34
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A review on polysaccharide based aerogel synthesis and their applications

&
Received 12 Mar 2024, Accepted 04 Jun 2024, Published online: 08 Jun 2024

References

  • Ziegler, C.; Wolf, A.; Liu, W.; Herrmann, A. K.; Gaponik, N.; Eychmüller, A. Modern Inorganic Aerogels. Angew. Chem. Int. Ed. 2017, 56(43), 13200–13221. DOI: 10.1002/anie.201611552.
  • Vareda, J. P.; Lamy-Mendes, A.; Durães, L. A Reconsideration on the Definition of the Term Aerogel Based on Current Drying Trends. Microporous Mesoporous Mater. 2018, 258, 211–216. DOI: 10.1016/j.micromeso.2017.09.016.
  • Guastaferro, M.; Reverchon, E.; Baldino, L. Polysaccharide-Based Aerogel Production for Biomedical Applications: A Comparative Review. Materials. 2021, 14(7), 1631. DOI: 10.3390/ma14071631.
  • Zhao, S.; Malfait, W. J.; Guerrero-Alburquerque, N.; Koebel, M. M.; Nyström, G. Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications. Angew. Chem. Int. Ed. 2018, 57(26), 7580–7608. DOI: 10.1002/anie.201709014.
  • Liu, Q.; Yan, K.; Chen, J.; Xia, M.; Li, M.; Liu, K.; Wang, D.; Wu, C.; Xie, Y. Recent Advances in Novel Aerogels Through the Hybrid Aggregation of Inorganic Nanomaterials and Polymeric Fibers for Thermal Insulation. Aggregate 2021, 2(2). DOI: 10.1002/agt2.30.
  • Ganesan, K.; Budtova, T.; Ratke, L.; Gurikov, P.; Baudron, V.; Preibisch, I.; Niemeyer, P.; Smirnova, I.; Milow, B. Review on the Production of Polysaccharide Aerogel Particles. Materials 2018, 11(11), 2144. DOI: 10.3390/ma11112144.
  • García-González, C. A.; Alnaief, M.; Smirnova, I. Polysaccharide-based aerogels – Promising biodegradable carriers for drug delivery systems. Carbohydr. Polym. 2011, 86(4), 1425–1438. DOI: 10.1016/j.carbpol.2011.06.066.
  • El-Naggar, M. E.; Othman, S. I.; Allam, A. A.; Morsy, O. M. Synthesis, Drying Process and Medical Application of Polysaccharide-Based Aerogels. Int. J. Biol. Macromol. 2020, 145, 1115–1128. DOI: 10.1016/j.ijbiomac.2019.10.037.
  • Brown, Z. K.; Fryer, P. J.; Norton, I. T.; Bridson, R. H. Drying of Agar Gels Using Supercritical Carbon Dioxide. J. Supercrit. Fluids 2010, 54(1), 89–95. DOI: 10.1016/j.supflu.2010.03.008.
  • Thapliyal, P. C.; Singh, K. Aerogels As Promising Thermal Insulating Materials: An Overview. J. Mater. 2014, 2014, 1–10. DOI: 10.1155/2014/127049.
  • Muhammad, A.; Lee, D.; Shin, Y.; Park, J. Recent Progress in Polysaccharide Aerogels: Their Synthesis, Application, and Future Outlook. Polymers 2021, 13(8), 1347. DOI: 10.3390/polym13081347.
  • Hoffman, A. S. Hydrogels for Biomedical Applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23. DOI: 10.1016/j.addr.2012.09.010.
  • Lázár, I.; Fábián, I. A Continuous Extraction and Pumpless Supercritical CO2 Drying System for Laboratory-Scale Aerogel Production. Gels 2016, 2(4), 26. DOI: 10.3390/gels2040026.
  • Gurav, J. L.; Jung, I. K.; Park, H. H.; Kang, E. S.; Nadargi, D. Y. Silica Aerogel: Synthesis and Applications. J. Nanomater 2010, 2010, 1–11. DOI: 10.1155/2010/409310.
  • Zuo, L.; Zhang, Y.; Zhang, L.; Miao, Y. E.; Fan, W.; Liu, T. Polymer/carbon-Based Hybrid Aerogels: Preparation, Properties and Applications. Materials 2015, 8(10), 6806–6848. DOI: 10.3390/ma8105343.
  • Dervin, S.; Pillai, S. C. An Introduction to Sol-Gel Processing for Aerogels. In Sol-Gel Materials for Energy, Environment and Electronic Applications. Advances in Sol-Gel Derived Materials and Technologies, Pillai, S. Hehir, S., Eds.; Springer, Cham, 2017. DOI: 10.1007/978-3-319-50144-4_1.
  • Long, L. Y.; Weng, Y. X.; Wang, Y. Z. Cellulose Aerogels: Synthesis, Applications, and Prospects. Polymers 2018, 8(6), 623. DOI: 10.3390/polym10060623.
  • Liu, S.; Yao, F.; Oderinde, O.; Zhang, Z.; Fu, G. Green Synthesis of Oriented Xanthan Gum–Graphene Oxide Hybrid Aerogels for Water Purification. Carbohydr. Polym. 2017, 174, 392–399. DOI: 10.1016/j.carbpol.2017.06.044.
  • Kawagishi, K.; Saito, H.; Furukawa, H.; Horie, K. Superior Nanoporous Polyimides via Supercritical CO2 Drying of Jungle-Gym-Type Polyimide Gels. Macromol. Rapid Commun. 2007, 28(1), 96–100. DOI: 10.1002/marc.200600587.
  • Aegerter, M. A.; Leventis, N.; Koebel, M. M. Advances in Sol-Gel Derived Materials and Technologies. In Aerogels Handbook, Springer: New York, NY, USA, 2011. http://www.springer.com/series/8776.
  • Ciftci, D.; Ubeyitogullari, A.; Huerta, R. R.; Ciftci, O. N.; Flores, R. A.; Saldaña, M. D. A. Lupin Hull Cellulose Nanofiber Aerogel Preparation by Supercritical CO2 and Freeze Drying. J. Supercrit. Fluids 2017, 127, 137–145. DOI: 10.1016/j.supflu.2017.04.002.
  • Guo, K.; Song, H.; Chen, X.; Du, X.; Zhong, L. Graphene Oxide As an Anti-Shrinkage Additive for Resorcinol–Formaldehyde Composite Aerogels. Phys. Chem. Chem. Phys. 2014, 16(23), 11603–11608. DOI: 10.1039/c4cp00592a.
  • Zhang, Y.; Fan, W.; Huang, Y.; Zhang, C.; Liu, T. Graphene/Carbon Aerogels Derived from Graphene Crosslinked Polyimide As Electrode Materials for Supercapacitors. RSC Adv. 2015, 5(2), 1301–1308. DOI: 10.1039/c4ra13015d.
  • Zhang, Z. H.; Chen, Z. Y.; Tang, Y. H.; Li, Y.-T.; Ma, D.; Zhang, G.-D.; Boukherroub, R.; Cao, C.-F.; Gong, L.-X.; Song, P., et al. Silicone/Graphene Oxide Co-Cross-Linked Aerogels with Wide-Temperature Mechanical Flexibility, Super-Hydrophobicity and Flame Resistance for Exceptional Thermal Insulation and Oil/Water Separation. J. Mater. Sci. Technol. 2022, 114, 131–142. DOI: 10.1016/j.jmst.2021.11.012.
  • Wang, W.; Fang, Y.; Ni, X.; Wu, K.; Wang, Y.; Jiang, F.; Riffat, S. B. Fabrication and Characterization of a Novel Konjac Glucomannan-Based Air Filtration Aerogels Strengthened by Wheat Straw and Okara. Carbohydr. Polym. 2019, 224. DOI: 10.1016/j.carbpol.2019.115129.
  • Zaragotas, D.; Liolios, N. T.; Anastassopoulos, E. Supercooling, Ice Nucleation and Crystal Growth: A Systematic Study in Plant Samples. Cryobiology 2016, 72(3), 239–243. DOI: 10.1016/j.cryobiol.2016.03.012.
  • Ni, X.; Ke, F.; Xiao, M.; Wu, K.; Kuang, Y.; Corke, H.; Jiang, F. The Control of Ice Crystal Growth and Effect on Porous Structure of Konjac Glucomannan-Based Aerogels. Int. J. Biol. Macromol. 2016, 92, 1130–1135. DOI: 10.1016/j.ijbiomac.2016.08.020.
  • Chen, H. B.; Chiou, B. S.; Wang, Y. Z.; Schiraldi, D. A. Biodegradable Pectin/Clay Aerogels. ACS Appl. Mater. Interfaces 2013, 5(5), 1715–1721. DOI: 10.1021/am3028603.
  • Wicklein, B.; Kocjan, A.; Salazar-Alvarez, G.; Carosio, F.; Camino, G.; Antonietti, M.; Bergström, L. Thermally Insulating and Fire-Retardant Lightweight Anisotropic Foams Based on Nanocellulose and Graphene Oxide. Nat. Nanotechnol. 2015, 10(3), 277–283. DOI: 10.1038/nnano.2014.248.
  • Chen, H. B.; Liu, B.; Huang, W.; Wang, J.-S.; Zeng, G.; Wu, W.-H.; Schiraldi, D. A. Fabrication and Properties of Irradiation-Cross-Linked Poly (Vinyl Alcohol)/Clay Aerogel Composites. ACS Appl. Mater. Interfaces 2014, 6(18), 16227–16236. DOI: 10.1021/am504418w.
  • Nita, L. E.; Ghilan, A.; Rusu, A. G.; Neamtu, I.; Chiriac, A. P. New Trends in Bio-Based Aerogels. Pharmaceutics 2020, 12(5), 449. DOI: 10.3390/pharmaceutics12050449.
  • Ackar, D.; Subaric, D.; Babic, J. Wheat Starch. In Wheat: Genetics, Crops and Food Production; Nova Science Publishers, Inc; Vol. 2011, pp. 253–278. DOI: 10.1016/b978-0-12-746275-2.00010-0.
  • Druel, L.; Bardl, R.; Vorwerg, W.; Budtova, T. Starch Aerogels: A Member of the Family of Thermal Superinsulating Materials. Biomacromolecules 2017, 18(12), 4232–4239. DOI: 10.1021/acs.biomac.7b01272.
  • Ivanovic, J.; Milovanovic, S.; Zizovic, I. Utilization of Supercritical CO2 As a Processing Aid in Setting Functionality of Starch-Based Materials. Starch/staerke 2016, 68(9–10), 821–833. DOI: 10.1002/star.201500194.
  • Ubeyitogullari, A.; Ciftci, O. N. Formation of Nanoporous Aerogels from Wheat Starch. Carbohydr. Polym. 2016, 147, 125–132. DOI: 10.1016/j.carbpol.2016.03.086.
  • Abhari, N.; Madadlou, A.; Dini, A. Structure of Starch Aerogel As Affected by Crosslinking and Feasibility Assessment of the Aerogel for an Anti-Fungal Volatile Release. Food Chem. 2017, 221, 147–152. DOI: 10.1016/j.foodchem.2016.10.072.
  • Groult, S.; Budtova, T. Thermal Conductivity/Structure Correlations in Thermal Super-Insulating Pectin Aerogels. Carbohydr. Polym. 2018, 196, 73–81. DOI: 10.1016/j.carbpol.2018.05.026.
  • Groult, S.; Budtova, T. Tuning Structure and Properties of Pectin Aerogels. Eur. Polym. J. 2018, 108, 250–261. DOI: 10.1016/j.eurpolymj.2018.08.048.
  • Veronovski, A.; Tkalec, G.; Knez, Z.; Novak, Z. Characterisation of Biodegradable Pectin Aerogels and Their Potential Use As Drug Carriers. Carbohydr. Polym. 2014, 113, 272–278. DOI: 10.1016/j.carbpol.2014.06.054.
  • Tkalec, G.; Knez, Ž.; Novak, Z. Fast Production of High-Methoxyl Pectin Aerogels for Enhancing the Bioavailability of Low-Soluble Drugs. J. Supercrit. Fluids 2015, 106, 16–22. DOI: 10.1016/j.supflu.2015.06.009.
  • Ubeyitogullari, A.; Ciftci, O. N. Fabrication of Bioaerogels from Camelina Seed Mucilage for Food Applications. Food Hydrocoll 2020, 102. DOI: 10.1016/j.foodhyd.2019.105597.
  • Comin, L. M.; Temelli, F.; Saldaña, M. D. A. Flax Mucilage and Barley Beta-Glucan Aerogels Obtained Using Supercritical Carbon Dioxide: Application As Flax Lignan Carriers. Innovative Food Science Emerging Technologies 2015, 28, 40–46. DOI: 10.1016/j.ifset.2015.01.008.
  • Felisberto, M. H. F.; Wahanik, A. L.; Gomes-Ruffi, C. R.; Clerici, M. T. P. S.; Chang, Y. K.; Steel, C. J. Use of Chia (Salvia Hispanica L.) Mucilage Gel to Reduce Fat in Pound Cakes. LWT 2015, 63(2), 1049–1055. DOI: 10.1016/j.lwt.2015.03.114.
  • Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chem. Soc. Rev. 2011, 40(7), 3941–3994. DOI: 10.1039/c0cs00108b.
  • Song, K.; Zhu, X.; Zhu, W.; Li, X. Preparation and Characterization of Cellulose Nanocrystal Extracted from Calotropis Procera Biomass. Bioresour. Bioprocess 2019, 6(1). DOI: 10.1186/s40643-019-0279-z.
  • Wan, C.; Lu, Y.; Jiao, Y.; Cao, J.; Sun, Q.; Li, J. Preparation of Mechanically Strong and Lightweight Cellulose Aerogels from Cellulose-NaOH/peg Solution. J. Solgel. Sci. Technol 2015, 74(1), 256–259. DOI: 10.1007/s10971-015-3633-4.
  • Wan, C.; Jiao, Y.; Wei, S.; Zhang, L.; Wu, Y.; Li, J. Functional Nanocomposites from Sustainable Regenerated Cellulose Aerogels: A Review. Chem. Eng. J. 2019, 359, 459–475. DOI: 10.1016/j.cej.2018.11.115.
  • Ibrahim, I. K.; Hussin, S. M.; Al-Obaidi, Y. Extraction of Cellulose Nano Crystalline from Cotton by Ultrasonic and Its Morphological and Structural Characterization. Int. J. Mater. Chem. Phys 2015, 1(2), 99–109. http://www.aiscience.org/journal/ijmcp.
  • Cheng, Q. Y.; Guan, C. S.; Wang, M.; Li, Y. D.; Zeng, J. B. Cellulose Nanocrystal Coated Cotton Fabric with Superhydrophobicity for Efficient Oil/Water Separation. Carbohydr. Polym. 2018, 199, 390–396. DOI: 10.1016/j.carbpol.2018.07.046.
  • Heath, L.; Thielemans, W. Cellulose Nano Whisker Aerogels. Green Chem. 2010, 12(8), 1448–1453. DOI: 10.1039/c0gc00035c.
  • Blanco, A.; Monte, M. C.; Campano, C.; Balea, A.; Merayo, N.; Negro, C. Nanocellulose for Industrial Use: Cellulose Nanofibers (CNF), Cellulose Nanocrystals (CNC), and Bacterial Cellulose (BC). In Handbook of Nanomaterials for Industrial Applications; Elsevier; Vol. 2018, pp. 74–126. DOI: 10.1016/B978-0-12-813351-4.00005-5.
  • Xiao, S.; Gao, R.; Lu, Y.; Li, J.; Sun, Q. Fabrication and Characterization of Nanofibrillated Cellulose and Its Aerogels from Natural Pine Needles. Carbohydr. Polym. 2015, 119, 202–209. DOI: 10.1016/j.carbpol.2014.11.041.
  • Bodin, A.; Bäckdahl, H.; Petersen, N.; Gatenholm, P. 2.22 Bacterial Cellulose As Biomaterial. In Comprehensive Biomaterials II; Elsevier; Vol. 2017, pp. 505–511. DOI: 10.1016/B978-0-08-100691-7.00034-3.
  • Foresti, M. L.; Vázquez, A.; Boury, B. Applications of Bacterial Cellulose As Precursor of Carbon and Composites with Metal Oxide, Metal Sulfide and Metal Nanoparticles: A Review of Recent Advances. Carbohydr. Polym. 2017, 157, 447–467. DOI: 10.1016/j.carbpol.2016.09.008.
  • Amnuaikit, T.; Chusuit, T.; Raknam, P.; Boonme, P. Effects of a Cellulose Mask Synthesized by a Bacterium on Facial Skin Characteristics and User Satisfaction. Medical Devices: Evidence and Research. 2011, 4(1), 77–81. DOI: 10.2147/MDER.S20935.
  • Hosseini, H.; Kokabi, M.; Mousavi, S. M. Conductive Bacterial Cellulose/Multiwall Carbon Nanotubes Nanocomposite Aerogel As a Potentially Flexible Lightweight Strain Sensor. Carbohydr. Polym. 2018, 201, 228–235. DOI: 10.1016/j.carbpol.2018.08.054.
  • Lukin, I.; Erezuma, I.; Maeso, L.; Zarate, J.; Desimone, M. F.; Al-Tel, T. H.; Dolatshahi-Pirouz, A.; Orive, G. Progress in Gelatin As Biomaterial for Tissue Engineering. Pharmaceutics 2022, 14(6), 1177. DOI: 10.3390/pharmaceutics14061177.
  • Wang, J.; Zhao, D.; Shang, K.; Wang, Y.-T.; Ye, D.-D.; Kang, A.-H.; Liao, W.; Wang, Y.-Z. Ultrasoft gelatin aerogels for oil contaminant removal. J. Mater. Chem. A 2016, 4(24), 9381–9389. DOI: 10.1039/c6ta03146c.
  • Wang, Q.; Qin, Y.; Xue, C.; Yu, H.; Li, Y. Facile Fabrication of Bubbles-Enhanced Flexible Bioaerogels for Efficient and Recyclable Oil Adsorption. Chem. Eng. J. 2020, 402, 402. DOI: 10.1016/j.cej.2020.126240.
  • El Kadib, A.; Bousmina, M. Chitosan Bio-Based Organic–Inorganic Hybrid Aerogel Microspheres. Chem. A Eur. J 2012, 18(27), 8264–8277. DOI: 10.1002/chem.201104006.
  • Chiriac, A. P.; Ghilan, A.; Neamtu, I.; Nita, L. E.; Rusu, A. G.; Chiriac, V. M. Advancement in the Biomedical Applications of the (Nano)gel Structures Based on Particular Polysaccharides. Macromol Bio. sci 2019, 19(9). DOI: 10.1002/mabi.201900187.
  • Ziatabar, S.; Zepf, J.; Rich, S.; Danielson, B. T.; Bollyky, P. I.; Stern, R. Chitin, Chitinases, and Chitin Lectins: Emerging Roles in Human Pathophysiology. Pathophysiology 2018, 25(4), 253–262. DOI: 10.1016/j.pathophys.2018.02.005.
  • Rinki, K.; Dutta, P. K.; Hunt, A. J.; MacQuarrie, D. J.; Clark, J. H. Chitosan Aerogels Exhibiting High Surface Area for Biomedical Application: Preparation, Characterization, and Antibacterial Study. Int. J. Polym. Mater. Polym. Biomater. 2011, 60(12), 60(12)988–999. DOI: 10.1080/00914037.2011.553849.
  • Takeshita, S.; Zhao, S.; Malfait, W. J. Transparent, Aldehyde-Free Chitosan Aerogel. Carbohydr. Polym. 2021, 2021, 251. DOI: 10.1016/j.carbpol.2020.117089.
  • El Knidri, H.; Belaabed, R.; Addaou, A.; Laajeb, A.; Lahsini, A. Extraction, Chemical Modification and Characterization of Chitin and Chitosan. Int. J. Biol. Macromol. 2018, 120, 1181–1189. DOI: 10.1016/j.ijbiomac.2018.08.139.
  • Keshipour, S.; Mirmasoudi, S. S. Cross-Linked Chitosan Aerogel Modified with Au: Synthesis, Characterization and Catalytic Application. Carbohydr. Polym. 2018, 196, 494–500. DOI: 10.1016/j.carbpol.2018.05.068.
  • Vasile, C.; Nita, L. E. Novel Multi-Stimuli Responsive Sodium Alginate-Grafted-Poly (N- Isopropyl Acrylamide) Copolymers: II. Dilute Solution Properties. Carbohydr. Polym. 2011, 86(1), 77–84. DOI: 10.1016/j.carbpol.2011.04.012.
  • Paques, J. P.; Van Der Linden, E.; Van Rijn, C. J. M.; Sagis, L. M. C. Preparation Methods of Alginate Nanoparticles. Adv. Colloid Interface Sci. 2014, 209, 163–171. DOI: 10.1016/j.cis.2014.03.009.
  • Dekamin, M. G.; Karimi, Z.; Latifidoost, Z.; Ilkhanizadeh, S.; Daemi, H.; Naimi-Jamal, M. R.; Barikani, M. Alginic Acid: A Mild and Renewable Bifunctional Heterogeneous Biopolymeric Organocatalyst for Efficient and Facile Synthesis of Polyhydroquinolines. Int. J. Biol. Macromol. 2018, 108, 1273–1280. DOI: 10.1016/j.ijbiomac.2017.11.050.
  • Rodríguez-Dorado, R.; López-Iglesias, C.; García-González, C. A.; Auriemma, G.; Aquino, R. P.; Del Gaudio, P. Design of Aerogels, Cryogels and Xerogels of Alginate: Effect of Molecular Weight, Gelation Conditions and Drying Method on Particles’ Micromeritics. Molecules 2019, 24(6), 1049. DOI: 10.3390/molecules24061049.
  • Abdellatif, F. H. H.; Abdellatif, M. M. Bio-Based I-Carrageenan Aerogels As Efficient Adsorbents for Heavy Metal Ions and Acid Dye from Aqueous Solution. Cellulose 2020, 27(1), 441–453. DOI: 10.1007/s10570-019-02818-x.
  • Ganesan, K.; Ratke, L. Facile Preparation of Monolithic κ-Carrageenan Aerogels. Soft Matter 2014, 10(18), 3218–3224. DOI: 10.1039/c3sm52862f.
  • Derkach, S. R.; Voron’ko, N. G.; Kuchina, Y. A.; Kolotova, D. S.; Gordeeva, A. M.; Faizullin, D. A.; Gusev, Y. A.; Zuev, Y. F.; Makshakova, O. N. Molecular Structure and Properties of κ-Carrageenan-Gelatin Gels. Carbohydr. Polym. 2018, 197, 66–74. DOI: 10.1016/j.carbpol.2018.05.063.
  • Zamora-Sequeira, R.; Ardao, I.; Starbird, R.; García-González, C. A. Conductive Nanostructured Materials Based on Poly-(3,4-Ethylenedioxythiophene) (PEDOT) and starch/κ-Carrageenan for Biomedical Applications. Carbohydr. Polym. 2018, 189, 304–312. DOI: 10.1016/j.carbpol.2018.02.040.
  • Hong, T.; Ma, Y.; Yuan, Y.; Guo, L.; Xu, D.; Wu, F.; Xu, X. Understanding the Influence of Pullulan on the Quality Changes, Water Mobility, Structural Properties and Thermal Properties of Frozen Cooked Noodles. Food Chem. 2021, 365. DOI: 10.1016/j.foodchem.2021.130512.
  • Zhao, S.; Emery, O.; Wohlhauser, A.; Koebel, M. M.; Adlhart, C.; Malfait, W. J. Merging Flexibility with Superinsulation: Machinable, Nanofibrous Pullulan-Silica Aerogel Composites. Mater. Des. 2018, 160, 294–302. DOI: 10.1016/j.matdes.2018.09.010.
  • Yang, Z.; Shen, C.; Rao, J.; Li, J.; Yang, X.; Zhang, H.; Li, J.; Fawole, O. A.; Wu, D.; Chen, K. Biodegradable Gelatin/Pullulan Aerogel Modified by a Green Strategy: Characterization and Antimicrobial Activity. Food Package Shelf Life 2022, 34, 34. DOI: 10.1016/j.fpsl.2022.100957.
  • Dong, K.; Xu, K.; Wei, N.; Fang, Y.; Qin, Z. Three-Dimensional Porous Sodium Alginate/Gellan Gum Environmentally Friendly Aerogel: Preparation, Characterization, Adsorption, and Kinetics Studies. Chem. Eng. Res. Des. 2022, 179, 227–236. DOI: 10.1016/j.cherd.2022.01.027.
  • Cai, K.; Zheng, M.; Xu, H.; Zhu, Y.; Zhang, L.; Zheng, B. Gellan Gum/Graphene Oxide Aerogels for Methylene Blue Purification. Carbohydr. Polym. 2021, 2021, 257. DOI: 10.1016/j.carbpol.2021.117624.
  • Aragón-Gutierrez, A.; Arrieta, M. P.; López-González, M.; Fernández-García, M.; López, D. Hybrid Biocomposites Based on Poly (Lactic Acid) and Silica Aerogel for Food Packaging Applications. Materials 2020, 13(21), 1–18. DOI: 10.3390/ma13214910.
  • de Oliveira, J. P.; Bruni, G. P.; Fabra, M. J.; da Rosa Zavareze, E.; López-Rubio, A.; Martínez-Sanz, M. Development of Food Packaging Bioactive Aerogels Through the Valorization of Gelidium Sesquipedale Seaweed. Food Hydrocoll 2019, 89, 337–350. DOI: 10.1016/j.foodhyd.2018.10.047.
  • Nešić, A.; Gordić, M.; Davidović, S.; Radovanović, Ž.; Nedeljković, J.; Smirnova, I.; Gurikov, P. Pectin-Based Nanocomposite Aerogels for Potential Insulated Food Packaging Application. Carbohydr. Polym. 2018, 195, 128–135. DOI: 10.1016/j.carbpol.2018.04.076.
  • Wu, W.; Wu, Y.; Lin, Y.; Shao, P. Facile Fabrication of Multifunctional Citrus Pectin Aerogel Fortified with Cellulose Nanofiber As Controlled Packaging of Edible Fungi. Food Chem. 2022, 374, 374. DOI: 10.1016/j.foodchem.2021.131763.
  • Cao, M.; Liu, B. W.; Zhang, L.; Peng, Z.-C.; Zhang, Y.-Y.; Wang, H.; Zhao, H.-B.; Wang, Y.-Z. Fully Biomass-Based Aerogels with Ultrahigh Mechanical Modulus, Enhanced Flame Retardancy, and Great Thermal Insulation Applications. Compos. B Eng. 2021, 225. DOI: 10.1016/j.compositesb.2021.109309.
  • Illera, D.; Mesa, J.; Gomez, H.; Maury, H. Cellulose Aerogels for Thermal Insulation in Buildings: Trends and Challenges. Coatings 2018, 8(10), 345. DOI: 10.3390/coatings8100345.
  • Wang, D.; Peng, H.; Yu, B.; Zhou, K.; Pan, H.; Zhang, L.; Li, M.; Liu, M.; Tian, A.; Fu, S. Biomimetic Structural Cellulose Nanofiber Aerogels with Exceptional Mechanical, Flame-Retardant and Thermal-Insulating Properties. Chem. Eng. J. 2020, 389, 389. DOI: 10.1016/j.cej.2020.124449.
  • Zhu, J.; Xiong, R.; Zhao, F. L.; Peng, T.; Hu, J.; Xie, L.; Xie, H.; Wang, K.; Jiang, C. Lightweight, High-Strength, and Anisotropic Structure Composite Aerogel Based on Hydroxyapatite Nanocrystal and Chitosan with Thermal Insulation and Flame Retardant Properties. ACS Sustainable Chem. Eng. 2020, 8(1), 71–83. DOI: 10.1021/acssuschemeng.9b03953.
  • Wang, L.; Sánchez-Soto, M.; Abt, T. Properties of Bio-Based Gum Arabic/Clay Aerogels. Ind. Crops Prod. 2016, 91, 15–21. DOI: 10.1016/j.indcrop.2016.05.001.
  • Chen, H. B.; Li, X. L.; Chen, M. J.; He, Y. R.; Zhao, H. B. Self-Cross-Linked Melamine-Formaldehyde-Pectin Aerogel with Excellent Water Resistance and Flame Retardancy. Carbohydr. Polym. 2019, 206, 609–615. DOI: 10.1016/j.carbpol.2018.11.041.
  • Chen, H.; Chen, Z.; Mao, M.; Wu, Y.-Y.; Yang, F.; Gong, L.-X.; Zhao, L.; Cao, C.-F.; Song, P.; Gao, J.-F., et al. Self‐Adhesive Polydimethylsiloxane Foam Materials Decorated with M Xene/Cellulose Nanofiber Interconnected Network for Versatile Functionalities. Adv. Funct. Mater. 2023, 33(48), 2304927. DOI: 10.1002/adfm.202304927.
  • Wu, Z. H.; Feng, X. L.; Qu, Y. X.; Gong, L.-X.; Cao, K.; Zhang, G.-D.; Shi, Y.; Gao, J.-F.; Song, P.; Tang, L.-C. Silane Modified MXene/Polybenzazole Nanocomposite Aerogels with Exceptional Surface Hydrophobicity, Flame Retardance and Thermal Insulation. Compos. Commun. 2023, 37, 37. DOI: 10.1016/j.coco.2022.101402.
  • Bing, X.; Wei, Y.; Wang, M.; Xu, S.; Long, D.; Wang, J.; Qiao, W.; Ling, L. Template-Free Synthesis of Nitrogen-Doped Hierarchical Porous Carbons for CO2 Adsorption and Supercapacitor Electrodes. J. Colloid Interface Sci. 2017, 488, 207–217. DOI: 10.1016/j.jcis.2016.10.076.
  • Han, J.; Ge, J.; Ren, Z.; Tu, J.; Sun, Z.; Chen, S.; Xie, G. Facile Green Synthesis of 3D Porous Glucose-Based Carbon Aerogels for High-Performance Supercapacitors. Electrochim. Acta 2017, 258, 951–958. DOI: 10.1016/j.electacta.2017.11.146.
  • Hosseini, H.; Kokabi, M.; Mousavi, S. M. BC/R GO Conductive Nanocomposite Aerogel As a Strain Sensor. Polymer (Guildf.) 2018, 137, 82–96. DOI: 10.1016/j.polymer.2017.12.068.
  • Liu, Y.; Zhan, B.; Zhang, K.; Kaya, C.; Stegmaier, T.; Han, Z.; Ren, L. On-Demand Oil/Water Separation of 3D Fe Foam by Controllable Wettability. Chem. Eng. J. 2018, 331, 278–289. DOI: 10.1016/j.cej.2017.08.081.
  • Yan, L.; Zhang, G.; Zhang, L.; Zhang, W.; Gu, J.; Huang, Y.; Zhang, J.; Chen, T. Robust Construction of Underwater Superoleophobic CNTs/Nanoparticles Multifunctional Hybrid Membranes via Interception Effect for Oily Wastewater Purification. J. Memb. Sci. 2019, 569, 32–40. DOI: 10.1016/j.memsci.2018.09.060.
  • Zhang, H.; Lyu, S.; Zhou, X.; Gu, H.; Ma, C.; Wang, C.; Ding, T.; Shao, Q.; Liu, H.; Guo, Z. Super Light 3D Hierarchical Nanocellulose Aerogel Foam with Superior Oil Adsorption. J. Colloid Interface Sci. 2019, 536, 245–251. DOI: 10.1016/j.jcis.2018.10.038.
  • Qu, Y. X.; Guo, K. Y.; Pan, H. T.; Wu, Z.-H.; Guo, B.-F.; Feng, X.-L.; Kong, T.-T.; Zhang, C.; Zhang, G.-D.; Zhao, L., et al. Facile Synthesis of Mechanically Flexible and Super-Hydrophobic Silicone Aerogels with Tunable Pore Structure for Efficient Oil-Water Separation. Mater. Today Chem. 2022, 26. DOI: 10.1016/j.mtchem.2022.101068.
  • Shan, S.; Tang, H.; Zhao, Y.; Wang, W.; Cui, F. Highly Porous Zirconium-Crosslinked Graphene Oxide/Alginate Aerogel Beads for Enhanced Phosphate Removal. Chem. Eng. J. 2019, 359, 779–789. DOI: 10.1016/j.cej.2018.10.033.
  • Li, J.; Zuo, K.; Wu, W.; Xu, Z.; Yi, Y.; Jing, Y.; Dai, H.; Fang, G. Shape Memory Aerogels from Nanocellulose and Polyethyleneimine As a Novel Adsorbent for Removal of Cu (II) and Pb (II). Carbohydr. Polym. 2018, 196, 376–384. DOI: 10.1016/j.carbpol.2018.05.015.
  • Lin, L.; Li, Z.; Song, X.; Jiao, Y.; Zhou, C. Preparation of Chitosan/Lanthanum Hydroxide Composite Aerogel Beads for Higher Phosphorus Adsorption. Mater. Lett. 2018, 218, 201–204. DOI: 10.1016/j.matlet.2018.02.014.
  • Zheng, L.; Zhang, S.; Ying, Z.; Liu, J.; Zhou, Y.; Chen, F. Engineering of Aerogel-Based Biomaterials for Biomedical Applications. Int. J. Nanomed. 2020, 15, 2363–2378. DOI: 10.2147/IJN.S238005.
  • Zhang, K.; Jiao, X.; Zhou, L.; Wang, J.; Wang, C.; Qin, Y.; Wen, Y. Nanofibrous Composite Aerogel with Multi-Bioactive and Fluid Gating Characteristics for Promoting Diabetic Wound Healing. Biomaterials 2021, 276, 276. DOI: 10.1016/j.biomaterials.2021.121040.
  • López-Iglesias, C.; Barros, J.; Ardao, I.; Monteiro, F. J.; Alvarez-Lorenzo, C.; Gómez-Amoza, J. L.; García-González, C. A. Vancomycin-Loaded Chitosan Aerogel Particles for Chronic Wound Applications. Carbohydr. Polym. 2019, 204, 223–231. DOI: 10.1016/j.carbpol.2018.10.012.
  • Lovskaya, D.; Menshutina, N.; Mochalova, M.; Nosov, A.; Grebenyuk, A. Chitosan-Based Aerogel Particles As Highly Effective Hemostatic Agents. Production Process and in vivo Evaluations. Polymers 2020, 12(9), 2055. DOI: 10.3390/POLYM12092055.
  • Athamneh, T.; Amin, A.; Benke, E.; Ambrus, R.; Leopold, C. S.; Gurikov, P.; Smirnova, I. Alginate and Hybrid Alginate-Hyaluronic Acid Aerogel Microspheres As Potential Carrier for Pulmonary Drug Delivery. J. Supercrit. Fluids 2019, 150, 49–55. DOI: 10.1016/j.supflu.2019.04.013.
  • Tkalec, G.; Knez, Z.; Novak, Z. Encapsulation of Pharmaceuticals into Pectin Aerogels for Controlled Drug Release. Adv. Techn 2015, 4(2), 49–52. DOI: 10.5937/savteh1502049t.
  • García-González, C. A.; Concheiro, A.; Alvarez-Lorenzo, C. Processing of Materials for Regenerative Medicine Using Supercritical Fluid Technology. Bioconjug. Chem. 2015, 26(7), 1159–1171. DOI: 10.1021/bc5005922.
  • Ubeyitogullari, A.; Brahma, S.; Rose, D. J.; Ciftci, O. N. In vitro Digestibility of Nanoporous Wheat Starch Aerogels. J. Agric. Food Chem. 2018, 66(36), 9490–9497. DOI: 10.1021/acs.jafc.8b03231.
  • Valo, H.; Arola, S.; Laaksonen, P.; Torkkeli, M.; Peltonen, L.; Linder, M. B.; Serimaa, R.; Kuga, S.; Hirvonen, J.; Laaksonen, T. Drug Release from Nanoparticles Embedded in Four Different Nanofibrillar Cellulose Aerogels. Eur. J. Pharm. Sci. 2013, 50(1), 69–77. DOI: 10.1016/j.ejps.2013.02.023.
  • Zhao, J.; Lu, C.; He, X.; Zhang, X.; Zhang, W.; Zhang, X. Polyethylenimine-Grafted Cellulose Nanofibril Aerogels As Versatile Vehicles for Drug Delivery. ACS Appl. Mater. Interfaces 2015, 7(4), 2607–2615. DOI: 10.1021/am507601m.
  • Paris, J.; Román, J.; Manzano, M.; CabañAs, M. V.; Vallet-Regí, M. Tuning Dual-Drug Release from Composite Scaffolds for Bone Regeneration. Int. J. Pharm. 2015, 486(1–2), 30–37. DOI: 10.1016/j.ijpharm.2015.03.048.
  • Shao, L.; Cao, Y.; Li, Z.; Hu, W.; Li, S.; Lu, L. Dual Responsive Aerogel Made from Thermo/pH Sensitive Graft Copolymer Alginate-G-P(NIPAM-Co-NHMAM) for Drug-Controlled Release. Int. J. Biol. Macromol. 2018, 114, 1338–1344. DOI: 10.1016/j.ijbiomac.2018.03.166.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.