, P.; Ren, F.; Ren, P. Durable and Sustainable CoFe2o4@mxene-Silver Nanowires/Cellulose Nanofibers Composite Films with Controllable Electric–Magnetic Gradient Towards High-Efficiency Electromagnetic Interference Shielding and Joule Heating Capacity. Chem. Eng. J. 2024, 485, 149691. DOI: 10.1016/j.cej.2024.149691.
  • Anu, K. S.; Vishnumurthy, K. A.; Mahesh, A.; Natarajan, K. Carbon Fiber-Reinforced, Activated Carbon-Embedded Copper Oxide Nanoparticles/Epoxy Hybrid Composites for EMI Shielding in Aircraft Applications. Polym. Bull. 2024, 1–28. DOI: 10.1007/s00289-023-05112-w.
  • Yuan, C.; Li, X.; Huang, M.; Li, F.; Zhang, Z.; Wang, C.; Hu, W. Multifunctional Asymmetric Foam with Compression-Enhanced EMI Shielding Effectiveness Exhibits Real-Time Tunability of Reflection/Absorption Ratio and Pressure Sensing. Chem. Eng. J. 2024, 489, 151359. DOI: 10.1016/j.cej.2024.151359.
  • Wang, X.; Zou, F.; Zhao, Y.; Li, G.; Liao, X. Electromagnetic Interference Shielding Composites and the Foams with Gradient Structure Obtained by Selective Distribution of MWCNTs into Hard Domains of Thermoplastic Polyurethane. Compos. Part A Appl. Sci. Manuf. 2024, 176, 107861. DOI: 10.1016/j.compositesa.2023.107861.
  • Heidarian, A.; Naderi-Samani, H.; Razavi, R. S.; Jabbari, M. N.; Naderi-Samani, E.; Jahromi, M. G. Study of Nickel-Coated Graphite/Silicone Rubber Composites for the Application of Electromagnetic Interference Shielding Gaskets. Next Mat. 2024, 2, 100097. DOI: 10.1016/j.nxmate.2023.100097.
  • Akbar, M. I.; Armynah, B.; Tahir, D. Sandwich Composite Structure (SCS): Review of Wood-Based Materials with Polymers and Metals as a Filler for Electromagnetic Interference (EMI) Shielding. Ind. Crops Prod. 2024, 215, 118619. DOI: 10.1016/j.indcrop.2024.118619.
  • You, J.; Cai, L.; Yu, R.; Xing, H.; Xue, J.; Li, Y.; Jiang, Z.; Cui, D.; Tang, T. High-Performance Chlorinated Polyvinyl Chloride/Polyurea Nanocomposite Foam with Excellent Solvent Resistance, Flame-Triggered Shape Memory Effect and Its Upcycling. Compos. Part A Appl. Sci. Manuf. 2024, 177, 107931. DOI: 10.1016/j.compositesa.2023.107931.
  • Chen, Y.; Wu, Y.; Li, J.; Peng, X.; Wang, S.; Wang, J.; Jin, H. Fluororubber Composites: Preparation Methods, Vulcanization Mechanisms, and the Associated Properties. Compos. Part C: Open Access. 2024, 14, 100461. DOI: 10.1016/j.jcomc.2024.100461.
  • Zhan, Y.; Meng, Y.; Santillo, C.; Lavorgna, M. Elastomeric Nanocomposite Foams for Electromagnetic Interference Shielding. In Porous Nanocomposites for Electromagnetic Interference Shielding; Woodhead Publishing, 2024; pp. 91–134. DOI: 10.1016/B978-0-323-90035-5.00005-2.
  • Li, N.; Zhang, J.; Xing, H.; Jiang, Z.; Li, M.; Tang, T. One-Pot Preparing EVA Elastomer Auxetic Foam Through Stress Relaxation of Molecular Chains by Heat Annealing. Polymer. 2024, 293, 126664. DOI: 10.1016/j.polymer.2023.126664.
  • Huang, W.; Mei, H.; Yan, Y.; Xia, J.; Cheng, L. Regulating Synergistic Micro-Nano Pore Structure of CNT Sponge to Control EMI Shielding Performance. J. Mater. Res. Technol. 2024, 29, 1155–1164. DOI: 10.1016/j.jmrt.2024.01.205.
  • Fu, H.; Zhou, S.; Duan, H.; Gong, W.; Gong, W. Structure Design of Multi-Layered ABS/CNTs Composite Foams for EMI Shielding Application with Low Reflection and High Absorption Characteristics. Appl. Surf. Sci. 2023, 624, 157168. DOI: 10.1016/j.apsusc.2023.157168.
  • Nayak, J.; Das, P.; Katheria, A.; Giri, S.; Banerji, P.; Das, N. C. Fabrication of Electrically Conductive Interconnected Microcellular Thermoplastic Elastomeric Foam Composite for Absorption Dominating Electromagnetic Interference Shielding with Ultra Low Reflection. Polym. Eng. Sci. 2024, 64(3), 1194–1208. DOI: 10.1002/pen.26607.
  • Ghosh, S. K.; Nath, K.; Chowdhury, S. N.; Paul, S.; Ghosh, T.; Katheria, A.; Das, P.; Das, N. C. Combination Effect of Functionalized High Aspect Ratio Carbonaceous Nanofillers and Carbon Black on Electrical, Thermal Conductivity, Dielectric and EMI Shielding Behavior of Co-Continuous Thermoplastic Elastomeric Blend Composite Films. Chem. Eng. J. Adv. 2023, 15, 100505. DOI: 10.1016/j.ceja.2023.100505.
  • Kumar, T. M.; Kini, H. J.; Praveen, M.; Kumar, M. Electromagnetic Interference Shielding Performance of Lanthanum Ferrite with MWCNT and Graphene in the Polyethylene Polymer Matrix in X-Band Frequency. Diamond Relat. Mater. 2024, 141, 110701. DOI: 10.1016/j.diamond.2023.110701.
  • Prabagar, C. J.; Anand, S.; Martina, M. M.; Pauline, S. 3D Interconnected Graphene Nanoplatelets and Nickel Ferrite Based Silicone Rubber Foams for Effective Electromagnetic Interference Shielding and Thermal Insulation Performance. Colloids Surf. A Physicochem. Eng. Aspects. 2024, 690, 133667. DOI: 10.1016/j.colsurfa.2024.133667.
  • Luchesi, B. R.; Moreira, F. K. V.; Marconcini, J. M. Scalable Production of Hydrophobic Starch/Beeswax Films by Continuous Solution Casting. J. Appl. Polym. Sci. 2024, 141(1), e54730. DOI: 10.1002/app.54730.
  • Zhang, C.; Fan, L.; Kang, Z.; Sun, D. Solution Processing of Crystalline Porous Material Based Membranes for CO 2 Separation. Chem. Commun. 2024, 60(14), 1856–1871. DOI: 10.1039/D3CC05545K.
  • Wang, A.; Zhou, X.; Li, D.; Li, H.; Liu, Q.; Deng, B.; Xu, W. Structure and Properties of Bio‐Based Poly (Trimethylene Terephthalate)/Polyamide 56 Blends Prepared by Melt Mixing. J. Appl. Polym. Sci. 2024, 141(2), e54797. DOI: 10.1002/app.54797.
  • Samieifakhr, M.; Shojaei, A. Improved Crystallization Behavior and Enhanced Impact Strength of Melt Processed Poly (Ethylene Terephthalate)/uiO-66 Nanocomposites. Polymer. 2024, 290, 126593. DOI: 10.1016/j.polymer.2023.126593.
  • Ruchi, G. V.; Dalal, R.; Goyal, S. L.; Goyal, S. L. Electromagnetic Interference Shielding Performance of in-Situ Polymerized PANI/Fe3O4 Nanocomposites in X-Band Frequency Range. Polym. Bull. 2024, 81(6), 5155–5178. DOI: 10.1007/s00289-023-04950-y.
  • Li, L.; Zhao, Z.; Pan, Y.; Chen, M.; Zhang, Y.; Li, R.; Wu, H.; Guo, S. In-Situ Growth of CuS on Polyimide Film to Construct Dense and Continuous Network: Achieving Excellent Electrothermal and EMI Shielding Performance. Compos. Sci. Technol. 2024, 250, 110543. DOI: 10.1016/j.compscitech.2024.110543.
  • Anand, S.; Vu, M. C.; Mani, D.; Kim, J. B.; Jeong, T. H.; Choi, W. K.; Kim, S. R.; Kim, S.-R. A Continuous Interfacial Bridging Approach to Fabricate Ultrastrong Hydroxylated Carbon Nanotubes Intercalated MXene Films with Superior Electromagnetic Interference Shielding and Thermal Dissipating Properties. Adv. Compos. Hybrid Mater. 2024, 7(1), 33. DOI: 10.1007/s42114-024-00842-5.
  • Ray, S. S.; Temane, L. T.; Orasugh, J. T. NPs for Polymer-Based EMI Shielding and Fire Retarding Nanocomposites. In Graphene-Bearing Polymer Composites: Applications to Electromagnetic Interference Shielding and Flame-Retardant Materials; Springer Nature Switzerland: Cham, 2024; pp. 119–169. DOI: 10.1007/978-3-031-51924-6_6.
  • Fan, S. T.; Guo, D. L.; Zhang, Y. T.; Chen, T.; Li, B. J.; Zhang, S. Washable and Stable Coaxial Electrospinning Fabric with Superior Electromagnetic Interference Shielding Performance for Multifunctional Electronics. Chem. Eng. J. 2024, 488, 151051. DOI: 10.1016/j.cej.2024.151051.
  • Li, X.; Li, K.; Zhang, S.; Zhang, J.; Hu, X.; Li, Y.; Liu, Y. Recent Advances in Mechanism, Influencing Parameters, and Dopants of Electrospun EMI Shielding Composites: A Review. J. Appl. Polym. Sci. 2024, 141(2), e54788. DOI: 10.1002/app.54788.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.