6
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design and application research of a flexible array plantar sensor based on P(VDF-TrFE)/SnO2NPS/GR for Parkinson’s disease diagnosis

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 23 Jan 2024, Accepted 04 Jun 2024, Published online: 13 Jun 2024

References

  • Reichmann, H.; Klingelhoefer, L.; Bendig, J. The Use of Wearables for the Diagnosis and Treatment of Parkinson’s Disease. J. Neural. Transm (Vienna). 2023, 130(6), 783–791. DOI: 10.1007/s00702-022-02575-5.
  • Christopher, G. G.; Barbara, C. T.; Stephanie, R. S.; Glenn, T. S.; Stanley, F.; Pablo, M.-M.; Werner, P., Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale Presentation and Clinimetric Testing Results. Mov. Disord. 2008, 23(15), 2129–2170. DOI: 10.1002/mds.22340. (Nov 15. PMID: 19025984.
  • Cheng, M.; Zhu, G. T.; Zhang, F.; Tang, W. L.; Shi, J. P.; Yang, J. Q.; Zhu, L. Y. A Review of Flexible Force Sensors for Human Health Monitoring. J. Adv. Res. 2020, 26, 53–68. DOI: 10.1016/j.jare.2020.07.001.
  • Chao, M. Y.; He, L. Z.; Gong, M.; Li, N.; Li, X. B.; Peng, L. F.; Shi, F.; Zhang, L. Q.; Wan, P. B. Breathable Ti3C2Tx MXene/Protein Nanocomposites for Ultrasensitive Medical Pressure Sensor with Degradability in Solvents. ACS Nano 2021, 15(6), 9746–9758. DOI: 10.1021/acsnano.1c00472.
  • Guo, Y.; Zhong, M. J.; Fang, Z. W.; Wan, P. B.; Yu, G. H. A Wearable Transient Pressure Sensor Made with MXene Nanosheets for Sensitive Broad-Range Human–Machine Interfacing. Nano Lett. 2019, 19(2), 1143–1150. DOI: 10.1021/acs.nanolett.8b04514.
  • Wang, X. M.; Sun, F. Z.; Yin, G. H.; Wang, Y. T.; Liu, B.; Dong, M. B. Tactile-Sensing Based on Flexible PVDF Nanofibers via Electrospinning: A Review. Sensors 2018, 18(2), 330. DOI: 10.3390/s18020330.
  • Wang, Y.; Lei, D.; Wu, L. K.; Ma, R. K.; Ning, H. M.; Hu, N.; Lee, A. Effects of Stretching on Phase Transformation of PVDF and Its Copolymers: A Review. Open Phys. 2023, 21(1), 20220255. DOI: 10.1515/phys-2022-0255.
  • Xu, H. Z.; Yagi, S. C.; Ashour, S.; Du, L.; Hoque, M. E.; Tan, L. A Review on Current Nanofiber Technologies: Electrospinning, Centrifugal Spinning, and Electro-Centrifugal Spinning. Macromol. Mater. Eng 2023, 308(3), 2200502. DOI: 10.1002/mame.202200502.
  • Wang, Y. Q.; Fang, M. J.; Tian, B. B.; Xiang, P. H.; Zhong, N.; Lin, H. C.; Luo, C. H.; Peng, H.; Duan, C. G. Transparent PVDF-TRFE/Graphene Oxide Ultrathin Films with Enhanced Energy Harvesting Performance ChemistrySelect. ChemistrySelect 2017, 2(26), 7951–7955. DOI: 10.1002/slct.201701515.
  • Pratihar, S.; Medda, S. K.; Sen, S.; Devi, P. S. Tailored Piezoelectric Performance of Self-Polarized PVDF-ZnO Composites by Optimization of Aspect Ratio of ZnO Nanorods. Polym. Compos. 2020, 41(8), 3351–3363. DOI: 10.1002/pc.25624.
  • Koc, M.; Paralı, L.; San, O. Fabrication and Vibrational Energy Harvesting Characterization of Flexible Piezoelectric Nanogenerator (PEN) Based on PVDF/PZT. Polym. Test. 2020, 90, 106695. DOI: 10.1016/j.polymertesting.2020.106695.
  • Kolachalama, V. B.; Garg, P. S. Machine Learning and Medical Education. npj Digital Med. 2018, 1(1). DOI: 10.1038/s41746-018-0061-1.
  • Eman, A.; Fahd, S. A.; Ramzan, M. S. Graph Data Science and Machine Learning for the Detection of COVID-19 Infection from Symptoms. PeerJ Comput. Sci. 2023, 9(6), e1333. DOI: 10.7717/peerj-cs.1333.
  • Xie, Y.; Fang, Q.; Zhao, H.; Li, Y.; Lin, Z.; Chen, J. Effects of Six Processing Parameters on the Size of PCL Fibers Prepared by Melt Electrospinning Writing. Micromachines 2023, 14(7), 1437. DOI: 10.3390/mi14071437.
  • Zhu, P.; Lin, A. M.; Tang, X. Z.; Lu, X. Z.; Zheng, J. Y.; Zheng, G. F.; Lei, T. P. Fabrication of Three-Dimensional Nanofibrous Macrostructures by Electrospinning. AIP Adv.1 May, 2016, 6(5), 055304. DOI: 10.1063/1.4948797.
  • Gurney, J. K.; Kersting, U. G.; Rosenbaum, D. Between-Day Reliability of Repeated Plantar Pressure Distribution Measurements in a Normal Population. Gait & Posture. 2008, 27, 706–709. DOI: 10.1016/j.gaitpost.2007.07.002.
  • Cheng, W. H.; Wu, P. L.; Huang, H. H. Electrospun Polyvinylidene Fluoride Piezoelectric Fiber Glass/Carbon Hybrid Self-Sensing Composites for Structural Health Monitoring, Sensors. Sensors 2023, 23(8), 3813. DOI: 10.3390/s23083813.
  • Yoshihara, H.; Maruta, M. Young’s Modulus and Shear Modulus of Open-Hole Spruce Measured by Vibration Tests. Wood Sci. Technol. 2019, 53(6), 1279–1294. DOI: 10.1007/s00226-019-01130-y.
  • Oh, D.; Noguchi, T.; Aikawa, Y.; Kitagaki, R. Proposal of a Formula for Estimating the Tensile Strength of Solidification with Arbitrary Particle Size Distribution. Powder Technol. 2024, 436, 119449. DOI: 10.1016/j.powtec.2024.119449.
  • Yan, A.; Jiang, H.; Yu, J.; Zhao, Q.; Wu, Z.; Tao, J.; Li, C.; Yi, J.; Liu, Y. Inhomogeneous Copper Matrix Composites Reinforced by RGO/Cu Composite Foams with High Electrical Conductivity, Tensile Strength and Fracture Elongation. Mater. Sci. Eng. A 2023, 867, 2023. DOI: 10.1016/j.msea.2022.144500.
  • Huang, J. C.; Ko, K. M.; Shu, M. H.; Hsu, B. M. Application and Comparison of Several Machine Learning Algorithms and Their Integration Models in Regression Problems. Neural Comput. Appl. 2020, 32(10), 5461–5469. DOI: 10.1007/s00521-019-04644-5.
  • Blanquero, R.; Carrizosa, E.; Ramírez-Cobo, P.; Sillero-Denamiel, M. R. Variable Selection for Naïve Bayes Classification. Comput. Operations Res. 2021, 135, 105456. DOI: 10.1016/j.cor.2021.105456.
  • Al Fahoum, A.; Ghobon, T. A. Performance Predictions of Sci-Fi Films via Machine Learning. Appl. Sci. 2023, 13(7), 4312. DOI: 10.3390/app13074312.
  • Cortes, C.; Vapnik, N. V. Support-Vector Networks. Mach. Learn. 1995, 20(3), 273–297. DOI: 10.1007/BF00994018.
  • Nie, F. P.; Zhu, W.; Li, X. L. Decision Tree SVM: An Extension of Linear SVM for Non-Linear Classification. Neurocomputing. 2020, 401, 153–159. DOI: 10.1016/j.neucom.2019.10.051.
  • Tsalera, E.; Papadakis, A. E.; Samarakou, M. Monitoring, Profiling and Classification of Urban Environmental Noise Using Sound Characteristics and the KNN Algorithm. Energy Rep. 2020, 6, 223–230. DOI: 10.1016/j.egyr.2020.08.045.
  • Nasution, M. S.; Mataram, A.; Yani, I.; Septano, G. D. Characteristics of a PVDF–Tin Dioxide Membrane Assisted by Electric Field Treatment. Membranes 2022, 12(8), 772. DOI: 10.3390/membranes12080772.
  • Yin, L.; Chen, D.; Cui, X.; Ge, L. F.; Yang, J.; Yu, L. N.; Zhang, B.; Zhang, R.; Shao, G. Normal-Pressure Microwave Rapid Synthesis of Hierarchical SnO2@rGO Nanostructures with Superhigh Surface Areas As High-Quality Gas-Sensing and Electrochemical Active Materials. Nanoscale 2014, 6(22), 13690–13700. DOI: 10.1039/C4NR04374J.
  • Wu, L. K.; Jing, M. G.; Liu, Y. L.; Ning, H. M.; Liu, X. Y.; Liu, S.; Lin, L.; Hu, N.; Liu, L. Power Generation by PVDF-TrFE/Graphene Nanocomposite Films. Compos. Part B. 2019, 164, 703–709. DOI: 10.1016/j.compositesb.2019.01.055.
  • Luo, Y.; Liu, J.; Zhang, J.; Xiao, Z. Y.; Wu, Y.; Zhao, Z. D. A Wearable Nanoscale Heart Sound Sensor Based on P(VDF-TrFE)/ZnO/GR and Its Application in Cardiac Disease Detection. Beilstein J. Nanotechnol. Jul 31, 2023, 14(2023), 819–833. DOI: 10.3762/bjnano.14.67.
  • Punetha, D.; Kar, M.; Pandey, S. K. A New Type Low-Cost, Flexible and Wearable Tertiary Nanocomposite Sensor for Room Temperature Hydrogen Gas Sensing. Sci. Rep. 2020, 10(1), 2151. DOI: 10.1038/s41598-020-58965-w.
  • Thakur, A.; Jangra, M. K.; Dam, S.; Hussain, S. Enhanced Dielectric Constant with Addition of a Low Amount of SnO2 Nanoparticles As Fillers in a PVDF Matrix with Low Dielectric Loss; Nano-Struct. Nano-Objects, 2023; Vol. 34, p. 100978. DOI: 10.1016/j.nanoso.2023.100978.
  • Abbasipour, M.; Khajavi, R.; Yousefi, A.; Yazdanshenas, M. E.; Razaghian, F. The Piezoelectric Response of Electrospun PVDF Nanofibers with Graphene Oxide, Graphene, and Halloysite Nanofillers: A Comparative Study. J. Mater. Sci. 2017, 28(21), 15942–15952. DOI: 10.1007/s10854-017-7491-4.
  • Wu, L.; Alamusi; Xue, J. M.; Itoi, T.; Hu, N.; Li, Y.; Yan, C.; Qiu, J. H.; Ning, H. M.; Yuan, W. F., et al. Improved Energy Harvesting Capability of Poly(vinylidene Fluoride) Films Modified by Reduced Graphene Oxide. J. Intell. Mater. Syst. Struct. 2014, 25(14), 1813–1824. DOI: 10.1177/1045389X14529609.
  • Predrag, B. P.; Vladimir, B. P.; Branislav, V.; Vladica, M. A High-Sensitive Current-Mode Pressure/Force Detector Based on Piezoelectric Polymer PVDF.2018. Sens. Actuators A Phys. 2018, 276, 165–175. DOI: 10.1016/j.sna.2018.04.014.
  • Hummers; William, S. J.; Richard, E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. Mar, 1958, 80(6), 1339–1339. DOI: 10.1021/ja01539a017.
  • Bormashenko, Y.; Pogreb, R.; Stanevsky, O.; Bormashenko, E. Bormashenko.Vibrational Spectrum of PVDF and Its Interpretation. Polym. Test. 2004, 23(7), 791–796. DOI: 10.1016/j.polymertesting.2004.04.001.
  • Puspitasari, V.; Granville, A.; Le-Clech, P.; Chen, V. Cleaning and Ageing Effect of Sodium Hypochlorite on Polyvinylidene Fluoride (PVDF) Membrane. Sep. Purif. Technol. 2010, 72(3), 301–308. DOI: 10.1016/j.seppur.2010.03.001.
  • Dong, C.; He, G.; Li, H.; Zhao, R.; Han, Y.; Deng, Y. Antifouling Enhancement of Poly(vinylidene Fluoride) Microfiltration Membrane by Adding Mg(oh)2 Nanoparticles. J. Membr. Sci. 2012, 387-388, 40–47. DOI: 10.1016/j.memsci.2011.10.007.
  • Samoei, V. K.; Maharjan, S.; Sano, K.; Ahalapitiya, H. Jayatissa.Effect of Annealing on Graphene/PVDF Nanocomposites. ACS Omega 2023, 8(15), 13876–13883. DOI: 10.1021/acsomega.3c00283.
  • Duan, J. X.; Yue, Q. W.; Xiong, Q.; Wang, L. Q.; Zhu, L. L.; Zhang, K.; Zhang, J.; Wang, H. Surface Modification of SnO2 Blocking Layers for Hysteresis Elimination of MAPbI3 Photovoltaics. Appl. Surf. Sci. 2019, 470, 613–621. DOI: 10.1016/j.apsusc.2018.11.163.
  • Hu, X. R.; Ding, Z. T.; Fei, L. X.; Xiong, Y.; Lin, Y. Wearable Piezoelectric Nanogenerators Based on Reduced Graphene Oxide and in situ Polarization-Enhanced PVDF-TrFE Films. J. Mater. Sci. 2019, 54(8), 6401–6409. DOI: 10.1007/s10853-019-03339-5.
  • Tang, J.; Liu, J.; Huang, H. Q. Dielectric, Piezoelectric and Ferroelectric Properties of Flexible 0–3 Type PZT/PVDF Composites Doped with Graphene. J. Electron. Mater. 2019, 48(6), 4033–4039. DOI: 10.1007/s11664-019-07164-z.
  • Li, J.; Zhou, G.; Hong, Y.; He, W.; Wang, S.; Chen, Y.; Wang, C.; Tang, Y.; Sun, Y.; Zhu, Y. Yuanming Chen, Chong Wang, Yao Tang, Yukai Sun, Yongkang Zhu, Highly Sensitive, Flexible and Wearable Piezoelectric Motion Sensor Based on PT Promoted β-Phase PVDF. Sens. Actuators A Phys. 2022, 337, 113415. DOI: 10.1016/j.sna.2022.113415.
  • Chen, G. Z.; Chen, D. S. Electrospun Flexible PVDF/GO Piezoelectric Pressure Sensor for Human Joint Monitoring. SSRN Electron. J. 2022, 129, 109358. DOI: 10.1016/j.diamond.2022.109358.
  • Corrà, M. F.; Vila-Chã, N.; Sardoeira, A.; Hansen, C.; Sousa, A. P.; Reis, I.; Sambayeta, F.; Damásio, J.; Calejo, M.; Schicketmueller, A., et al. Peripheral Neuropathy in Parkinson’s Disease: Prevalence and Functional Impact on Gait and Balance. Brain. 2023, 146(1), 225–236. DOI: 10.1093/brain/awac026.
  • Liu, W. J.; Gao, P. P.; Yu, W. B.; Qu, Z.-G.; Yang, C.-N. Quantum Relief Algorithm. Quantum Inf. Process 2018, 17(10), 280. DOI: 10.1007/s11128-018-2048-x.
  • Foody, G. M.; Huang, S. Challenges in the Real World Use of Classification Accuracy Metrics: From Recall and Precision to the Matthews Correlation Coefficient. PLoS One 2023, 18(10), e0291908. DOI: 10.1371/journal.pone.0291908. (Published Oct 4, 2023).
  • Carvajal-Castaño, H. A.; Lemos-Duque, J. D.; Orozco-Arroyave, J. R. Effective Detection of Abnormal Gait Patterns in Parkinson’s Disease Patients Using Kinematics, Nonlinear, and Stability Gait Features. Hum Mov. Sci. 2022, 81, 102891. DOI: 10.1016/j.humov.2021.102891.
  • Xia, Y.; Zhang, J.; Ye, Q.; Cheng, N.; Lu, Y. X.; Zhang, D. X. Evaluation of Deep Convolutional Neural Networks for Detection of Freezing of Gait in Parkinson’s Disease Patients. Biomed. Signal Process. Control 2018, 46(2018), 221–230. DOI: 10.1016/j.bspc.2018.07.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.