0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Progressive Green Nanocomposites for Microbial Fuel Cells—State-of-the-Art and Technical Advancements

Received 27 Mar 2024, Accepted 07 Jun 2024, Published online: 16 Jun 2024

References

  • Manoo, M. U.; Shaikh, F.; Kumar, L.; Arıcı, M. Comparative Techno-Economic Analysis of Various Stand-Alone and Grid Connected (Solar/Wind/Fuel Cell) Renewable Energy Systems. Int. J. Hydrogen Energy. 2024, 52, 397–414. DOI: 10.1016/j.ijhydene.2023.05.258.
  • Murmu, R.; Roy, D.; Sutar, H.; Senapati, P.; Patra, S. C. Development of the Highly Performed Chitosan Based Thin Film Towards the Sustainability of Direct Methanol Fuel Cell. Polym. Plast. Technol. Eng. 2023, 62(6), 732–755. DOI: 10.1080/25740881.2022.2133616.
  • Salahshouri, Z.; Mehdipour-Ataei, S.; Babanzadeh, S.; Mohammadi, M. Preparation and Characterization of New Types of Sulfonated Poly (Ether Sulfide Sulfone) for Application in Fuel Cell. Polym. Plast. Technol. Eng. 2023, 62(1), 86–98. DOI: 10.1080/25740881.2022.2091456.
  • Zakaria, Z.; Kamarudin, S. K.; Wahid, K. A. A. Polymer Electrolyte Membrane Modification in Direct Ethanol Fuel Cells: An Update. J. Appl. Polym. Sci. 2023, 140(4), e53383. DOI: 10.1002/app.53383.
  • Si, F.; Liu, S.; Liang, Y.; Fu, X.-Z.; Zhang, J.; Luo, J.-L. Fuel Cell Reactors for the Clean Cogeneration of Electrical Energy and Value-Added Chemicals. Electrochem Energy Rev. 2022, 5(2), 25. DOI: 10.1007/s41918-022-00168-0.
  • Mukherjee, P.; Saravanan, P. Pyrolytically Synthesized Cobalt Based Carbon Nitrogen Framework As an Efficient Cathode Catalyst in MFC Application. J. Environ. Chem. Eng. 2022, 10(6), 108940. DOI: 10.1016/j.jece.2022.108940.
  • Burhan, H.; Arikan, K.; Alma, M. H.; Nas, M. S.; Karimi-Maleh, H.; Şen, F.; Karimi, F.; Vasseghian, Y. Highly Efficient Carbon Hybrid Supported Catalysts Using Nano-Architecture as Anode Catalysts for Direct Methanol Fuel Cells. Int. J. Hydrogen Energy. 2023, 48(17), 6657–6665. DOI: 10.1016/j.ijhydene.2021.12.141.
  • Choi, W.; Park, S.; Jung, W.; Won, D. H.; Na, J.; Hwang, Y. J. Origin of Hydrogen Incorporated into Ethylene During Electrochemical CO2 Reduction in Membrane Electrode Assembly. ACS Energy Lett. 2022, 7(3), 939–945. DOI: 10.1021/acsenergylett.1c02658.
  • Alashkar, A.; Al-Othman, A.; Tawalbeh, M.; Qasim, M. A critical review on the use of ionic liquids in proton exchange membrane fuel cells. Membranes. 2022, 12(2), 178. DOI: 10.3390/membranes12020178.
  • Yuan, Z.; Liang, L.; Dai, Q.; Li, T.; Song, Q.; Zhang, H.; Hou, G.; Li, X. Low-Cost Hydrocarbon Membrane Enables Commercial-Scale Flow Batteries for Long-Duration Energy Storage. Joule. 2022, 6(4), 884–905. DOI: 10.1016/j.joule.2022.02.016.
  • Daud, S. N. S. S.; Norddin, M. N. A. M.; Jaafar, J.; Sudirman, R. Fabrication, Properties, and Performance of Polymer Nanocomposite Ion Exchange Membranes for Fuel Cell Applications: A Review. J. Appl. Membr. Sci. Technol. 2022, 26(1), 11–49. DOI: 10.11113/amst.v26n1.230.
  • Bakhtiar, M.; Ali, F.; Ali, N.; Shah, S. S.; Bilal, M. ‘Graphene-Based 2D Nanomaterials for Fuel cells’: ‘Energy Applications of 2D Nanomaterials’; CRC Press: Boca Raton, Florida, USA, 2022; pp. 21–38.
  • Saran, C.; Purchase, D.; Saratale, G. D.; Saratale, R. G.; Ferreira, L. F. R.; Bilal, M.; Iqbal, H. M.; Hussain, C. M.; Mulla, S. I.; Bharagava, R. N. Microbial Fuel Cell: A Green Eco-Friendly Agent for Tannery Wastewater Treatment and Simultaneous Bioelectricity/Power Generation. Chemosphere 2023, 312, 137072. DOI: 10.1016/j.chemosphere.2022.137072.
  • Ahirwar, A.; Das, S.; Das, S.; Yang, Y.-H.; Bhatia, S. K.; Vinayak, V.; Ghangrekar, M. M. Photosynthetic Microbial Fuel Cell for Bioenergy and Valuable Production: A Review of Circular Bio-Economy Approach. Algal Res. 2023, 70, 102973. DOI: 10.1016/j.algal.2023.102973.
  • Sayed, E. T.; Rezk, H.; Abdelkareem, M. A.; Olabi, A. Artificial Neural Network Based Modelling and Optimization of Microalgae Microbial Fuel Cell. Int. J. Hydrogen Energy 2023, 52, 1015–1025. DOI: 10.1016/j.ijhydene.2022.12.081.
  • Jamil, A.; Rafiq, S.; Iqbal, T.; Khan, H. A. A.; Khan, H. M.; Azeem, B.; Mustafa, M.; Hanbazazah, A. S. Current Status and Future Perspectives of Proton Exchange Membranes for Hydrogen Fuel Cells. Chemosphere 2022, 303, 135204. DOI: 10.1016/j.chemosphere.2022.135204.
  • Rahman, M. A.; Yagyu, J.; Islam, M. S.; Fukuda, M.; Wakamatsu, S.; Tagawa, R.; Feng, Z.; Sekine, Y.; Ohyama, J.; Hayami, S. Three-Dimensional Sulfonated Graphene Oxide Proton Exchange Membranes for Fuel Cells. Acs Appl. Nano Mater. 2023, 6(3), 1707–1713. DOI: 10.1021/acsanm.2c04631.
  • Atkar, A.; Sridhar, S.; Deshmukh, S.; Dinker, A.; Kishor, K.; Bajad, G. Synthesis and Characterization of Sulfonated Chitosan (SCS)/Sulfonated Polyvinyl Alcohol (SPVA) Blend Membrane for Microbial Fuel Cell Application. Mater. Sci. Eng. 2024, 299, 116942. DOI: 10.1016/j.mseb.2023.116942.
  • Rudra, R.; Kumar, V.; Pramanik, N.; Kundu, P. P. Graphite Oxide Incorporated Crosslinked Polyvinyl Alcohol and Sulfonated Styrene Nanocomposite Membrane As Separating Barrier in Single Chambered Microbial Fuel Cell. J. Power Sources. 2017, 341, 285–293. DOI: 10.1016/j.jpowsour.2016.12.028.
  • Surti, P. V.; Kailasa, S. K.; Mungray, A. K. Development of a Novel Composite Polymer Electrolyte Membrane for Application as a Separator in a Dual Chamber Microbial Fuel Cell. Ind. Eng. Chem. Res. 2024, 63(12), 5182–5194. DOI: 10.1021/acs.iecr.3c04280.
  • Fan, X.; Ou, Y.; Yang, H.; Yang, H.; Qu, T.; Zhang, Q.; Cheng, F.; Hu, F.; Liu, H.; Xu, Z. Composite Proton Exchange Membrane for Fuel Cells Based on Chitosan Modified by Acid-Base Amphoteric Nanoparticles. Int. J. Biol. Macromol. 2024, 254, 127796. DOI: 10.1016/j.ijbiomac.2023.127796.
  • Sallam, E.; Khairy, H.; Elnouby, M.; Fetouh, H. Sustainable Electricity Production from Seawater Using Spirulina Platensis Microbial Fuel Cell Catalyzed by Silver Nanoparticles-Activated Carbon Composite Prepared by a New Modified Photolysis Method. Biomass Bioenergy. 2021, 148, 106038. DOI: 10.1016/j.biombioe.2021.106038.
  • Liew, K. B.; Leong, J. X.; Daud, W. R. W.; Ahmad, A.; Hwang, J. J.; Wu, W. Incorporation of Silver Graphene Oxide and Graphene Oxide Nanoparticles in Sulfonated Polyether Ether Ketone Membrane for Power Generation in Microbial Fuel Cell. J. Power Sources. 2020, 449, 227490. DOI: 10.1016/j.jpowsour.2019.227490.
  • Meylani, V.; Surahman, E.; Fudholi, A.; Almalki, W. H.; Ilyas, N.; Sayyed, R. Biodiversity in Microbial Fuel Cells: Review of a Promising Technology for Wastewater Treatment. J. Environ. Chem. Eng. 2023, 11(2), 109503. DOI: 10.1016/j.jece.2023.109503.
  • Bhowmik, D.; Chetri, S.; Enerijiofi, K. E.; Naha, A.; Kanungo, T. D.; Shah, M. P.; Nath, S. Multitudinous Approaches, Challenges and Opportunities of Bioelectrochemical Systems in Conversion of Waste to Energy from Wastewater Treatment Plants. Cleaner And Circ Bioecon. 2023, 4, 100040. DOI: 10.1016/j.clcb.2023.100040.
  • Singuru, R.; Praveen Kumar, G.; Kumawat, A. S. ‘Microbial Fuel Cell Usage in Treatment, Resource Recovery and Energy Production from Bio-Refinery Wastewater’: ‘Biorefinery for Water and Wastewater Treatment’; Springer: Switzerland, 2023; pp. 425–443.
  • Liu, Q.; Lan, F.; Chen, J.; Zeng, C.; Wang, J. A Review of Proton Exchange Membrane Fuel Cell Water Management: Membrane Electrode Assembly. J. Power Sources. 2022, 517, 230723. DOI: 10.1016/j.jpowsour.2021.230723.
  • Park, S.; Popov, B. N. Effect of a GDL Based on Carbon Paper or Carbon Cloth on PEM Fuel Cell Performance. Fuel. 2011, 90(1), 436–440. DOI: 10.1016/j.fuel.2010.09.003.
  • Kumar, R.; Singh, L.; Zularisam, A. ‘Microbial Fuel Cells: Types and applications’, Waste Biomass Management–A Holistic Approach; Springer, Cham: Switzerland, 2017; pp 367–384.
  • Apollon, W. An Overview of Microbial Fuel Cell Technology for Sustainable Electricity Production. Membranes. 2023, 13(11), 884. DOI: 10.3390/membranes13110884.
  • Raghavulu, S. V.; Mohan, S. V.; Reddy, M. V.; Mohanakrishna, G.; Sarma, P. Behavior of Single Chambered Mediatorless Microbial Fuel Cell (MFC) at Acidophilic, Neutral and Alkaline Microenvironments During Chemical Wastewater Treatment. Int. J. Hydrogen Energy. 2009, 34(17), 7547–7554. DOI: 10.1016/j.ijhydene.2009.05.071.
  • Raychaudhuri, A.; Behera, M. Enhancement of Bioelectricity Generation by Integrating Acidogenic Compartment into a Dual-Chambered Microbial Fuel Cell During Rice Mill Wastewater Treatment. Process Biochem. 2021, 105, 19–26. DOI: 10.1016/j.procbio.2021.03.003.
  • Xia, X.; Li, Y.; Xiao, X.; Zhang, Z.; Mao, C.; Li, T.; Wan, M. Chemotactic Micro/Nanomotors for Biomedical Applications. Small 2023, 20(6), 2306191. DOI: 10.1002/smll.202306191.
  • Abazarian, E.; Gheshlaghi, R.; Mahdavi, M. A. Interactions Between Sediment Microbial Fuel Cells and Voltage Loss in Series Connection in Open Channels. Fuel. 2023, 332, 126028. DOI: 10.1016/j.fuel.2022.126028.
  • Rezaei, F.; Yousefi, V.; Mohebbi-Kalhori, D.; Samimi, A. Performance Evaluation of Novel Ml-Scale Microbial Fuel Cells Using Different Polymeric Hollow-Fiber Membranes. J. Water Process Eng. 2023, 55, 104064. DOI: 10.1016/j.jwpe.2023.104064.
  • Peera, S. G.; Maiyalagan, T.; Liu, C.; Ashmath, S.; Lee, T. G.; Jiang, Z.; Mao, S. A Review on Carbon and Non-Precious Metal Based Cathode Catalysts in Microbial Fuel Cells. Int. J. Hydrogen Energy. 2021, 46(4), 3056–3089. DOI: 10.1016/j.ijhydene.2020.07.252.
  • Shabani, M.; Roshanravan, B.; Younesi, H.; Pontié, M.; Pyo, S.-H.; Rahimnejad, M. Bioremediation by MFC technology’: ‘Biological Fuel Cells; Elsevier: Netherlands, 2023; pp 373–418.
  • Tan, S.; Huang, X.; Wu, B. Some Fascinating Phenomena in Electrospinning Processes and Applications of Electrospun Nanofibers. Polym. Int. 2007, 56(11), 1330–1339. DOI: 10.1002/pi.2354.
  • Ansari, S. A.; Khan, M. M.; Ansari, M. O.; Cho, M. H. Improved Electrode Performance in Microbial Fuel Cells and the Enhanced Visible Light-Induced Photoelectrochemical Behaviour of PtOx@ M-Tio2 Nanocomposites. Ceram. Int. 2015, 41(7), 9131–9139. DOI: 10.1016/j.ceramint.2015.03.321.
  • Kumar, S. S.; Kumar, V.; Malyan, S. K.; Sharma, J.; Mathimani, T.; Maskarenj, M. S.; Ghosh, P. C.; Pugazhendhi, A. Microbial Fuel Cells (MFCs) for Bioelectrochemical Treatment of Different Wastewater Streams. Fuel. 2019, 254, 115526. DOI: 10.1016/j.fuel.2019.05.109.
  • Sun, L.; Mo, Y.; Zhang, L. A Mini Review on Bio-Electrochemical Systems for the Treatment of Azo Dye Wastewater: State-Of-The-Art and Future Prospects. Chemosphere. 2022, 294, 133801. DOI: 10.1016/j.chemosphere.2022.133801.
  • Tiwari, S.; Koreti, D.; Kosre, A.; Mahish, P. K.; Jadhav, S.; Chandrawanshi, N. K. Fungal Microbial Fuel Cells, an Opportunity for Energy Sources: Current Perspective and Future Challenges. In Energy: Crises, Challenges and Solutions, Singh, P., Singh, S., Kumar, G., Baweja, P., Eds. Willey: New York, United States, 2021; pp 250–273.
  • Nair, L.; Agrawal, K.; Verma, P. The Role of Microbes and Enzymes for Bioelectricity Generation: ABelief Toward Global sustainability’: ‘Biotechnology of Microbial Enzymes; Elsevier: Netherlands, 2023; pp 709–751.
  • Raychaudhuri, A.; Behera, M. Microbial Fuel Cell. Micro Electrochem Technol: Fundamen Appl. 2023, 1, 305–337.
  • Naha, A.; Debroy, R.; Sharma, D.; Shah, M. P.; Nath, S. Microbial Fuel Cell: A State-Of-The-Art and Revolutionizing Technology for Efficient Energy Recovery. Cleaner And Circ Bioecon. 2023, 5, 100050. DOI: 10.1016/j.clcb.2023.100050.
  • Sun, L.; Qin, Y.; Yin, Y. ZIF Derived PtCo Alloys-Based Nitrogen-Doped Graphene As Cathode Catalyst for Proton Exchange Membrane Fuel Cell. J. Power Sources. 2023, 562, 232758. DOI: 10.1016/j.jpowsour.2023.232758.
  • Nimir, W.; Al-Othman, A.; Tawalbeh, M.; Al Makky, A.; Ali, A.; Karimi-Maleh, H.; Karimi, F.; Karaman, C. Approaches Towards the Development of Heteropolyacid-Based High Temperature Membranes for PEM Fuel Cells. Int. J. Hydrogen Energy. 2023, 48(17), 6638–6656. DOI: 10.1016/j.ijhydene.2021.11.174.
  • Debe, M. K. Electrocatalyst Approaches and Challenges for Automotive Fuel Cells. Nature. 2012, 486(7401), 43–51. DOI: 10.1038/nature11115.
  • Soleymani, A. P.; Bonville, L.; Wang, C.; Schaefer, S.; Waldecker, J.; Jankovic, J. Quantifying Key Parameters to Provide Better Understating of Microstructural Changes in Polymer Electrolyte Membrane Fuel Cells During Degradation: A Startup/Shutdown Case Study. J. Power Sources. 2023, 563, 232807. DOI: 10.1016/j.jpowsour.2023.232807.
  • Wang, X.; Richey, F. W.; Wujcik, K. H.; Elabd, Y. A. Ultra-Low Platinum Loadings in Polymer Electrolyte Membrane Fuel Cell Electrodes Fabricated via Simultaneous Electrospinning/Electrospraying Method. J. Power Sources. 2014, 264, 42–48. DOI: 10.1016/j.jpowsour.2014.04.052.
  • van den Berg, T.; Ulbricht, M. Polymer Nanocomposite Ultrafiltration Membranes: The Influence of Polymeric Additive, Dispersion Quality and Particle Modification on the Integration of Zinc Oxide Nanoparticles into Polyvinylidene Difluoride Membranes. Membranes. 2020, 10(9), 197. DOI: 10.3390/membranes10090197.
  • Zhang, W.; Pintauro, P. N. High‐Performance Nanofiber Fuel Cell Electrodes. ChemSuschem. 2011, 4(12), 1753–1757. DOI: 10.1002/cssc.201100245.
  • Shabani, I.; Hasani-Sadrabadi, M. M.; Haddadi-Asl, V.; Soleimani, M. Nanofiber-Based Polyelectrolytes As Novel Membranes for Fuel Cell Applications. J. Membr. Sci. 2011, 368(1–2), 233–240. DOI: 10.1016/j.memsci.2010.11.048.
  • Chen, H.; Snyder, J. D.; Elabd, Y. A. Electrospinning and Solution Properties of Nafion and Poly (Acrylic Acid). Macromolecules. 2008, 41(1), 128–135. DOI: 10.1021/ma070893g.
  • Cho, Y.-H.; Jeon, T.-Y.; Yoo, S. J.; Lee, K.-S.; Ahn, M.; Kim, O.-H.; Cho, Y.-H.; Lim, J. W.; Jung, N.; Yoon, W.-S. Stability Characteristics of Pt1Ni1/C as Cathode Catalysts in Membrane Electrode Assembly of Polymer Electrolyte Membrane Fuel Cell. Electrochim. Acta. 2012, 59, 264–269. DOI: 10.1016/j.electacta.2011.10.060.
  • Kim, Y. J.; Kang, H. J.; Moerk, C. T.; Lee, B.-T.; Choi, J. S.; Yim, J.-H. Flexible, Biocompatible, and Electroconductive Polyurethane Foam Composites Coated with Graphene Oxide for Ammonia Detection. Sens. Actuators B Chem. 2021, 344, 130269. DOI: 10.1016/j.snb.2021.130269.
  • Bhat, V. S.; Kanagavalli, P.; Sriram, G.; John, N. S.; Veerapandian, M.; Kurkuri, M.; Hegde, G. Low Cost, Catalyst Free, High Performance Supercapacitors Based on Porous Nano Carbon Derived from Agriculture Waste. J. Energy Storage 2020, 32, 101829. DOI: 10.1016/j.est.2020.101829.
  • Dadkhah, M.; Tulliani, J.-M. Green Synthesis of Metal Oxides Semiconductors for Gas Sensing Applications. Sensors. 2022, 22(13), 4669. DOI: 10.3390/s22134669.
  • Yaqoob, A. A.; Mohamad Ibrahim, M. N.; Umar, K.; Bhawani, S. A.; Khan, A.; Asiri, A. M.; Khan, M. R.; Azam, M.; AlAmmari, A. M. Cellulose Derived Graphene/Polyaniline Nanocomposite Anode for Energy Generation and Bioremediation of Toxic Metals via Benthic Microbial Fuel Cells. Polymers. 2020, 13(1), 135. DOI: 10.3390/polym13010135.
  • Navya, P.; Gayathri, V.; Samanta, D.; Sampath, S. Bacterial Cellulose: A Promising Biopolymer with Interesting Properties and Applications. Int. J. Biol. Macromol. 2022, 220, 435–461. DOI: 10.1016/j.ijbiomac.2022.08.056.
  • Chen, C.; Ding, W.; Zhang, H.; Zhang, L.; Huang, Y.; Fan, M.; Yang, J.; Sun, D. Bacterial Cellulose-Based Biomaterials: From Fabrication to Application. Carbohydr. Polym. 2022, 278, 118995. DOI: 10.1016/j.carbpol.2021.118995.
  • Han, D.; Wu, S.; Zhang, S.; Deng, Y.; Cui, C.; Zhang, L.; Long, Y.; Li, H.; Tao, Y.; Weng, Z. A Corrosion‐Resistant and Dendrite‐Free Zinc Metal Anode in Aqueous Systems. Small. 2020, 16(29), 2001736. DOI: 10.1002/smll.202001736.
  • Noor, T.; Yaqoob, L.; Iqbal, N. Recent Advances in Electrocatalysis of Oxygen Evolution Reaction Using Noble‐Metal, Transition‐Metal, and Carbon‐Based Materials. ChemElectrochem. 2021, 8(3), 447–483. DOI: 10.1002/celc.202001441.
  • Trindade, E. C.; Antônio, R. V.; Brandes, R.; de Souza, L.; Neto, G.; Vargas, V. M.; Carminatti, C. A.; de Oliveira Souza Recouvreux, D. Carbon Fiber‐Embedded Bacterial Cellulose/Polyaniline Nanocomposite with Tailored for Microbial Fuel Cells Electrode. J. Appl. Polym. Sci. 2020, 137(35), 49036. DOI: 10.1002/app.49036.
  • Chorbadzhiyska, E.; Bardarov, I.; Hubenova, Y.; Mitov, M. Graphite–metal oxide composites as potential anodic catalysts for microbial fuel cells. Catalysts. 2020, 10(7), 796. DOI: 10.3390/catal10070796.
  • Yaqoob, A. A.; Ibrahim, M. N. M.; Yaakop, A. S. Application of Oil Palm Lignocellulosic Derived Material as an Efficient Anode to Boost the Toxic Metal Remediation Trend and Energy Generation Through Microbial Fuel Cells. J. Cleaner Prod. 2021, 314, 128062. DOI: 10.1016/j.jclepro.2021.128062.
  • Mashkour, M.; Rahimnejad, M.; Pourali, S.; Ezoji, H.; ElMekawy, A.; Pant, D. Catalytic Performance of Nano-Hybrid Graphene and Titanium Dioxide Modified Cathodes Fabricated with Facile and Green Technique in Microbial Fuel Cell. Prog. Nat. Sci. 2017, 27(6), 647–651. DOI: 10.1016/j.pnsc.2017.11.003.
  • Grattieri, M.; Shivel, N. D.; Sifat, I.; Bestetti, M.; Minteer, S. D. Sustainable Hypersaline Microbial Fuel Cells: Inexpensive Recyclable Polymer Supports for Carbon Nanotube Conductive Paint Anodes. ChemSuschem. 2017, 10(9), 2053–2058. DOI: 10.1002/cssc.201700099.
  • Gouda, M.; Elnouby, M.; Aziz, A. N.; Youssef, M. E.; Santos, D.; Elessawy, N.A. Green and Low-Cost Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells: Effect of Double-Layer Electrodes and Gas Diffusion Layer. Front. Mater. 2020, 6, 337. DOI: 10.3389/fmats.2019.00337.
  • Mishra, P.; Jain, R. Electrochemical Deposition of MWCNT-Mno2/PPy Nano-Composite Application for Microbial Fuel Cells. Int. J. Hydrogen Energy. 2016, 41(47), 22394–22405. DOI: 10.1016/j.ijhydene.2016.09.020.
  • Chen, W.; Liu, Z.; Su, G.; Fu, Y.; Zai, X.; Zhou, C.; Wang, J. Composite‐Modified Anode by MnO2/Polypyrrole in Marine Benthic Microbial Fuel Cells and Its Electrochemical Performance. Int. J. Energy Res. 2017, 41(6), 845–853. DOI: 10.1002/er.3674.
  • Zhang, C.; Liang, P.; Yang, X.; Jiang, Y.; Bian, Y.; Chen, C.; Zhang, X.; Huang, X. Binder-Free Graphene and Manganese Oxide Coated Carbon Felt Anode for High-Performance Microbial Fuel Cell. Biosens. Bioelectron. 2016, 81, 32–38. DOI: 10.1016/j.bios.2016.02.051.
  • Zhao, N.; Ma, Z.; Song, H.; Xie, Y.; Zhang, M. Enhancement of Bioelectricity Generation by Synergistic Modification of Vertical Carbon Nanotubes/Polypyrrole for the Carbon Fibers Anode in Microbial Fuel Cell. Electrochim. Acta. 2019, 296, 69–74. DOI: 10.1016/j.electacta.2018.11.039.
  • Zhong, D.; Liu, Y.; Liao, X.; Zhong, N.; Xu, Y. Facile Preparation of Binder-Free NiO/mno2-Carbon Felt Anode to Enhance Electricity Generation and Dye Wastewater Degradation Performances of Microbial Fuel Cell. Int. J. Hydrogen Energy. 2018, 43(51), 23014–23026. DOI: 10.1016/j.ijhydene.2018.10.144.
  • Zhao, X.; Tian, T.; Guo, M.; Liu, X.; Liu, X. Cauliflower‐Like Polypyrrole@ MnO2 Modified Carbon Cloth As a Capacitive Anode for High‐Performance Microbial Fuel Cells. J. Chem. Technol. Biotechnol. 2020, 95(1), 163–172. DOI: 10.1002/jctb.6218.
  • Nourbakhsh, F.; Mohsennia, M.; Pazouki, M. Nickel Oxide/Carbon Nanotube/Polyaniline Nanocomposite As Bifunctional Anode Catalyst for High-Performance Shewanella-Based Dual-Chamber Microbial Fuel Cell. Bioprocess Biosyst. Eng. 2017, 40(11), 1669–1677. DOI: 10.1007/s00449-017-1822-y.
  • Wu, X.; Shi, Z.; Zou, L.; Li, C. M.; Qiao, Y. Pectin Assisted One-Pot Synthesis of Three Dimensional Porous NiO/Graphene Composite for Enhanced Bioelectrocatalysis in Microbial Fuel Cells. J. Power Sources. 2018, 378, 119–124. DOI: 10.1016/j.jpowsour.2017.12.023.
  • Li, X.; Lv, P.; Yao, Y.; Feng, Q.; Mensah, A.; Li, D.; Wei, Q. A Novel Single-Enzymatic Biofuel Cell Based on Highly Flexible Conductive Bacterial Cellulose Electrode Utilizing Pollutants as Fuel. Chem. Eng. J. 2020, 379, 122316. DOI: 10.1016/j.cej.2019.122316.
  • Li, H.; Gao, M.; Wang, P.; Ma, H.; Liu, T.; Ni, J.; Wang, Q.; Chang, T.-C. Cathode Catalyst Prepared from Bacterial Cellulose for Ethanol Fermentation Stillage Treatment in Microbial Fuel Cell. Chin. J. Chem. Eng. 2021, 40, 256–261. DOI: 10.1016/j.cjche.2020.11.001.
  • Nabil, T.; Dawood, M. M. K. Theoretical Investigation of Fuel Cell Producing 1000 W Power. Am. J. Mod Energy 2020, 6(6), 124–129. DOI: 10.11648/j.ajme.20200606.13.
  • Praveena, B.; Buradi, A.; Santhosh, N.; Vasu, V. K.; Hatgundi, J.; Huliya, D. Study on Characterization of Mechanical, Thermal Properties, Machinability and Biodegradability of Natural Fiber Reinforced Polymer Composites and Its Applications, Recent Developments and Future Potentials: A Comprehensive Review. Materials Today: Proceedings, Nitte, India, 2022; Vol. 52, pp 1255–1259.
  • Chai, S.; Zhang, Y.; Wang, Y.; He, Q.; Zhou, S.; Pan, A. Biodegradable Composite Polymer As Advanced Gel Electrolyte for Quasi-Solid-State Lithium-Metal Battery. eScience. 2022, 2(5), 494–508. DOI: 10.1016/j.esci.2022.04.007.
  • Fumagalli, M.; Lyonnard, S.; Prajapati, G.; Berrod, Q.; Porcar, L.; Guillermo, A.; Gebel, G. Fast Water Diffusion and Long-Term Polymer Reorganization During Nafion Membrane Hydration Evidenced by Time-Resolved Small-Angle Neutron Scattering. J. Phys. Chem. B. 2015, 119(23), 7068–7076. DOI: 10.1021/acs.jpcb.5b01220.
  • Okonkwo, P. C.; Belgacem, I. B.; Emori, W.; Uzoma, P. C. Nafion Degradation Mechanisms in Proton Exchange Membrane Fuel Cell (PEMFC) System: A Review. Int. J. Hydrogen Energy. 2021, 46(55), 27956–27973. DOI: 10.1016/j.ijhydene.2021.06.032.
  • Sigwadi, R.; Dhlamini, M.; Mokrani, T.; Ṋemavhola, F.; Nonjola, P.; Msomi, P. The Proton Conductivity and Mechanical Properties of Nafion®/ZrP Nanocomposite Membrane. Heliyon. 2019, 5(8), e02240. DOI: 10.1016/j.heliyon.2019.e02240.
  • Khan, M. J.; Singh, N.; Mishra, S.; Ahirwar, A.; Bast, F.; Varjani, S.; Schoefs, B.; Marchand, J.; Rajendran, K.; Banu, J. R. Impact of Light on Microalgal Photosynthetic Microbial Fuel Cells and Removal of Pollutants by Nanoadsorbent Biopolymers: Updates, Challenges and Innovations. Chemosphere. 2022, 288, 132589. DOI: 10.1016/j.chemosphere.2021.132589.
  • Sirajudeen, A. A. O.; Annuar, M. S. M.; Ishak, K. A.; Yusuf, H.; Subramaniam, R. Innovative Application of Biopolymer Composite as Proton Exchange Membrane in Microbial Fuel Cell Utilizing Real Wastewater for Electricity Generation. J. Cleaner Prod. 2021, 278, 123449. DOI: 10.1016/j.jclepro.2020.123449.
  • Yusuf, H.; Annuar, M. S. M.; Syed Mohamed, S. M. D.; Subramaniam, R. Medium-Chain-Length Poly-3-Hydroxyalkanoates-Carbon Nanotubes Composite As Proton Exchange Membrane in Microbial Fuel Cell. Chem. Eng. Commun. 2019, 206(6), 731–745. DOI: 10.1080/00986445.2018.1521392.
  • Palanisamy, G.; Thangarasu, S.; Dharman, R. K.; Patil, C. S.; Negi, T. P. P. S.; Kurkuri, M. D.; Pai, R. K.; Oh, T. H. The Growth of Biopolymers and Natural Earthen Sources as Membrane/Separator Materials for Microbial Fuel Cells: A Comprehensive Review. J. Energy Chem. 2023, 80, 402–431. DOI: 10.1016/j.jechem.2023.01.018.
  • Sophia, A. C.; Sreeja, S. Green Energy Generation from Plant Microbial Fuel Cells (PMFC) Using Compost and a Novel Clay Separator. Sustainable Energy Technol. Assess. 2017, 21, 59–66. DOI: 10.1016/j.seta.2017.05.001.
  • Hasani-Sadrabadi, M. M.; Dashtimoghadam, E.; Eslami, S. N. S.; Bahlakeh, G.; Shokrgozar, M. A.; Jacob, K. I. Air-Breathing Microbial Fuel Cell with Enhanced Performance Using Nanocomposite Proton Exchange Membranes. Polymer. 2014, 55(23), 6102–6109. DOI: 10.1016/j.polymer.2014.09.033.
  • Pasternak, G.; Ormeno-Cano, N.; Rutkowski, P. Recycled Waste Polypropylene Composite Ceramic Membranes for Extended Lifetime of Microbial Fuel Cells. Chem. Eng. J. 2021, 425, 130707. DOI: 10.1016/j.cej.2021.130707.
  • Khomein, P.; Ketelaars, W.; Lap, T.; Liu, G. Sulfonated Aromatic Polymer as a Future Proton Exchange Membrane: A Review of Sulfonation and Crosslinking Methods. Renewable Sustainable Energy Rev. 2021, 137, 110471. DOI: 10.1016/j.rser.2020.110471.
  • Kugarajah, V.; Sugumar, M.; Dharmalingam, S. Nanocomposite Membrane and Microbial Community Analysis for Improved Performance in Microbial Fuel Cell. Enzyme Microb. Technol. 2020, 140, 109606. DOI: 10.1016/j.enzmictec.2020.109606.
  • Kanmani, P.; Aravind, J.; Kamaraj, M.; Sureshbabu, P.; Karthikeyan, S. Environmental Applications of Chitosan and Cellulosic Biopolymers: A Comprehensive Outlook. Bioresour. Technol. 2017, 242, 295–303. DOI: 10.1016/j.biortech.2017.03.119.
  • Gavande, V.; Nagappan, S.; Seo, B.; Lee, W.-K. A Systematic Review on Green and Natural Polymeric Nanofibers for Biomedical Applications. Int. J. Biol. Macromol. 2024, 262, 130135. DOI: 10.1016/j.ijbiomac.2024.130135.
  • Vijayalekshmi, V.; Khastgir, D. Eco-Friendly Methanesulfonic Acid and Sodium Salt of Dodecylbenzene Sulfonic Acid Doped Cross-Linked Chitosan Based Green Polymer Electrolyte Membranes for Fuel Cell Applications. J. Membr. Sci. 2017, 523, 45–59. DOI: 10.1016/j.memsci.2016.09.058.
  • Muhmed, S.; Jaafar, J.; Ahmad, S.; Mohamed, M.; Ismail, A.; Ilbeygi, H.; Othman, M.; Rahman, M. A. Incorporating Functionalized Graphene Oxide in Green Material-Based Membrane for Proton Exchange Membrane Fuel Cell Application. J. Environ. Chem. Eng. 2023, 11(2), 109547. DOI: 10.1016/j.jece.2023.109547.
  • Mohanapriya, S.; Rambabu, G.; Bhat, S.; Raj, V. Pectin Based Nanocomposite Membranes as Green Electrolytes for Direct Methanol Fuel Cells. Arabian J. Chem. 2020, 13(1), 2024–2040. DOI: 10.1016/j.arabjc.2018.03.001.
  • Palanisamy, G.; Im, Y. M.; Muhammed, A. P.; Palanisamy, K.; Thangarasu, S.; Oh, T. H. Fabrication of Cellulose Acetate-Based Proton Exchange Membrane with Sulfonated SiO2 and Plasticizers for Microbial Fuel Cell Applications. Membranes. 2023, 13(6), 581. DOI: 10.3390/membranes13060581.
  • Gouda, M. H.; Elessawy, N. A.; Santos, D. M. Synthesis and Characterization of Novel Green Hybrid Nanocomposites for Application As Proton Exchange Membranes in Direct Borohydride Fuel Cells. Energies 2020, 13(5), 1180. DOI: 10.3390/en13051180.
  • Parnian, M. J.; Rowshanzamir, S.; Moghaddam, J. A. Investigation of Physicochemical and Electrochemical Properties of Recast Nafion Nanocomposite Membranes Using Different Loading of Zirconia Nanoparticles for Proton Exchange Membrane Fuel Cell Applications. Mater. Sci. For Energy Technol. 2018, 1(2), 146–154. DOI: 10.1016/j.mset.2018.06.008.
  • Guan, C.-Y.; Yu, C.-P. Evaluation of Plant Microbial Fuel Cells for Urban Green Roofs in a Subtropical Metropolis. Sci. Total Environ. 2021, 765, 142786. DOI: 10.1016/j.scitotenv.2020.142786.
  • Kaur, R.; Marwaha, A.; Chhabra, V. A.; Kim, K.-H.; Tripathi, S. Recent Developments on Functional Nanomaterial-Based Electrodes for Microbial Fuel Cells. Renewable Sustainable Energy Rev. 2020, 119, 109551. DOI: 10.1016/j.rser.2019.109551.
  • Pandey, R. P.; Shahi, V. K. A No-Sulphonic Acid Benzyl Chitosan (NSBC) and N, N-Dimethylene Phosphonic Acid Propylsilane Graphene Oxide (NMPSGO) Based Multi-Functional Polymer Electrolyte Membrane with Enhanced Water Retention and Conductivity. Rsc. Adv. 2014, 4(100), 57200–57209. DOI: 10.1039/C4RA09581B.
  • Rambabu, G.; Nagaraju, N.; Bhat, S. D. Functionalized Fullerene Embedded in Nafion Matrix: A Modified Composite Membrane Electrolyte for Direct Methanol Fuel Cells. Chem. Eng. J. 2016, 306, 43–52. DOI: 10.1016/j.cej.2016.07.032.
  • Vinothkannan, M.; Kim, A. R.; Yoo, D. J. Sulfonated Graphene Oxide/Nafion Composite Membranes for High Temperature and Low Humidity Proton Exchange Membrane Fuel Cells. Rsc. Adv. 2018, 8(14), 7494–7508. DOI: 10.1039/C7RA12768E.
  • Indrajit, C.; Sathe, S.; Dubey, B.; Ghangrekar, M. Waste-Derived Biochar: Applications and Future Perspective in Microbial Fuel Cells. Bioresour. Technol. 2020, 312. DOI: 10.1016/j.biortech.2020.123587.
  • Abd-Elrahman, N. K.; Al-Harbi, N.; Basfer, N. M.; Al-Hadeethi, Y.; Umar, A.; Akbar, S. Applications of Nanomaterials in Microbial Fuel Cells: A Review. Molecules. 2022, 27(21), 7483. DOI: 10.3390/molecules27217483.
  • Chen, H.; Simoska, O.; Lim, K.; Grattieri, M.; Yuan, M.; Dong, F.; Lee, Y. S.; Beaver, K.; Weliwatte, S.; Gaffney, E. M. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem. Rev. 2020, 120(23), 12903–12993. DOI: 10.1021/acs.chemrev.0c00472.
  • Sarathi, V. S.; Nahm, K. S. Recent Advances and Challenges in the Anode Architecture and Their Modifications for the Applications of Microbial Fuel Cells. Biosens. Bioelectron. 2013, 43, 461–475. DOI: 10.1016/j.bios.2012.12.048.
  • Li, S.; Ho, S.-H.; Hua, T.; Zhou, Q.; Li, F.; Tang, J. Sustainable Biochar As an Electrocatalysts for the Oxygen Reduction Reaction in Microbial Fuel Cells. Green Energy amp; Environ. 2021, 6(5), 644–659. DOI: 10.1016/j.gee.2020.11.010.
  • Dessie, Y.; Tadesse, S. Nanocomposites As Efficient Anode Modifier Catalyst for Microbial Fuel Cell Performance Improvement. J. Chem. Rev. 2021, 3, 320–344.
  • Saravanan, A.; Kumar, P. S.; Srinivasan, S.; Jeevanantham, S.; Kamalesh, R.; Karishma, S. Sustainable Strategy on Microbial Fuel Cell to Treat the Wastewater for the Production of Green Energy. Chemosphere. 2022, 290, 133295. DOI: 10.1016/j.chemosphere.2021.133295.
  • Rossi, R.; Logan, B. E. Using an Anion Exchange Membrane for Effective Hydroxide Ion Transport Enables High Power Densities in Microbial Fuel Cells. Chem. Eng. J. 2021, 422, 130150. DOI: 10.1016/j.cej.2021.130150.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.