36
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Unveiling advanced self-healing mechanisms in graphene polymer composites for next-generation applications in aerospace, automotive, and electronics

Received 07 Feb 2024, Accepted 04 Jun 2024, Published online: 18 Jun 2024

References

  • Atefeh, Z.; Sepideh, A.; Navid, R.; Ali, Z.; Siavash, I. Self-Healing MXene- and Graphene-Based Composites: Properties and Applications. Nano-Micro Lett. 2023, 15(1). DOI: 10.1007/s40820-023-01074-w.
  • Kausar, A.; Ahmad, I.; Maaza, M.; Bocchetta, P. Self-Healing Nanocomposites—Advancements and Aerospace Applications. J. Compos. Sci. 2023. DOI: 10.3390/jcs7040148.
  • Laura, P.; Ugo, L.; Antonio, M.; Grande. Self-Healing Polymers for Space: A Study on Autonomous Repair Performance and Response to Space Radiation. Acta Astronautica. 2023, 210, 627–634. DOI: 10.1016/j.actaastro.2023.05.032.
  • Balaji, C.; Ayyanar, S.; Pramanik. Effect of Graphene on Self-Healing Performance of Hydroxyapatite/Polydimethylsiloxane Composites. Mater. Manuf. Processes. 2022, 38(9), 1068–1080. DOI: 10.1080/10426914.2022.2146714.
  • Скиперских, А.; Владимирович. Recent Advancements in Polymer Composites for Damage Repair Applications, 2023. DOI: 10.1016/b978-0-323-99340-1.00001-0.
  • Sri, P.; Rama, P. S.; Sreekanth, S.; Sahu, K.; Naresh, K.; Karthick, S.; Venkateshwaran, N.; Monsuru, R.; Rhoda, A.; Mensah, O., et al. A Comprehensive Review of Self-Healing Polymer, Metal, and Ceramic Matrix Composites and Their Modeling Aspects for Aerospace Applications. Materials. 2022, 15(23), 8521. DOI: 10.3390/ma15238521.
  • Huitao, Y.; Can, C.; Jinxu, S.; Heng, Z.; Yiyu, F.; Mengmeng, Q.; Wei, F. Highly Thermally Conductive Polymer/Graphene Composites with Rapid Room-Temperature Self-Healing Capacity. Nanomicro Lett. 2022, 14(1). DOI: 10.1007/s40820-022-00882-w.
  • Vadim, I.; Irzhak, I.; Uflyand, E.; Gulzhian, I.; Dzhardimalieva. Self-Healing of Polymers and Polymer Composites. Polymers. 2022, 14(24), 5404. DOI: 10.3390/polym14245404.
  • Yahao, L.; Jian, Z.; Xiao, Z.; Yongqiang, D.; Guibo, Y.; Ke, L.; Yunfei, J.; Yu, Z. Bioinspired Modified Graphene Oxide/Polyurethane Composites with Rapid Self-Healing Performance and Excellent Mechanical Properties. RSC Adv. 2021. DOI: 10.1039/D1RA00944C.
  • Liberata, G.; Luigi, V.; Carlo, N.; Giuseppina, B.; Marialuigia, R.; Andrea, S.; Wolfgang, H.; Binder, P.; Michael, S.; Rana, S., et al. Functional Structural Nanocomposites with Integrated Self-Healing Ability. Materials Today: Proceedings, 2021. DOI: 10.1016/J.MATPR.2020.03.051.
  • Seda, A.; Burcu, O.; Oguz, K.; Ozdemir, S.; Madakbaş, N.; Kayaman, A. Polyurethane Graphene Nanocomposites with Self-Healing Properties by Azide-Alkyne Click Reaction. Mater. Chem. Phys. 2020, 254, 123315. DOI: 10.1016/J.MATCHEMPHYS.2020.123315.
  • Nik, N.; Farisha, N.; Md, N.; Kahar, A.; Fazlina, O.; Eid, M.; Alosime, N.; Arsat, N.; Aida, M.; Azman, A., et al. The Versatility of Polymeric Materials As Self-Healing Agents for Various Types of Applications: A Review. Polymers. 2021, 13(8), 1194. DOI: 10.3390/POLYM13081194.
  • Paul, C.; Je, M.; Th, S.; Chithirai, P.; Selvan, S.; Irulappasamy, F.; Mustapha, A.; Azriff, B.; Syafiqah, N.; Azrie, S. A Novel and Stable Ultraviolet and Infrared Intensity Sensor in Impedance/Capacitance Modes Fabricated from Degraded CH3NH3PbI3-xClx Perovskite Materials. J. Mater. Res. Technol. 2020, 9(6), 12795–12803. DOI: 10.1016/j.jmrt.2020.09.025.
  • Akshay, G.; Siddharth, J. Different Types of Self-Repairing of Composite Materials: An Overview, 2022. DOI: 10.1016/B978-0-12-822291-1.00011-7.
  • Igwe, C.; Idumah, C.; Igwe, I.; Stone, R. O. Recent Advancement in Self-Healing Graphene Polymer Nanocomposites, Shape Memory, and Coating Materials, 2020. DOI: 10.1080/25740881.2020.1725816.
  • Laura, P.; Antonio, M.; Grande. Development of a Supramolecular Polymer Based Self-Healing Multilayer System for Inflatable Structures. Acta Astronautica. 2020, 177, 697–706. DOI: 10.1016/J.ACTAASTRO.2020.08.025.
  • Asim, J.; Asim, J.; Syed, Z.; Hussain, A.; Aslam, P.; Khan, A.; Khan, M.; Hafiz, D.; Othman, M.; Omaish, A. Graphene-Based Material for Self-Healing: Mechanism, Synthesis, Characteristics, and Applications, 2020. DOI: 10.1016/B978-0-12-817354-1.00009-0.
  • Christopher, I.; Idumah, C.; Igwe, I. Recent Advancements in Self-Healing Polymers, Polymer Blends, and Nanocomposites. Polym. Polym. Composites. 2020. DOI: 10.1177/0967391120910882.
  • Manickam, R.; Rajesh, L.; Kumar, A.; Khan, A.; Asiri, M. Self-Healing Polymer Composites and Its Chemistry, 2020. DOI: 10.1016/B978-0-12-817354-1.00022-3.
  • R, K.; Rajesh, N.; Jesudoss, H.; Saravanakumar, S. S.; Senthamaraikannan, P.; Anish, K.; Abdullah, M.; Asiri, I.; Khan, M.; Mujahid, A., et al. Concept of Self-Repair and Efficiency Measurement in Polymer Matrix Composites, 2020. DOI: 10.1016/B978-0-12-817354-1.00019-3.
  • Jeetendra, K.; Banshiwal, D.; Nath, T. Self-Healing Polymer Composites for Structural Application; 2019. DOI: 10.5772/INTECHOPEN.82420.
  • Yohannes, R.; Belete, S.; Hirpa, G.; Lemu. Review and Analysis of Processing Principles and Applications of Self-Healing Composite Materials, 2018. DOI: 10.1007/978-981-13-2375-1_21.
  • Panagiota, P.; Christos, V.; Katsiropoulos, A.; Loukopoulos, S.; Pantelakis. Mechanical Behavior of Aeronautical Composites Containing Self-Healing Microcapsules. Int. J. Struct. Integrity. 2018, 9(6), 753–767. DOI: 10.1108/IJSI-12-2017-0075.
  • Du, Y.; Dong, L.; Libin, L.; Guangjie, G. Recent Achievements of Self-Healing Graphene/Polymer Composites. Polymers. 2018, 10(2), 114. DOI: 10.3390/POLYM10020114.
  • Ranjeetkumar, G.; Vineet, J.; James, L.; Mehul, P.; Dehong, H.; Ketan, P. Self-Healing Polymer Nanocomposites for Composite Structure Applications, 2017. DOI: 10.17862/CRANFIELD.RD.5675281.V1.
  • Min, W. L. Prospects and Future Directions of Self-Healing Fiber-Reinforced Composite Materials. Polymers. 2020. DOI: 10.3390/POLYM12020379.
  • Santwana, P.; Santwana, P.; Pratap, B.; Singh, B.; Pratap, S.; Sanjay, R.; Dhakate, S.; Dhakate, R. Self-Healing Polymer Composites Based on Graphene and Carbon Nanotubes, 2017. DOI: 10.1007/978-3-319-50424-7_5.
  • Iee, L.; Hia, V.; Vahedi, P.; Pasbakhsh. Self-Healing Polymer Composites: Prospects, Challenges, and Applications. Polym. Rev. 2016. DOI: 10.1080/15583724.2015.1106555.
  • Seongpil, A.; Sam, S.; Yoon, M.; Wook, L. Self-Healing Structural Materials. Polymers. 2021. DOI: 10.3390/POLYM13142297.
  • Venkatavijayan, S.; Dharmesh, V. Self-Healed Materials from Thermoplastic Polymer Composites; 2017. DOI: 10.1007/978-3-319-50424-7_6.
  • Michael, W.; Keller, M.; Crall, D. Self-Healing Composite Materials; 6 15, 2018. DOI: 10.1016/B978-0-12-803581-8.10026-8.
  • Jamal, S.; Monfared, Z.; Burcu, S.; Okan, Y.; Z, M.; Mehmet, Y. Self-Healing Thermosetting Composites: Concepts, Chemistry, and Future Advances, 2017. DOI: 10.1002/9783527807130.CH3.
  • Raj, D.; C, M.; Kariappa, M.; Karumbaiah. Self-Healing Composites for Aerospace Applications, 2016. DOI: 10.1016/B978-0-08-100037-3.00011-0.
  • Li, P.; Tian, Z.; Yuan, L.; Wang, Y. Research on Self-Healing Composite Materials, 2015. DOI: 10.2991/MEIC-15.2015.99.
  • Ying, Y.; Xiaochu, D.; Marek, W.; Urban. Chemical and Physical Aspects of Self-Healing Materials. Prog. Polym. Sci. 2015, 49-50, 34–59. DOI: 10.1016/J.PROGPOLYMSCI.2015.06.001.
  • Foram, P.; Neil, C.; Shrirang, C. Self-Healing Smart Polymers: Insight and Applicability in Aerospace Industry. Chem. Phys. aspects of self-healing Mater. 2015, 49–50, 34–59.
  • Marialuigia, R.; Liberata, G. Healing Efficiency of Epoxy‐Based Materials for Structural Applications. Polym. Compos. 2013, 34(9), 1525–1532. DOI: 10.1002/PC.22539.
  • M, C.; Mostapha, T.; Yumna, Q.; H, B.; Chokri, B. Graphene Nanofillers As a Player to Improve the Dynamic Compressive Response and Failure Behavior of Carbon/Epoxy Composite. Nanotechnology. 2020, 31(42), 425709. DOI: 10.1088/1361-6528/ABA1BB.
  • Laura, P.; Ugo, L.; Antonio, M.; Grande. Self-Healing Materials for Space Applications: Overview of Present Development and Major Limitations. Ceas Space J. 2021, 13(3), 341–352. DOI: 10.1007/S12567-021-00365-5.
  • Yingtao, L.; Abhishek, R.; Aditi, C. Self-Healing Nanocomposite Using Shape Memory Polymer and Carbon Nanotubes. Proceedings of SPIE, 2013. DOI: 10.1117/12.2009908.
  • Saeed, M. U.; Li, B. B.; Chen, Z. F.; Cui, S. Self-Healing of Low-Velocity Impact and Mode-I Delamination Damage in Polymer Composites via Microchannels. Express Polym. Lett. 2016, 10(4), 337–348. DOI: 10.3144/EXPRESSPOLYMLETT.2016.31.
  • Zhouzhou, Z.; Ellen, M.; Arruda. An Internal Cure for Damaged Polymers. Sci. 2014, 344(6184), 591–592. DOI: 10.1126/SCIENCE.1254317.
  • Shanshan, G.; Hong, N.; Lei, J.; Qunfeng, C. Learning from Nature: Constructing High Performance Graphene-Based Nanocomposites. Mater. Today. 2017. DOI: 10.1016/J.MATTOD.2016.11.002.
  • Rafael, V.-B.; Margarita, T.-T. Nanocomposites for Space Applications: A Review, 2020. DOI: 10.4018/978-1-7998-1530-3.CH008.
  • Michael, W.; Keller. Self-Healing Materials, 2012. DOI: 10.1002/9781118097298.WEOC219.
  • L, C.; Antonio, M.; Grande, L.; Di, L.; Giuseppe, S.; Cinzia, G.; Alessandro, F. Hypervelocity Impact and Outgassing Tests on Ethylene-Co-Methacrylic Acid Ionomers for Space Applications. Self-healing of damage in fibre-reinforced polymer-matrix Compos. 2013, 4.
  • Fabrizia, G.; Xi, G.; Miao. Self-Healing Materials As New Biologically Inspired Materials. J. Biomim. Bio Tissue Eng. 2012, 16, 11–25. DOI: 10.4028/WWW.SCIENTIFIC.NET/JBBTE.16.11.
  • Christopher, J.; Norris, J.; White, A. P.; McCombe, G. P.; Chatterjee, P.; Ian, P.; Bond, R.; Trask, S. Autonomous Stimulus Triggered Self-Healing in Smart Structural Composites. Smart Mater. Struct. 2012. DOI: 10.1088/0964-1726/21/9/094027.
  • Jun, C.; Yikun, H.; Xiaoyu, M.; Yu, L. Functional Self-Healing Materials and Their Potential Applications in Biomedical Engineering, 2018. DOI: 10.1007/S42114-017-0009-Y.
  • Ming, Q.; Zhang, M.; Zhi, R. Design and Synthesis of Self-Healing Polymers. Sci. China-Chem. 2012. DOI: 10.1007/S11426-012-4511-3.
  • Fu-Jya, D.; Tsai, J.; Bicknell, L. Self-Healing Composites. Des. Synth. self-healing Polym. 2012, 55, 648–676.
  • Xin, H.; Zhong, H.; Jian-Cheng, L.; Lei, L.; Guang-Cheng, Y.; Cheng-Hui, L. Self-Healing Improves the Stability and Safety of Polymer Bonded Explosives. Compos. Sci. Technol. 2018, 167, 346–354. DOI: 10.1016/J.COMPSCITECH.2018.08.025.
  • Scott, R.; White, B.; Blaiszik, J.; Sharlotte, L. B.; Kramer, S.; Olugebefola, C.; Jeffrey, S.; Moore, N.; Sottos, R. Self-Healing Polymers and Composites. Am. Scientist. 2011. DOI: 10.1511/2011.92.392.
  • Chen, X.; Liu, Y.; Yu, Z. Nanoparticle-Reinforced Self-Healing Graphene Polymer Composites for Enhanced Mechanical and Electrical Properties. ACS Appl. Mater. Inter. 2022, 14(19), 22057–22067.
  • Huang, W.; Huang, Y.; Wu, L.; Xu, Y.; Jiang, C. A Bio-Inspired Self-Healing Polymer Composite Containing Graphene Nanoplatelets and Dynamic Bonds. Macromol. Mater. Eng. 2021, 306(13), 2100112.
  • Lee, W.; Lee, K. Y.; Hong, K. S. Layer-By-Layer Assembly of Graphene Oxide/Polyelectrolyte Multilayer Films for Self-Healing and Supercapacitor Applications. Electrochim. Acta. 2020, 350, 136164.
  • Li, J.; Yang, Y.; Wu, L.; Huang, L.; Jiang, C. Fabrication and Self-Healing Behavior of Multifunctional Epoxy Composites Containing Graphene Oxides and Microvascular Networks. Compos. B Eng. 2022, 240, 110005.
  • Liu, X.; Zhao, M.; Yang, L.; Xu, J.; Li, R. Self-Healing Graphene/Epoxy Composites for Aircraft Structural Applications. Compos. B Eng. 2023, 263, 110743.
  • Song, X.; Yao, X.; Wu, X.; Xu, Y.; Jiang, C. Bioinspired Self-Healing, 2020.
  • Qingshi, M., Peng, W., Ying, Y., Jianbang, L., Xiao, H., Su, H.-C., Kuan, B., Wang, L., Zhang, Y., Zhang, D., Losic, J., Ma. Polyaspartic Polyurea/Graphene Nanocomposites for Multifunctionality: Self-Healing, Mechanical Resilience, Electrical and Thermal Conductivities, and Resistance to Corrosion and Impact. Thin-Walled Struct. 2023. DOI: 10.1016/j.tws.2023.110853.
  • Bhashkar, S.; Bohra, P.; Singh, A.; Rana, H.; Sharma, T.; Shikha, A.; Mayank, P.; Alok, C.; Sravendra, R.; Nanda, G., et al. High Sensitivity Graphene Based Health Sensor with Self-Warning Function. Compos. Sci. Technol. 2023. DOI: 10.1016/j.compscitech.2023.110123.
  • Z X, W.; Yunbo, L.; Yongcun, L. Self-Healing and De-Icing Functions of Graphene-Carbon Nanotube Synergistic Reinforced Thermoplastic Polyurethane Composites Induced by Current. J. Phys. 2023. DOI: 10.1088/1742-6596/2529/1/012008.
  • Nazrul, I.; Khan, S.; Halder, M. S.; Goyat, L.; Nandan, B.; Subhankar, D. Repetitive Self-Healing of Diels-Alder Grafted Graphene Nanoplatelet Reinforced Carbon Fiber Reinforced Polymer Composites with Outstanding Mechanical Properties. Soft Matter. 2023. DOI: 10.1039/d2sm01558g.
  • Hu, Y.; Jia, P.; Lamm, M. E.; Sha, Y.; Kurnaz, L. B.; Ma, Y.; Zhou, Y. Plant Oil-Derived Vitrimers-Graphene Composites with Self-Healing Ability Triggered by Multiple Stimuli. Compos. B Eng. 2023. DOI: 10.1016/j.compositesb.2023.110704.
  • Hyeon, H.; Kim, J.; Lee, S.; Bin, S.; Bharat, S.; Jae, H.; Lee, S.; Yong, N.; Y, J.; Kwon, J., et al. Influence of Milled and Acid-Treated Graphene Oxide on the Self-Healing Properties of Graphene Oxide Reinforced Polyurethane. Compos. B Eng. 2023. DOI: 10.1016/j.compositesb.2023.110702.
  • Kally, C. S.; Ly, M.; J M, J.; S, C.; Diogo, V.; Marcelo, A.; Pereira-da-Silva, F.; M, S.; Tiago, P.; de, A. E., et al. Water Enabled Self-Healing Polymeric Coating with Reduced Graphene Oxide-Reinforcement for Sensors, 2021. DOI: 10.1016/J.SNR.2021.100059.
  • ). Emerging Graphene-Based Electronics; 2022. DOI: 10.1201/9781003155751-1.
  • Hüsnügül, Y.; Atay. Self‐Healing Composite Materials, 2022. DOI: 10.1002/9781119905264.ch6.
  • Ajit, B. Self-Healing Materials, 2022. DOI: 10.1007/978-3-030-80359-9_10.
  • Fouzia, M.; Sun, J.; Lee, H.; Yi, S.; Man, N.; Changyoon, J. Self-Healing Materials for Electronics Applications. Int. J. Mol. Sci. 2022, 23(2), 622. DOI: 10.3390/ijms23020622.
  • Yi-Huan, L.; Chao-Lin, C.; Chin-Hsien, C.; Zheng-Hao, T.; Lyu-Ying, W.; Chia-Wei, L. Highly Self-Healable and Recyclable Graphene Nanocomposites Composed of a Diels–Alder Crosslinking/P3HT Nanofibrils Dual-Network for Electromagnetic Interference Shielding. J. Mater. Chem. C. 2021. DOI: 10.1039/D1TC01691A.
  • Günter, F.; Müller. Self-Healing Aeronautical Nanocomposites, 2023. DOI: 10.1016/b978-0-323-99657-0.00001-6.
  • Yaohe, Z.; Li, L.; Zhubing, H.; Qi, L.; Jinliang, H.; Qing, W. Self-Healing Polymers for Electronics and Energy Devices. Chem. Rev. 2022. DOI: 10.1021/acs.chemrev.2c00231.
  • Gai, Y.; Gai, Y.; Li, H.; Zhou, L.; Li, Z.; Li, H. Self-Healing Functional Electronic Devices. Small. 2021, 17(41). DOI: 10.1002/SMLL.202101383.
  • Huitao, Y.; Yiyu, F.; Yiyu, F.; Yiyu, F.; Long, G.; Chen, C.; Zhang, Z.-X.; Wei, F.; Wei, F. Self-Healing High Strength and Thermal Conductivity of 3D Graphene/PDMS Composites by the Optimization of Multiple Molecular Interactions. Macromolecules. 2020. DOI: 10.1021/ACS.MACROMOL.9B02544.
  • Shamal, L.; Chinke, P.; Alegaonkar, S. Self-Healing Aspects of Graphene Oxide/Polymer Nanocomposites, 2020. DOI: 10.1016/B978-0-12-817354-1.00016-8.
  • Sundas, L.; Salman, A.; Sheikh, S.; Haroon, I.; Ali, S. Self-Healing Materials for Electronic Applications: An Overview, 2019. DOI: 10.1088/2053-1591/AB0F4C.
  • Chen, Q.; Yang, X. Self-Repairing Flexible Graphene-Based Electronic Material and Preparation Method Thereof. Graphene-based material for self-healing: mechanism, synthesis, characteristics, and applications. 2018.
  • David, P.; Haroon, M.; Daniele, R.; Andrea, D.; Alessandro, P. Novel Epoxy/Cyclic Olefin Copolymer/Carbon Structural Composites with Electro‐Activated Self‐Healing Properties. Polym. Compos. 2023, 44(8), 5173–5187. DOI: 10.1002/pc.27482.
  • Seokkyoon, H.; Taewoong, P.; Junsang, L.; Yuhyun, J.; Julia, W.; Tianhao, Y.; Jae Y. P.; Jongcheon, L.; Claudia, B. A.; Luis, S.; Hyowon, L.; Young, L. K.; Dong, R. K.; Chi, H. L. Rapid Self-Healing Hydrogel with Ultralow Electrical Hysteresis for Wearable Sensing. ACS Sens. 2024, 9(2), 662–673. DOI: 10.1021/acssensors.3c01835.
  • Liberata, G.; Carlo, N.; Luigi, V.; Elisa, C.; Giuseppina, B.; Marialuigia, R. Self-Healing Mechanisms in Multifunctional Structural Materials, 2020. DOI: 10.1007/978-3-030-35346-9_10.
  • Xie, M. Graphene Flexible Sensor Capable of Realizing Self-Healing, and Preparation Method Thereof. Self-healing nano Coat. Automot. Appl. 2019, 403–427.
  • Luan, Y.; Xiaoa, Z.; Shengling, J.; Jian-Huan, C.; Ya-Fei, L. Self-Healing Supramolecular Polymer Composites by Hydrogen Bonding Interactions Between Hyperbranched Polymer and Graphene Oxide. Chin. J. Polym. Sci. 2018, 36(5), 584–591. DOI: 10.1007/S10118-018-2025-Y.
  • Huhu, C.; Yaxin, H.; Qilong, C.; Gaoquan, S.; Lan, J.; Liangti, Q.; Liangti, Q. Self-Healing Graphene Oxide Based Functional Architectures Triggered by Moisture. Adv. Funct. Mater. 2017, 27(42). DOI: 10.1002/ADFM.201703096.
  • K, V.; Swati, G.; Acharyya, S.; Debroy, V.; Pavan, K.; Miriyala, A.; Acharyya. Self-Healing Phenomena of Graphene: Potential and Applications. Central Eur. J. Phys. 2016, 14(1), 364–370. DOI: 10.1515/PHYS-2016-0040.
  • Eleonora, D.; Suelen, B.; Na, N.; Victoria, G.; Rocha, E.; Saiz. Self-Healing Graphene-Based Composites with Sensing Capabilities. Adv.Mate. 2015. DOI: 10.1002/ADMA.201501653.
  • Yeon, D.; Kim, S.; Sinha-Ray, J.; Jae, P.; Jong, G.; Lee, Y.; Hong, C.; Sang-Hoon, B.; Jong, H.; Ahn, Y., et al. Self‐Healing Reduced Graphene Oxide Films by Supersonic Kinetic Spraying. Adv. Funct. Mater. 2014. DOI: 10.1002/ADFM.201400732.
  • D’Elia, D.; Barg, S.; Ni, N.; Rocha, V. G.; Saiz E. Self-healing and Regenerative Materials; 2023. DOI: 10.2174/9789815136920123030010.
  • Kim, D.-Y.; Sinha-Ray, S.; Park, J.-J.; Lee, J.-G.; Cha, Y. H.; Bae, S. H.; Ahn, J. H.; Jung, Y. C.; Kim, S. M.; Yarin, A. L.; Yoon, S. S. Self-healing of fiber reinforced polymer compoistes [sic], 2022. DOI: 10.31390/gradschool_theses.2494.
  • Han, J.; Shu-Ying, G. A near infrared induced self-healable composite based on disulfide bonds for flexible electronics. J. Polym. Res. 2020. DOI: 10.1007/S10965-020-02186-2.
  • Nazrul, I.; Khan, N.; Islam, K.; Sudipta, H.; Sudipta, H. Self-healing fiber-reinforced polymer composites for their potential structural applications, 2020. DOI: 10.1016/B978-0-12-818450-9.00015-5.
  • Bifan, Y.; Yang, F.; Wenfeng, Z.; Rumin, W.; Shuhua, Q. Self-healing electromagnetic interference shielding composite based on Diels–Alder chemistry. J. Mater. Sci.: Mater. Electron. 2019. DOI: 10.1007/S10854-019-02366-X.
  • Yakun, G.; Dong-Li, Z.; Wanqiu, Z.; Xiaojiao, Y.; Zhao, P.; Changan, C.; Maobing, S. Infrared induced repeatable self-healing and removability of mechanically enhanced graphene─epoxy flexible materials. RSC Adv. 2019. DOI: 10.1039/C9RA00261H.
  • Jiheong, K.; Jeffrey, B.-H.; Zhenan Bao, T. Self-healing soft Electron. 2019. DOI: 10.1038/S41928-019-0235-0.
  • Shuwen, W.; Jinhui, L.; Guoping, Z.; Guoping, Z.; Yimin, Y.; Gang, L.; Rong, S.; Ching-Ping, W. Ultrafast Self-Healing Nanocomposites via Infrared Laser and Their Application in Flexible Electronics. ACS Appl. Mater. Interfaces. 2017. DOI: 10.1021/ACSAMI.6B15476.
  • Jianhui, C.; Shi, T.; Tuocheng, C.; Tao, X.; Litao, S.; Xiaosong, W.; Dapeng, Y. Self-healing of defected graphene. Appl. Phys. Lett. 2013. DOI: 10.1063/1.4795292.
  • Kai, Z.; Khalil, U.; Rehman, J.; Gao. Liquid Metal-Promoted Graphene Oxide Supramolecular Film for Self-Healing Actuator with Multiple-Stimuli Responses. Chem.-an Asian J. 2023, 18(14). DOI: 10.1002/asia.202300409.
  • Jianhui, C.; Tuwan, S.; Tuocheng, C.; Tao, X.; Litao, S.; Xiaosong, W.; Dapeng, Y. An Outlook on Self-healing Materials, 2022. DOI: 10.1007/978-981-19-4147-4_26.
  • Nand, J.; Kanu, E.; Gupta, U.; Kumar, V.; Gyanendra, S. Self-Healing Composites: A state-of-the-Art Review. Compos. Part A Appl. Sci. Manuf. 2019. DOI: 10.1016/J.COMPOSITESA.2019.04.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.