24
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of nucleating agent incorporation on the crystallization and mechanical properties of polylactide/polyamide elastomer blends

, , , , , & show all
Received 11 Mar 2024, Accepted 04 Jun 2024, Published online: 08 Jun 2024

References

  • Al-Itry, R.; Lamnawar, K.; Maazouz, A.; Billon, N.; Combeaud, C. Effect of the Simultaneous Biaxial Stretching on the Structural and Mechanical Properties of PLA, PBAT and Their Blends at Rubbery State. Eur. Polym. J. 2015, 68, 288–301. DOI: 10.1016/j.eurpolymj.2015.05.001.
  • Hamad, K.; Kaseem, M.; Ayyoob, M.; Joo, J.; Deri, F. Polylactic Acid Blends: The Future of Green, Light and Tough. Prog. Polym. Sci. 2018, 85, 83–127. DOI: 10.1016/j.progpolymsci.2018.07.001.
  • Weng, Y.; Dunn, B.; Qiang, Z.; Ren, J. Immobilization of Protease K with ZIF-8 for Enhanced Stability in Polylactic Acid Melt Processing and Catalytic Degradation. ACS Appl. Mater. 2023, 15, 56957–56969. DOI: 10.1021/acsami.3c11979.
  • Wang, Q.; Xu, Y.; Xu, P.; Yang, W.; Chen, M.; Dong, W.; Ma, P. Crystallization of Microbial Polyhydroxyalkanoates: A Review. Int. J. Biol. Macromol. 2022, 209, 330–343. DOI: 10.1016/j.ijbiomac.2022.04.018.
  • Wu, F.; Misra, M.; Mohanty, A. K. Challenges and New Opportunities on Barrier Performance of Biodegradable Polymers for Sustainable Packaging. Prog. Polym. Sci. 2021, 117, 101395. DOI: 10.1016/j.progpolymsci.2021.101395.
  • Wang, S.; Li, Y.; Xiang, H.; Zhou, Z.; Chang, T.; Zhu, M. Low Cost Carbon Fibers from Bio-Renewable Lignin/Poly(lactic acid) (PLA) Blends. Compos. Sci. Technol. 2015, 119, 20–25. DOI: 10.1016/j.compscitech.2015.09.021.
  • Yusoff, R. B.; Takagi, H.; Nakagaito, A. N. Tensile and Flexural Properties of Polylactic Acid-Based Hybrid Green Composites Reinforced by Kenaf, Bamboo and Coir Fibers. Ind. Crop Prod. 2016, 94, 562–573. DOI: 10.1016/j.indcrop.2016.09.017.
  • Zhao, Y.; Chen, Y.; Zhou, Y. Novel Mechanical Models of Tensile Strength and Elastic Property of FDM AM PLA Materials: Experimental and Theoretical Analyses. Mater. Des. 2019, 181, 108089. DOI: 10.1016/j.matdes.2019.108089.
  • Yan, L.; Abdalkarim, S.; Chen, X.; Chen, Z.; Lu, W.; Zhu, J.; Jin, M.; Yu, H.-Y. Nucleation and Property Enhancement Mechanism of Robust and High-Barrier PLA/CNFene Composites with Multi-Level Reinforcement Structure. Compos. Sci. Technol. 2024, 245, 110364. DOI: 10.1016/j.compscitech.2023.110364.
  • Torabi, H.; Mcgreal, H.; Zarrin, H.; Behzadfar, E. Effects of Rheological Properties on 3D Printing of Poly(lactic acid) (PLA) and Poly(hydroxy alkenoate) (PHA) Hybrid Materials. ACS Appl. Polym. Mater. 2023, 5, 4034–4044. DOI: 10.1021/acsapm.3c00271.
  • Li, T.; Gao, Y.; Sun, X.; Tang, Y.; Fu, Q. Significantly Enhanced Crystallization of Polylactide Ingeo 4032D by Polyethylene Ionomer. Polymer 2023, 290, 126557. DOI: 10.1016/j.polymer.2023.126557.
  • Tang, Z.; Zhang, C.; Liu, X.; Zhu, J. The Crystallization Behavior and Mechanical Properties of Polylactic Acid in the Presence of a Crystal Nucleating Agent. J. Appl. Polym. 2012, 125(2), 1108–1115. DOI: 10.1002/app.34799.
  • Wu, B.; Zeng, Q.; Niu, D.; Yang, W.; Dong, W. M.; Chen, P. Design of Supertoughened and Heat-Resistant PLLA/Elastomer Blends by Controlling the Distribution of Stereocomplex Crystallites and the Morphology. Macromolecules 2019, 52(3), 1092–1103. DOI: 10.1021/acs.macromol.8b02262.
  • Wu, Y.; Lin, X.; Li, J.; Zhang, C.; Liu, Y.; Song, L.; Hao, X.; Lin, F.; Wang, S.; Dong, T. Polylactic Acid/Cerium Fluoride Films: Effects of Cerium Fluoride on Mechanical Properties, Crystallinity, Thermal Behavior, and Transparency. Materials 2021, 14(17), 4882. DOI: 10.3390/ma14174882.
  • Lv, T.; Li, J.; Liu, L.; Huang, S.; Li, H.; Jiang, S. Effects of Molecular Weight on Stereocomplex and Crystallization of PLLA/PDLA Blends. Polymer 2023, 283, 126259. DOI: 10.1016/j.polymer.2023.126259.
  • Chieng, B. W.; Ibrahim, N. A.; Yunus, W. M. Z. W.; Hussein, M. Z. Poly(lactic acid)/Poly(ethylene glycol) Polymer Nanocomposites: Effects of Graphene Nanoplatelets. Polymers 2014, 6(1), 93–104. DOI: 10.3390/polym6010093.
  • Zhang, J.; Li, P.; Li, Y.; Luo, M.; Yan, Z.; Wang, T.; Fu, Q.; Gao, X.; Zhang, J. Preparation of PLA/PBAT Blends with High Performance via the Synergistic Effect of High Mold Temperature and Strong Shear Field. Polymer 2024, 296, 126795. DOI: 10.1016/j.polymer.2024.126795.
  • Nofar, M.; Sacligil, D.; Carreau, P. J.; Kamal, M. R.; Heuzey, M. C. Poly (Lactic Acid) Blends: Processing, Properties and Applications. Int. J. Biol. Macromol. 2019, 125, 307–360. DOI: 10.1016/j.ijbiomac.2018.12.002.
  • Takagi, A.; Hsu, Y.; Uyama, H. Biodegradable Poly(lactic Acid) and Polycaprolactone Alternating Multiblock Copolymers with Controllable Mechanical Properties. Polym. Degrad. Stab. 2023, 218, 0141–3910. DOI: 10.1016/j.polymdegradstab.2023.110564.
  • Wu, Y.; Gao, X.; Wu, J.; Zhou, T.; Nguyen, T. T.; Wang, Y. Biodegradable Polylactic Acid and Its Composites: Characteristics, Processing, and Sustainable Applications in Sports. Polymers 2023, 15(14), 3096. DOI: 10.3390/polym15143096.
  • Zhao, X.; Hu, H.; Wang, X.; Yu, X.; Zhou, W.; Peng, S. Super Tough Poly(lactic Acid) Blends: A Comprehensive Review. R.S.C. Adv. 2020, 10(22), 13316–13368. DOI: 10.1039/d0ra01801e.
  • Nagarajan, V.; Zhang, K.; Misra, M.; Mohanty, A. K. Overcoming the Fundamental Challenges in Improving the Impact Strength and Crystallinity of PLA Biocomposites: Influence of Nucleating Agent and Mold Temperature. ACS. Appl. Mater. 2015, 7(21), 11203–11214. DOI: 10.1021/acsami.5b01145.
  • Nam, J. Y.; Okamoto, M.; Okamoto, H.; Nakano, M.; Usuki, A.; Matsuda, M. Morphology and Crystallization Kinetics in a Mixture of Low-Molecular Weight Aliphatic Amide and Polylactide. Polymer 2006, 47(4), 1340–1347. DOI: 10.1016/j.polymer.2005.12.066.
  • Dun, D.; Bai, Y.; Wang, L.; Xu, B.; Zhou, H. Crystallization Behaviors of Poly (Lactic Acid) Modified with ST-NAB3 and Its Improved Mechanical and Thermal Properties. J. Polym. Environ. 2023, 31, 5166–5184. DOI: 10.1007/s10924-023-02935-6.
  • Qi, Z.; Yang, Y.; Xiong, Z.; Deng, J.; Zhang, R.; Zhu, J. Effect of Aliphatic Diacyl Adipic Dihydrazides on the Crystallization of Poly(lactic Acid). J. Appl. Polym. 2015, 132(23), 42028. DOI: 10.1002/app.42028.
  • Suksut, B.; Deeprasertkul, C. Effect of Nucleating Agents on Physical Properties of Poly(lactic acid) and Its Blend with Natural Rubber. J. Polym. Environ. 2011, 19(1), 288–296. DOI: 10.1007/s10924-010-0278-9.
  • Zhao, X.; Yu, J.; Liang, X.; Huang, Z.; Li, J.; Peng, S. Crystallization Behaviors Regulations and Mechanical Performances Enhancement Approaches of Polylactic Acid (PLA) Biodegradable Materials Modified by Organic Nucleating Agents. Int. J. Biol. Macromol. 2023, 233, 123581. DOI: 10.1016/j.ijbiomac.2023.123581.
  • Jiang, L.; Wolcott, M. P.; Zhang, J. W. Study of Biodegradable Polylactide/Poly (Butylene Adipate-Co-Terephthalate) Blends. Biomacromolecules 2006, 7(1), 199–207. DOI: 10.1021/bm050581q.
  • Qiu, J.; Liu, F.; Zhang, J.; Na, H.; Zhu, J. Non-Planar Ring Contained Polyester Modifying Polylactide to Pursue High Toughness. Compos. Sci. Technol. 2016, 128, 41–48. DOI: 10.1016/j.compscitech.2016.03.014.
  • Urquijo, J.; Guerrica-Echevarria, G.; Ignacio Eguiazabal, J. Melt Processed PLA/PCL Blends: Effect of Processing Method on Phase Structure, Morphology, and Mechanical Properties. J. Appl. Polym. 2015, 132(41), 42641. DOI: 10.1002/APP.42641.
  • Zhao, X.; Yu, X.; Chen, H.; Zhou, W.; Fang, P.; Peng, S. Interfacial Compatibility of Super-Tough Poly (Lactic Acid)/Polyurethane Blends Investigated by Positron Annihilation Lifetime Spectroscopy. J. Appl. Polym. 2018, 135(31), 46596. DOI: 10.1002/app.46596.
  • Zhou, J.; Yao, Z.; Zhou, J. Crystallinity and Mechanical Properties of PLA/POE Blends. Adv. Mat. Res. 2011, 886, 335–336. DOI: 10.4028/www.scientific.net/AMR.335-336.886.
  • Wang, Y.; Li, R.; Long, Y.; Li, H.; Dong, X.; Xing, Q. Toughening Modification of Poly(lactic Acid)/poly(e-Caprolactone) Blends by in-Situ Compatibilization. Polym-Plast Tech. Mat. 2023, 62(10), 1223–1236. DOI: 10.1080/25740881.2023.2204912.
  • Shou, T.; Wu, Y.; Yin, D.; Hu, S.; Wu, S.; Zhao, X.; Zhang, L. In-Situ Self-Crosslinking Strategy for Super-Tough Polylactic Acid/bio-Based Polyurethane Blends. Int. J Bio.l Macromol. 2024, 261, 129757. DOI: 10.1016/j.ijbiomac.2024.129757.
  • Cai, K.; Liu, X.; Ma, X.; Zhang, J.; Tu, S.; Feng, J. Preparation of Biodegradable PLA/PBAT Blends with Balanced Toughness and Strength by Dynamic Vulcanization Process. Polymer. 2024, 291, 0032–61. DOI: 10.1016/j.polymer.2023.126587.
  • Gong, S.; Zhao, S.; Chen, X.; Liu, H.; Deng, J.; Li, S.; Feng, X.; Li, Y.; Wu, X.; Pan, K. Thermoplastic Polyamide Elastomers: Synthesis, Structures/Properties, and Applications. Macromol. Mater. Eng. 2021, 306(12), 2100568. DOI: 10.1002/mame.202100568.
  • Yi, C.; Peng, Z.; Wang, H.; Li, M.; Wang, C. Synthesis and Characteristics of Thermoplastic Elastomer Based on Polyamide-6. Polym. Int. 2011, 60(12), 1728–1736. DOI: 10.1002/pi.3140.
  • Ren, Z.; Ding, K.; Zhou, X.; Ji, T.; Sun, H. 4D Printing Light-Driven Actuator with Lignin Photothermal Conversion Module. Int. J. Biol. Macromol. 2023, 253, 126562. DOI: 10.1016/j.ijbiomac.2023.126562.
  • Long, Y.; Li, H.; Li, R.; Guo, X.; Wang, Z.; Dong, X.; Zhu, P.; Xing, Q. Modification on Crystallization Behavior and Mechanical Properties of Polylactide by the Addition of Polyamide Elastomer. Colloid. Polym. Sci. 2023, 301(8), 967–977. DOI: 10.1007/s00396-023-05117-x.
  • Petchwattana, N.; Naknaen, P.; Narupai, B. Combination Effects of Reinforcing Filler and Impact Modifier on the Crystallization and Toughening Performances of Poly(lactic Acid). Express Polym. Lett. 2020, 14(9), 848–859. DOI: 10.3144/expresspolymlett.2020.70.
  • Long, Y.; Wang, Y.; Xing, Q.; Dong, X. Enhanced Crystallization Behavior and Stiffness-Toughness Balance of Polylactide/Poly(propylene Carbonate)/Nucleating Agent Blends. Thermochim. Acta. 2022, 711, 179207. DOI: 10.1016/j.tca.2022.179207.
  • Layachi, A.; Frihi, D.; Satha, H.; Seguela, R.; Gherib, S. Non-Isothermal Crystallization Kinetics of Polyamide 66/Glass Fibers/Carbon Black Composites. J. Therm. Anal. Calorim. 2016, 124(3), 1319–1329. DOI: 10.1007/s10973-016-5286-0.
  • Li, J.; Wu, J.; Xie, Z.; Zhong, G.; Gao, X.; Jiang, L. The Effects of Cellulose Nanocrystal and Dicumyl Peroxide on the Crystallization Kinetics of Polylactic Acid. Polym. Eng. Sci. 2023, 63, 3231–3242. DOI: 10.1002/pen.26439.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.