4
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biodegradable composites fabricated using recycled poly(lactic acid)-based single-use coffee cup and regenerated cellulose fiber

, , &
Received 29 Dec 2023, Accepted 04 Jun 2024, Published online: 13 Jun 2024

References

  • Arona, S.; Liang, J.; Fullerton-Shirey, S. K.; Laaser, J. E. Triggerable Ion Release in Polymerized Ionic Liquids Containing Thermally Labile Diels–Alder Linkages. ACS Mater. Lett. 2020, 2(4), 331. DOI: 10.1021/acsmaterialslett.9b00539.
  • Liang, J.; Xu, K.; Arona, S.; Laaser, J. E.; Fullerton-Shirey, S. K. Ion-Locking in Solid Polymer Electrolytes for Reconfigurable Gateless Lateral Graphene P-N Junctions. Materials 2020, 13(5), 1089. DOI: 10.3390/ma13051089.
  • Chauhan, K.; Kaur, R.; Chauhan, I. Sustainable Bioplastic: A Comprehensive Review on Sources, Methods, Advantages, and Applications of Bioplastics. Polym.-Plast. Technol. Mater. 2024, 63(8), 913. DOI: 10.1080/25740881.2024.2307369.
  • Basavegowda, N.; Baek, K. H. Advances in Functional Biopolymer-Based Nanocomposites for Active Food Packaging Applications. Polymers. 2021, 13(23), 4198. DOI: 10.3390/polym13234198.
  • Li, G.; Zhao, M.; Xu, F.; Yang, B.; Li, X.; Meng, X.; Teng, L.; Sun, F.; Li, Y. Synthesis and Biological Application of Polylactic Acid. Molecules 2020, 25(21), 5023. DOI: 10.3390/molecules25215023.
  • Sutaria, I. PLA Cup Market. Future Market Insights 2022, 250.
  • Therias, S.; Murariu, M.; Dubois, P. Bionanocomposites Based on PLA and Halloysite Nanotubes: From Key Properties to Photooxidative Degradation. Polym. Degrad. Stab. 2017, 145, 60–69. DOI: 10.1016/j.polymdegradstab.2017.06.008.
  • Laske, S.; Ziegler, W.; Kainer, M.; Wuerfel, J.; Holzer, C. Enhancing the Temperature Stability of PLA by Compounding Strategies. Polym. Eng. Sci. 2015, 55(12), 2849–2858. DOI: 10.1002/pen.24176.
  • Zhang, S.; Chen, C.; Duan, C.; Hu, H.; Li, H.; Li, J.; Liu, Y.; Ma, X.; Stavik, J.; Ni, Y. Regenerated Cellulose by the Lyocell Process, a Brief Review of the Process and Properties. BioResources 2018, 13(2), 1–16. DOI: 10.15376/biores.13.2.Zhang.
  • Vanitjinda, G.; Nimchua, T.; Sukyai, P. Effect of Xylanase-Assisted Pretreatment on the Properties of Cellulose and Regenerated Cellulose Films from Sugarcane Bagasse. Int. J. Biol. Macromol. 2019, 122, 503–516. DOI: 10.1016/j.ijbiomac.2018.10.191.
  • Huo, Z.; Arona, S.; Kong, V. A.; Myrga, B. J.; Statt, A.; Laaser, J. E. Effect of Polymer Composition and Morphology on Mechanochemical Activation in Nanostructured Triblock Copolymers. Macromolecules 2023, 56(5), 1845–1854. DOI: 10.1021/acs.macromol.2c02475.
  • Hsu, M. C.; Wang, J. M.; Wu, T. M. Synthesis, Mechanical Properties and Enzymatic Degradation of Biodegradable Poly(butylene Carbonate-Co-Terephthalate)/organically Modified Layered Double Hydroxide Nanocomposites. J. Polym. Environ. 2021, 29(3), 755. DOI: 10.1007/s10924-020-01918-1.
  • Qi, Z.; Ye, H.; Xu, J.; Peng, J.; Chen, J.; Guo, B. Synthesis and Characterizations of Attapulgite Reinforced Branched Poly (Butylene Succinate) Nanocomposites. Colloids Surf. A Physicochem. Eng. Aspects. 2013, 436, 26–33. DOI: 10.1016/j.colsurfa.2013.06.019.
  • Wu, C. S.; Wu, D. Y.; Wang, S. S. Preparation and Characterization of Polylactic Acid/Bamboo Fiber Composites. ACS Appl. Bio Mater. 2022, 5(3), 1038–1046. DOI: 10.1021/acsabm.1c01082.
  • Kister, G.; Cassanas, G.; Vert, M. Effects of Morphology, Conformation and Configuration on the IR and Raman Spectra of Various Poly(lactic Acid)s. Polymer. 1998, 39(2), 267–273. DOI: 10.1016/S0032-3861(97)00229-2.
  • Gong, X.; Pan, L.; Tang, C. Y.; Chen, L.; Hao, Z.; Law, W. C.; Wang, X.; Tsui, C. P.; Wu, C. Preparation, Optical and Thermal Properties of CdSe–ZnS/poly(lactic Acid) (PLA) Nanocomposites. Compos. B Eng. 2014, 66, 494–499. DOI: 10.1016/j.compositesb.2014.06.016.
  • Palma-Ramírez, D.; Torres-Huerta, A. M.; Domínguez-Crespo, M. A.; Ponce-Hernández, J. S.; Brachetti-Sibaja, S. B.; Rodríguez-Salazar, A. E.; Urdapilleta-Inchaurregui, V. An Assembly Strategy of Polylactic Acid (PLA)-SiO2 Nanocomposites Embedded in Polypropylene (PP) Matrix. J. Mater. Res. Technol. 2021, 14, 2150–2164. DOI: 10.1016/j.jmrt.2021.07.063.
  • Ospina-Orejarena, A.; Vera-Graziano, R.; Castillo-Ortega, M. M.; Hinestroza, J. P.; Rodriguez-Gonzalez, M.; Palomares-Aguilera, L.; Morales-Moctezuma, M.; Maciel-Cerda, A. Grafting Collagen on Poly (Lactic Acid) by a Simple Route to Produce Electrospun Scaffolds, and Their Cell Adhesion Evaluation. Tissue Eng. And Regenerative Medicine 2016, 13(4), 375–387. DOI: 10.1007/s13770-016-9097-y.
  • Wu, C. S. Aliphatic–Aromatic Polyester–Polyaniline Composites: Preparation, Characterization, Antibacterial Activity and Conducting Properties. Polym. Int 2012, 61(10), 1556–1563, 1556. 10.1002/pi.4247.
  • Wang, H. T.; Chen, E. C.; Wu, T. M. Crystallization and Enzymatic Degradation of Maleic Acid-Grafted Poly(butylene Adipate-Co-Terephthalate)/organically Modified Layered Zinc Phenylphosphonate Nanocomposites. J. Polym. Enviro 2020, 28(3), 834. DOI: 10.1007/s10924-019-01647-0.
  • Ojijo, V.; Cele, H.; Sinha Ray, S. Morphology and Properties of Polymer Composites Based on Biodegradable Polylactide/Poly[(butylene Succinate)-Co-Adipate] Blend and Nanoclay. Macromol. Mater. Eng. 2011, 296(9), 865. DOI: 10.1002/mame.201100042.
  • Wang, H. T.; Chen, E. C.; Wu, T. M. Synthesis and Characterization of Biodegradable Aliphatic–Aromatic Nanocomposites Fabricated Using Maleic Acid-Grafted Poly[(butylene Adipate)- Co -Terephthalate] and Organically Modified Layered Zinc Phenylphosphonate. Polym. Int 2019, 68(8), 1531–1537, 1531. 10.1002/pi.5862.
  • Gross, I. P.; Schneider, F. S. S.; Caro, M. S. B.; da Conceição, T. F.; Caramori, G. F.; Pires, A. T. N. Polylactic Acid, Maleic Anhydride and Dicumyl Peroxide: NMR Study of the Free-Radical Melt Reaction Product. Polym. Degrad. Stab. 2018, 155, 1–8. DOI: 10.1016/j.polymdegradstab.2018.06.016.
  • Shazleen, S. S.; Foong Ng, L. Y.; Ibrahim, N. A.; Hassan, M. A.; Ariffin, H. Combined Effects of Cellulose Nanofiber Nucleation and Maleated Polylactic Acid Compatibilization on the Crystallization Kinetic and Mechanical Properties of Polylactic Acid Nanocomposite. Polymers. 2021, 13(19), 3226. DOI: 10.3390/polym13193226.
  • Wu, C. S. Renewable Resource-Based Green Composites of Surface-Treated Spent Coffee Grounds and Polylactide: Characterization and Biodegradability. Polym. Degrad. Stab. 2015, 121, 51–59. DOI: 10.1016/j.polymdegradstab.2015.08.011.
  • Jiang, W.; Ge, X.; Zhang, B.; Xing, R.; Chang, M. Different Influences of Two Peroxide Initiators on Structure and Properties of Poly(lactic Acid). J. Vinyl Addit. Technol. 2020, 26(4), 452–460. DOI: 10.1002/vnl.21760.
  • Li, P.; Wang, B.; Xu, Y. J.; Jiang, Z. M.; Dong, C. H.; Liu, Y.; Zhu, P. Ecofriendly Flame-Retardant Cotton Fabrics: Preparation, Flame Retardancy, Thermal Degradation Properties, and Mechanism. ACS Sustain. Chem. Eng. 2019, 7(23), 19246–19256. DOI: 10.1021/acssuschemeng.9b05523.
  • Qing, W.; Wang, Y.; Wang, Y.; Zhao, D.; Liu, X.; Zhu, J. The Modified Nanocrystalline Cellulose for Hydrophobic Drug Delivery. Appl. Surf. Sci. 2016, 366, 404–409. DOI: 10.1016/j.apsusc.2016.01.133.
  • Liu, M. S.; Huang, S.; Zhang, G. X.; Zhang, F. X. An Efficient Anti-Flaming Phosphorus-Containing Guanazole Derivative for Cotton Fabric. Cellulose. 2019, 26(4), 2791–2804. DOI: 10.1007/s10570-019-02275-6.
  • Kargarzadeh, H.; Ahmad, I.; Abdullah, I.; Dufresne, A.; Zainudin, S. Y. S.; M, R. Effects of Hydrolysis Conditions on the Morphology, Crystallinity, and Thermal Stability of Cellulose Nanocrystals Extracted from Kenaf Bast Fibers. Cellulose. 2012, 19(3), 855–866. DOI: 10.1007/s10570-012-9684-6.
  • Fernandes, S. C. M.; Sadocco, P.; Alonso-Varona, A.; Palomares, T.; Eceiza, A.; Silvestre, A. J. D.; Mondragon, I. F.; R, C. S. Bioinspired Antimicrobial and Biocompatible Bacterial Cellulose Membranes Obtained by Surface Functionalization with Aminoalkyl Groups. ACS Appl. Mater. Interfaces 2013, 5(8), 3290–3297. DOI: 10.1021/am400338n.
  • Hettegger, H.; Sumerskii, I.; Sortino, S.; Potthast, A.; Rosenau, T. Silane Meets Click Chemistry: Towards the Functionalization of Wet Bacterial Cellulose Sheets. ChemSuschem. 2015, 8(4), 680–687. DOI: 10.1002/cssc.201402991.
  • Missoum, K.; Bras, J.; Belgacem, M. N. Organization of Aliphatic Chains Grafted on Nanofibrillated Cellulose and Influence on Final Properties. Cellulose. 2012, 19(6), 1957–1973. DOI: 10.1007/s10570-012-9780-7.
  • Tingaut, P.; Hauert, R.; Zimmermann, T. Highly Efficient and Straightforward Functionalization of Cellulose Films with Thiol Ene Click Chemistry. J. Mater. Chem. 2011, 21(40), 16066–16076. DOI: 10.1039/c1jm11620g.
  • Bel-Hassen, R.; Boufi, S.; Salon, M. C. B.; Abdelmouleh, M.; Belgacem, M. N. Adsorption of Silane Onto Cellulose Fibers. II. The Effect of pH on Silane Hydrolysis, Condensation, and Adsorption Behavior. J. Appl. Polym. Sci 2008, 108(3), 1958–1968. DOI: 10.1002/app.27488.
  • Krouit, M.; Bras, J.; Belgacem, M. N. Cellulose Surface Grafting with Polycaprolactone by Heterogeneous Click-Chemistry. Eur. Polym. J. 2008, 44(12), 4074–4081. DOI: 10.1016/j.eurpolymj.2008.09.016.
  • Lu, J.; Askeland, P.; Drzal, L. T. Surface Modification of Microfibrillated Cellulose for Epoxy Composite Applications. Polym. 2008, 49(5), 1285–1296. DOI: 10.1016/j.polymer.2008.01.028.
  • Zhang, Y.; Ren, Y. L.; Liu, X.; Huo, T. G.; Qin, Y. W. Preparation of Durable Flame Retardant PAN Fabrics Based on Amidoximation and Phosphorylation. Appl. Surf. Sci. 2018, 428, 395–403. DOI: 10.1016/j.apsusc.2017.09.155.
  • Ren, Y. L.; Tian, T.; Jiang, L. N.; Liu, X. H.; Han, Z. B. Polyvinyl Alcohol Reinforced Flame-Retardant Polyacrylonitrile Composite Fiber Prepared by Boric Acid Cross-Linking and Phosphorylation. Materials. 2018, 11(12), 2391. DOI: 10.3390/ma11122391.
  • Alamo, R. G.; Mandelkern, L. Crystallization Kinetics of Random Ethylene Copolymers. Macromolecules. 1991, 24(24), 6480. DOI: 10.1021/ma00024a018.
  • Chen, Y. A.; Wu, T. M. Crystallization Kinetics of Poly(1,4-Butylene Adipate) with Stereocomplexed Poly(lactic Acid) Serving as a Nucleation Agent. Ind. Eng. Chem. Res. 2014, 53(43), 16689. DOI: 10.1021/ie503303u.
  • Arona, S.; Rozen, J.; Laaser, J. E. Dynamics of Ion Locking in Doubly-Polymerized Ionic Liquids. Macromolecules 2021, 54(13), 6466. DOI: 10.1021/acs.macromol.0c02637.
  • Scarfato, P.; Acierno, D.; Russo, P. Photooxidative Weathering of Biodegradable Nanocomposite Films Containing Halloysite. Polym. Compos. 2015, 36, 1169–1175. DOI: 10.1002/pc.23478.
  • Lee, Y. F.; Wu, T. M. Investigation on the Photodegradation Stability of Acrylic Acid-Grafted Poly(butylene Carbonate-Co-Terephthalate)/organically Modified Layered Zinc Phenylphosphonate Composites. Polymers 2023, 1276(5), 15. DOI: 10.3390/polym15051276.
  • Zhang, Y.; Xu, J.; Guo, B. Photodegradation Behavior of Poly (Butylene Succinate-Co-Butylene Adipate)/ZnO Nanocomposites. Colloids Surf. A Physicochem. Eng. Aspects. 2016, 489, 173–181. DOI: 10.1016/j.colsurfa.2015.10.038.
  • Carroccio, S.; Rizzarelli, P.; Puglisi, C.; Montaudo, G. MALDI Investigation of Photooxidation in Aliphatic Polyesters: Poly (Butylene Succinate). Macromolecules. 2004, 37(17), 6576–6586. DOI: 10.1021/ma049633e.
  • Nagai, Y.; Nakamura, D.; Miyake, T.; Ueno, H.; Matsumoto, N.; Kaji, A.; Ohishi, F. Photodegradation Mechanisms in Poly(2, 6-Butylenenaphthalate-Co-Tetramethyleneglycol) (PBN–PTMG). I: Influence of the PTMG Content. Polym. Degrad. Stab. 2005, 88(2), 251–255. DOI: 10.1016/j.polymdegradstab.2004.10.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.