0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Preparation and in vitro characterization of graphene oxide impregnated superporous hydrogel beads: an effective approach of gastro-retentive drug delivery system

, , , , &
Received 21 Feb 2024, Accepted 23 Jun 2024, Published online: 19 Jul 2024

References

  • Singh, B. N.; Kim, K. H. Floating Drug Delivery Systems: An Approach to Oral Controlled Drug Delivery via Gastric Retention. J. Controlled Release 2000, 63(3), 235–259. DOI: 10.1016/S0168-3659(99)00204-7.
  • Kothule, S.; Aher, S.; Bachhav, R. Formulation Development and Evaluation of Gastroretentive Floating Tablet of Vildagliptin. Int. J. In Pharm. Sci. 2023, 1(1), 10.
  • Pawar, V. K.; Kansal, S.; Garg, G.; Awasthi, R.; Singodia, D.; Kulkarni, G. T. Gastroretentive Dosage Forms: A Review with Special Emphasis on Floating Drug Delivery Systems. Drug Delivery 2011, 18(2), 97–110. DOI: 10.3109/10717544.2010.520354.
  • Nur, A.; Fiskia, E.; Tjiroso, B. Evaluation Profile in vitro Release Gastroretentive High Density Tablet Theophylline Using Sodium Alginate and PVP. E3S Web of Conferences. 2021, EDP Sciences.
  • Kaewkroek, K.; Petchsomrit, A.; Septama, A. W.; Wiwattanapatapee, R. Development of Starch/Chitosan Expandable Films As a Gastroretentive Carrier for Ginger Extract-Loaded Solid Dispersion. Saudi Pharm. J. 2022, 30(2), 120–131. DOI: 10.1016/j.jsps.2021.12.017.
  • Naseem, F.; Shah, S. U.; Rashid, S. A.; Farid, A.; Almehmadi M.; Alghamdi, S. Metronidazole Based Floating Bioadhesive Drug Delivery System for Potential Eradication of H. Pylori: Preparation & In Vitro Charact. Polym. 2022, 14(3), 519. DOI: 10.3390/polym14030519.
  • Jain, A. K.; Upadhyay, R.; Mishra, K.; Jain, S. K. Gastroretentive Metformin Loaded Nanoparticles for the Effective Management of Type-2 Diabetes Mellitus. Curr. Drug Delivery 2021, 18(5), 654–668. DOI: 10.2174/1567201817666201026105611.
  • Verma, N. K.; Singh, A. K.; Yadav, V.; Singh, P.; Yadav, A.; Jaiswal, S. Super Porous Hydrogel Based Drug Delivery System: A Review. South Asian Res. J. Pharm. Sci. 2021, 3(6), 8.
  • Treesinchai, S.; Puttipipatkhachorn, S.; Pitaksuteepong, T.; Sungthongjeen, S. Development of Curcumin Floating Beads with Low Density Materials and Solubilizers. J. Drug. Delivery Sci. Technol. 2019, 51, 542–551. DOI: 10.1016/j.jddst.2019.03.002.
  • Canzonieri, V.; Giordano, A. Gastric Cancer in the Precision Medicine Era: Diagnosis and Therapy; Current Clinical Pathology, Canzonieri, V., Giordano, A., Eds.; Humana Press: Tortowa, NJ, USA, 2019.
  • Smyth, E. C.; Nilsson, M.; Grabsch, H. I.; van Grieken, N. C.; Lordick, F. Gastric Cancer. The Lancet. 2020, 396(10251), 635–648. DOI: 10.1016/S0140-6736(20)31288-5.
  • Van Cutsem, E.; Sagaert, X.; Topal, B.; Haustermans, K.; Prenen, H. Gastric Cancer; The Lancet. 2016, 388(10060), 2654–2664. DOI: 10.1016/S0140-6736(16)30354-3.
  • Crew, K. D.; Neugut, A. I. Epidemiology of Gastric Cancer. World J. Gastroenterol. 2006, 12(3), 354. DOI: 10.3748/wjg.v12.i3.354.
  • Sharma, N.; Agarwal, D.; Gupta, M. K.; Khinchi, M. A Comprehensive Review on Floating Drug Delivery System. Int. J. Res. In Pharm. & Biomed. Sci. 2011, 2(2), 428–441.
  • Shah, S.; Patel, J.; Patel, N. Stomach Specific Floating Drug Delivery System: A Review. Int J Pharm Tech Res 2009, 1(3), 623–633.
  • Shaha, S.; Patel, J. K.; Pundarikakshudu, K.; Patel, N. V. An Overview of a Gastro-Retentive Floating Drug Delivery System. Asian J. Pharm. Sci. 2009, 4(1), 65–80.
  • Hecht, H.; Srebnik, S. Structural Characterization of Sodium Alginate and Calcium Alginate. Biomacromolecules 2016, 17(6), 2160–2167. DOI: 10.1021/acs.biomac.6b00378.
  • Sipos, B.; Benei, M.,; Katona, G.; Csóka, I. Optimization and Characterization of Sodium Alginate Beads Providing Extended Release for Antidiabetic Drugs. Molecules 2023, 28(19), 6980. DOI: 10.3390/molecules28196980.
  • Zhang, Z.-H.; Sun, Y. S.; Pang, H.; Munyendo, W. L.; Lv, H. X.; Zhu, S. L. Preparation and Evaluation of Berberine Alginate Beads for Stomach-Specific Delivery. Molecules 2011, 16(12), 10347–10356. DOI: 10.3390/molecules161210347.
  • Shinde, S.D., Kulkarni, N., Jadhav, G.S., Dewangan, B., Baby, S., Pophali, S. and Sahu, B., . Alginate Based Hydrogel in Drug Delivery and Biomedical Applications. In Alginate Biomaterial: Drug Delivery Strategies and Biomedical Engineering. 2023 (109-133). Singapore: Springer Nature Singapore.
  • Cypes, S. H.; Saltzman, W. M.; Giannelis, E. P. Organosilicate-Polymer Drug Delivery Systems: Controlled Release and Enhanced Mechanical Properties. J. Controlled Release 2003, 90(2), 163–169. DOI: 10.1016/S0168-3659(03)00133-0.
  • Justin, R.; Chen, B. Characterisation and Drug Release Performance of Biodegradable Chitosan–Graphene Oxide Nanocomposites. Carbohydr. Polym. 2014, 103, 70–80. DOI: 10.1016/j.carbpol.2013.12.012.
  • Jebel, F. S.; Almasi, H. Morphological, Physical, Antimicrobial and Release Properties of ZnO Nanoparticles-Loaded Bacterial Cellulose Films. Carbohydr. Polym. 2016, 149, 8–19. DOI: 10.1016/j.carbpol.2016.04.089.
  • Dash, B. S.; Jose, G.; Lu, Y. J.; Chen, J. P. Functionalized Reduced Graphene Oxide As a Versatile Tool for Cancer Therapy. Int. J. Mol. Sci. 2021, 22(6), 2989. DOI: 10.3390/ijms22062989.
  • Shafiee, A.; Iravani, S.; Varma, R. S. Graphene and Graphene Oxide with Anticancer Applications: Challenges and Future Perspectives. MedComm 2022, 3(1), e118. DOI: 10.1002/mco2.118.
  • Gonçalves, G.; Vila, M.; Portolés, M. T.; Vallet‐Regi, M.; Gracio, J.; Marques, P. A. A. Nano‐Graphene Oxide: A Potential Multifunctional Platform for Cancer Therapy. Adva. Healthcare Mat. 2013, 2(8), 1072–1090. DOI: 10.1002/adhm.201300023.
  • Chen, T.; Zhang, Q.; Song, Y.; Isak, A. N.; Tang, X.; Wang, H.; Ma, Z.; Sun, F.; Pan, Q.; Zhu, X. Spatial Confinement of Chemically Engineered Cancer Cells Using Large Graphene Oxide Sheets: A New Mode of Cancer Therapy. Nanoscale Horiz. 2021, 6(12), 979–986. DOI: 10.1039/D1NH00350J.
  • Eivazzadeh-Keihan, R.; Asgharnasl, S.,;Aliabadi, H. A. M.; Tahmasebi, B.; Radinekiyan, F.; Maleki, A.; Bahreinizad, H.; Mahdavi, M.; Alavijeh, M. S.; Saber, R., et al. Magnetic Graphene Oxide–Lignin Nanobiocomposite: A Novel, Eco-Friendly and Stable Nanostructure Suitable for Hyperthermia in Cancer Therapy. RSC Adv. 2022, 12(6), 3593–3601. DOI: 10.1039/D1RA08640E.
  • Patil, S.; Rajkuberan, C.; Sagadevan, S. Recent Biomedical Advancements in Graphene Oxide and Future Perspectives. J. Drug. Delivery Sci. Technol. 2023, 86, 104737. DOI: 10.1016/j.jddst.2023.104737.
  • Liao, G.; Hu, J.; Chen, Z.; Zhang, R.; Wang, G.; Kuang, T. Preparation, Properties, and Applications of Graphene-Based Hydrogels. Front. Chem. 2018, 6, 450. DOI: 10.3389/fchem.2018.00450.
  • Choi, B.; Park, H. J.; Hwang, S. J.; Park, J. B. Preparation of Alginate Beads for Floating Drug Delivery System: Effects of CO2 Gas-Forming Agents. Int. J. Pharm. 2002, 239(1–2), 81–91. DOI: 10.1016/S0378-5173(02)00054-6.
  • Dash, B. S., et al. Magnetic and GRPR-Targeted Reduced Graphene Oxide/Doxorubicin Nanocomposite for Dual-Targeted Chemo-Photothermal Cancer Therapy. Mater. Sci. Eng. C 2021, 128, 112311. DOI: 10.1016/j.msec.2021.112311.
  • Rehman, S.; Ranjha, N. M.; Raza, M. R.; Hanif, M.; Majed, A.; Ameer, N. Enteric-Coated Ca-Alginate Hydrogel Beads: A Promising Tool for Colon Targeted Drug Delivery System. Polym. Bull. 2021, 78(9), 5103–5117. DOI: 10.1007/s00289-020-03359-1.
  • Song, E.; Han, W.; Li, C.; Cheng, D.; Li, L.; Liu, L.; Zhu, G.; Song, Y.; Tan, W. Hyaluronic Acid-Decorated Graphene Oxide Nanohybrids As Nanocarriers for Targeted and pH-Responsive Anticancer Drug Delivery. ACS Appl. Mater. & Interface 2014, 6(15), 11882–11890. DOI: 10.1021/am502423r.
  • Bajpai, S. K.; Tankhiwale, R. Preparation, Characterization and Preliminary Calcium Release Study of Floating Sodium Alginate/dextran‐Based Hydrogel Beads: Part I. Polym. Int. 2008, 57(1), 57–65. DOI: 10.1002/pi.2311.
  • Banerjee, S.; Singh, S.; Bhattacharya, S. S.; Chattopadhyay, P. Trivalent Ion Cross-Linked pH Sensitive Alginate-Methyl Cellulose Blend Hydrogel Beads from Aqueous Template. Int. J. Biol. Macromol. 2013, 57, 297–307. DOI: 10.1016/j.ijbiomac.2013.03.039.
  • Zong, S.; Wei, W.; Jiang, Z.; Yan, Z.; Zhu, J.; Xie, J. Characterization and Comparison of Uniform Hydrophilic/Hydrophobic Transparent Silica Aerogel Beads: Skeleton Strength and Surface Modification. RSC Adv. 2015, 5(68), 55579–55587. DOI: 10.1039/C5RA08714G.
  • Koutloumpasis, A., Papadopoulos, I., Karakousi, M., Karamitrou, C., Mirouli, R.F., Mpasinas, P., Sakka, E., Tzimtzimis, E., Tzetzis, D., Akritidou, D. and Karageorgiou, V., 2024. Controlling the Porosity of Starch Hydrogels with Poly (Methyl Methacrylate)(PMMA) Beads. Starch-Stärke. 2024, 2300152.
  • Hussain, T.; Ranjha, N. M.; Shahzad, Y. Swelling and Controlled Release of Tramadol Hydrochloride from a pH-Sensitive Hydrogel. Des. Monomers Polym. 2011, 14(3), 233–249. DOI: 10.1163/138577211X557521.
  • Zhuang, Y.; Yu, F.; Chen, H.; Zheng, J.; Ma, J.; Chen, J. Alginate/Graphene Double-Network Nanocomposite Hydrogel Beads with Low-Swelling, Enhanced Mechanical Properties, and Enhanced Adsorption Capacity. J. Mater. Chem. A 2016, 4(28), 10885–10892. DOI: 10.1039/C6TA02738E.
  • Shin, J.; Seo, S. M.; Park, I. K.; Hyun, J. Larvicidal Composite Alginate Hydrogel Combined with a Pickering Emulsion of Essential Oil. Carbohydr. Polym. 2021, 254, 117381. DOI: 10.1016/j.carbpol.2020.117381.
  • Gupta, R.; Prajapati, S. K.; Pattnaik, S.; Bhardwaj, P. Formulation and Evaluation of Novel Stomach Specific Floating Microspheres Bearing Famotidine for Treatment of Gastric Ulcer and Their Radiographic Study. Asian Pac. J. Trop. Biomed. 2014, 4(9), 729–735. DOI: 10.12980/APJTB.4.201414B73.
  • Rehman, S., et al. Fabrication, Evaluation, in vivo Pharmacokinetic and Toxicological Analysis of pH-Sensitive Eudragit S-100-Coated Hydrogel Beads: A Promising Strategy for Colon Targeting. AAPS PharmScitech 2021, 22(6), 1–17. DOI: 10.1208/s12249-021-02082-y.
  • Aquino, R. P.; Auriemma, G.; d’Amore, M.; D’Ursi, A. M.; Mencherini, T.; Del Gaudio, P. Piroxicam Loaded Alginate Beads Obtained by Prilling/Microwave Tandem Technique: Morphology and Drug Release. Carbohydr. Polym. 2012, 89(3), 740–748. DOI: 10.1016/j.carbpol.2012.04.003.
  • Wang, J.; Liu, C.; Shuai, Y.; Cui, X.; Nie, L. Controlled Release of Anticancer Drug Using Graphene Oxide As a Drug-Binding Effector in Konjac Glucomannan/Sodium Alginate Hydrogels. Colloids & Surfaces B: Biointerfaces 2014, 113, 223–229. DOI: 10.1016/j.colsurfb.2013.09.009.
  • Jideani, V. A.; Mpotokwana, S. Modeling of Water Absorption of Botswana Bambara Varieties Using Peleg’s Equation. J. Food Eng. 2009, 92(2), 182–188. DOI: 10.1016/j.jfoodeng.2008.10.040.
  • Wong, S. K.; Lawrencia, D.; Supramaniam, J.; Goh, B. H.; Manickam, S.; Wong, T. W.; Pang, C. H.; Tang, S. Y. In Vitro Digestion and Swelling Kinetics of Thymoquinone-Loaded Pickering Emulsions Incorporated in Alginate-Chitosan Hydrogel Beads. Front. in Nutrit., 2021. 2021, 8, 752207. DOI: 10.3389/fnut.2021.752207.
  • Ganji F; Vasheghani FS; Vasheghani FE. Theoretical description of hydrogel swelling: a review. Iran Polym J. 2010;19:375–398. https://sid.ir/paper/561994/en
  • Korsmeyer, R. W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N. A. Mechanisms of Solute Release from Porous Hydrophilic Polymers. Int. J. Pharm. 1983, 15(1), 25–35. DOI: 10.1016/0378-5173(83)90064-9.
  • Li, S.; Shen, Y.; Li, W.; Hao, X. A Common Profile for Polymer-Based Controlled Releases and Its Logical Interpretation to General Release Process. J. Pharm. Pharm. Sci. 2006, 9(2), 238–244.
  • Higuchi, T. Mechanism of Sustained‐Action Medication. Theoretical Analysis of Rate of Release of Solid Drugs Dispersed in Solid Matrices. J. Pharm. Sci. 1963, 52(12), 1145–1149. DOI: 10.1002/jps.2600521210.
  • Zhang, J.; Wang, Z.; He, C.; Liu, X.; Zhao, W.; Sun, S.; Zhao, C. Safe and Effective Removal of Urea by Urease-Immobilized, Carboxyl-Functionalized PES Beads with Good Reusability and Storage Stability. ACS Omega. 2019, 4(2), 2853–2862. DOI: 10.1021/acsomega.8b03287.
  • Zhang, B.; Yang, X.; Wang, Y.; Zhai, G. Heparin Modified Graphene Oxide for pH-Sensitive Sustained Release of Doxorubicin Hydrochloride. Mater. Sci. Eng. C 2017, 75, 198–206. DOI: 10.1016/j.msec.2017.02.048.
  • Nayak, A. K.; Pal, D.; Santra, K. Plantago Ovata F. Mucilage-Alginate Mucoadhesive Beads for Controlled Release of Glibenclamide: Development, Optimization, and in Vitro-In Vivo Evaluation. J. Pharm. 2013, 2013, 1–11. DOI: 10.1155/2013/151035.
  • Patil, J. S.; Kole, S. G.; Gurav, P. B.; Vilegave, K. V. Natural Polymer Based Mucoadhesive Hydrogel Beads of Nizatidine: Preparation, Characterization and Evaluation. Indian J. Pharm. Educ. Res. 2016, 50(1), 159–169. DOI: 10.5530/ijper.50.1.20.
  • Guideline, I. Stability Testing of New Drug Substances and Products. Q1A (R2). Curr. step 2003, 4, 1–24.
  • Liao, K.-H.; Lin, Y. S.; Macosko, C. W.; Haynes, C. L. Cytotoxicity of Graphene Oxide and Graphene in Human Erythrocytes and Skin Fibroblasts. ACS Appl. Mater. Interface 2011, 3(7), 2607–2615. DOI: 10.1021/am200428v.
  • Lewińska, D.; Rosiński, S.; Weryński, A. Influence of Process Conditions During Impulsed Electrostatic Droplet Formation on Size Distribution of Hydrogel Beads. Artif. Cells, Blood Substitues Biotechnol. 2004, 32(1), 41–53. DOI: 10.1081/BIO-120028667.
  • Ghawanmeh, A. A.; Ali, G. A.; Algarni, H.; Sarkar, S. M.; Chong, K. F. Graphene Oxide-Based Hydrogels As a Nanocarrier for Anticancer Drug Delivery. Nano Res. 2019, 12(5), 973–990. DOI: 10.1007/s12274-019-2300-4.
  • Liu, C.-C.; Zhao, J. J.; Zhang, R.; Li, H.; Chen, B. Multifunctionalization of Graphene and Graphene Oxide for Controlled Release and Targeted Delivery of Anticancer Drugs. Am. J. Transl. Res. 2017, 9(12), 5197.
  • Rasoulzadehzali, M.; Namazi, H. Facile Preparation of Antibacterial Chitosan/Graphene Oxide-Ag Bio-Nanocomposite Hydrogel Beads for Controlled Release of Doxorubicin. Int. J. Biol. Macromol. 2018, 116, 54–63. DOI: 10.1016/j.ijbiomac.2018.04.140.
  • Pongjanyakul, T.; Sungthongjeen, S.; Puttipipatkhachorn, S. Modulation of Drug Release from Glyceryl Palmitostearate–Alginate Beads via Heat Treatment. Int. J. Pharm. 2006, 319(1–2), 20–28. DOI: 10.1016/j.ijpharm.2006.03.033.
  • Sriamornsak, P.; Kennedy, R. A. Effect of Sodium Fluorescein on Release Characteristics of a Macromolecule from Calcium Alginate Gel Beads. Carbohydr. Polym. 2011, 84(3), 1208–1212. DOI: 10.1016/j.carbpol.2010.12.065.
  • Pongjanyakul, T.; Rongthong, T. Enhanced Entrapment Efficiency and Modulated Drug Release of Alginate Beads Loaded with Drug–Clay Intercalated Complexes as Microreservoirs. Carbohydr. Polym. 2010, 81(2), 409–419. DOI: 10.1016/j.carbpol.2010.02.038.
  • Pond, G. R.; Sonpavde, G.; De Wit, R.; Eisenberger, M. A.; Tannock, I. F. The Prognostic Importance of Metastatic Site in Men with Metastatic Castration-Resistant Prostate Cancer. Eur. urol. 2014, 65(1), 3–6. DOI: 10.1016/j.eururo.2013.09.024.
  • McCarty, M. F.; Whitaker, J. Manipulating Tumor Acidification As a Cancer Treatment Strategy. Altern. Med. Rev. 2010, 15(3), 264–272.
  • Bao, C.; Bi, S.; Zhang, H.; Zhao, J.; Wang, P.; Yue, C. Y.; Yang, J. Graphene Oxide Beads for Fast Clean-Up of Hazardous Chemicals. J. Mater. Chem. A 2016, 4(24), 9437–9446. DOI: 10.1039/C6TA01411A.
  • Pourjavadi, A.; Nazari, M.; Kabiri, B.; Hosseini, S. H.; Bennett, C. Preparation of Porous Graphene Oxide/Hydrogel Nanocomposites and Their Ability for Efficient Adsorption of Methylene Blue. RSC Adv. 2016, 6(13), 10430–10437. DOI: 10.1039/C5RA21629J.
  • Shahriary, L.; Athawale, A. A. Graphene Oxide Synthesized by Using Modified Hummers Approach. Int. J. Renew. Energy Environ. Eng. 2014, 2(1), 58–63.
  • Hasanin, M.; Taha, N. F.; Abdou, A. R.; Emara, L. H. Green Decoration of Graphene Oxide Nano Sheets with Gelatin and Gum Arabic for Targeted Delivery of Doxorubicin. Biotechnol. Rep. 2022, 34, e00722. DOI: 10.1016/j.btre.2022.e00722.
  • Nagarajan, V.; Arumugam, B.; Annaraj, J.; Ramaraj, S. K. Design of Rutile Nanospheres Decorated rGO/β-CD Nanoflakes Composite: A Sustainable Electrocatalyst for Effective Non-Enzymatic Determination of L-Tyrosine. Sens. Actuators B. 2022, 351, 130955. DOI: 10.1016/j.snb.2021.130955.
  • Deb, A.; Vimala, R. Natural and Synthetic Polymer for Graphene Oxide Mediated Anticancer Drug Delivery—A Comparative Study. Int. J. Biol. Macromol. 2018, 107, 2320–2333. DOI: 10.1016/j.ijbiomac.2017.10.119.
  • Rasoulzadeh, M.; Namazi, H. Carboxymethyl Cellulose/Graphene Oxide Bio-Nanocomposite Hydrogel Beads as Anticancer Drug Carrier Agent. Carbohydr. Polym. 2017, 168, 320–326. DOI: 10.1016/j.carbpol.2017.03.014.
  • Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4(8), 4806–4814. DOI: 10.1021/nn1006368.
  • Rao, K.M., Rao, K.K., Sudhakar, P., Rao, K.C. and Subha, M.C.S., . Synthesis and Characterization of biodegradable Poly (Vinyl caprolactam) grafted on to sodium alginate and its microgels for controlled release studies of an anticancer drug. Journal of Applied Pharmaceutical Science. 2013, 3(6), 061–069.
  • Kanwal, U.; Bukhari, N. I.; Rana, N. F.; Rehman, M.; Hussain, K.; Abbas, N.; Mehmood, A.; Raza, A. Doxorubicin-Loaded Quaternary Ammonium Palmitoyl Glycol Chitosan Polymeric Nanoformulation: Uptake by Cells and Organs. Int. J. Nanomed. 2019, 14, 1. DOI: 10.2147/IJN.S176868.
  • Ionita, M.; Pandele, M. A.; Iovu, H. Sodium Alginate/Graphene Oxide Composite Films with Enhanced Thermal and Mechanical Properties. Carbohydr. Polym. 2013, 94(1), 339–344. DOI: 10.1016/j.carbpol.2013.01.065.
  • Ajeel, S. J.; Beddai, A. A.; Almohaisen, A. M. N. Preparation of Alginate/Graphene Oxide Composite for Methylene Blue Removal. Mater. Today: Proc. 2022, 51, 289–297. DOI: 10.1016/j.matpr.2021.05.331.
  • Sun, L.; Fugetsu, B. Graphene Oxide Captured for Green Use: Influence on the Structures of Calcium Alginate and Macroporous Alginic Beads and Their Application to Aqueous Removal of Acridine Orange. Chem. Eng. J. 2014, 240, 565–573. DOI: 10.1016/j.cej.2013.10.083.
  • Ramos, P. E.; Silva, P.; Alario, M. M.; Pastrana, L. M.; Teixeira, J. A.; Cerqueira, M. A.; Vicente, A. A. Effect of Alginate Molecular Weight and M/G Ratio in Beads Properties Foreseeing the Protection of Probiotics. Food Hydrocolloids 2018, 77, 8–16. DOI: 10.1016/j.foodhyd.2017.08.031.
  • Vinothini, K.; Rajendran, N. K.; Munusamy, M. A.; Alarfaj, A. A.; Rajan, M. Development of Biotin Molecule Targeted Cancer Cell Drug Delivery of Doxorubicin Loaded κ-Carrageenan Grafted Graphene Oxide Nanocarrier. Mater. Sci. Eng. C 2019, 100, 676–687. DOI: 10.1016/j.msec.2019.03.011.
  • Niharika, M. G.; Krishnamoorthy, K.; Akkala, M. Overview on floating drug delivery system. Int. J App. Pharm. 2018, 10(6), 65–71. DOI: 10.22159/ijap.2018v10i6.28274.
  • Salsac, A.V., Zhang, L. and Gherbezza, J.M., Measurement of the mechanical properties of alginate beads using ultrasounds. In CFM 2009-19ème Congrès Français de Mécanique. AFM, Maison de la Mécanique, 39/41 rue Louis Blanc-92400 Courbevoie, 2009.
  • Ren, L.; Liu, T.; Guo, J.; Guo, S.; Wang, X.; Wang, W. A Smart pH Responsive Graphene/Polyacrylamide Complex via Noncovalent Interaction. Narnotechnology 2010, 21(33), 335701. DOI: 10.1088/0957-4484/21/33/335701.
  • He, Y.; Zhang, N.; Gong, Q.; Qiu, H.; Wang, W.; Liu, Y.; Gao, J. Alginate/Graphene Oxide Fibers with Enhanced Mechanical Strength Prepared by Wet Spinning. Carbohydrate Polymers. 2012, 88(3), 1100–1108. DOI: 10.1016/j.carbpol.2012.01.071.
  • Fan, J.; Shi, Z.; Lian, M.; Li, H.; Yin, J. Mechanically Strong Graphene Oxide/Sodium Alginate/Polyacrylamide Nanocomposite Hydrogel with Improved Dye Adsorption Capacity. J. Mater. Chem. A 2013, 1(25), 7433–7443. DOI: 10.1039/c3ta10639j.
  • Russo, P.; Morello, S.; Pinto, A.; Del Gaudio, P.; Auriemma, G.; Aquino, R. P. Zinc and Calcium Cations Combination in the Production of Floating Alginate Beads As Prednisolone Delivery Systems. Molecules 2020, 25(5), 1140. DOI: 10.3390/molecules25051140.
  • Sengupta, I.; Kumar, S. S. S.; Gupta, K.; Chakraborty, S. In-Vitro Release Study Through Novel Graphene Oxide Aided Alginate Based pH-Sensitive Drug Carrier for Gastrointestinal Tract. Mater. Today Commun. 2021, 26, 101737. DOI: 10.1016/j.mtcomm.2020.101737.
  • Yang, H.; Sun, A.; Yang, J.; Cheng, H.; Yang, X.; Chen, H.; Huanfei, D.; Falahati, M. Development of Doxorubicin-Loaded Chitosan–Heparin Nanoparticles with Selective Anticancer Efficacy Against Gastric Cancer Cells in vitro Through Regulation of Intrinsic Apoptosis Pathway. Arabian J. Chem. 2021, 14(8), 103266. DOI: 10.1016/j.arabjc.2021.103266.
  • Sergeeva, A.; Feoktistova, N.; Prokopovic, V.; Gorin, D.; Volodkin, D. Design of Porous Alginate Hydrogels by Sacrificial CaCo3 Templates: Pore Formation Mechanism. Adv. Mater. Interface 2015, 2(18), 1500386. DOI: 10.1002/admi.201500386.
  • Yotsuyanagi, T.; Yoshioka, I.; Segi, N.; Ikeda, K. Acid-Induced and Calcium-Induced Gelation of Alginic Acid: Bead Formation and pH-Dependent Swelling. Chem. & Pharm. Bull. 1991, 39(4), 1072–1074. DOI: 10.1248/cpb.39.1072.
  • Yotsuyanagi, T.; Yoshioka, I.; Segi, N.; Ikeda, K. Effects of Monovalent Metal Ions and Propranolol on the Calcium Association in Calcium-Induced Alginate Gel Beads. Chem. & Pharm. Bull. 1990, 38(11), 3124–3126. DOI: 10.1248/cpb.38.3124.
  • Dainty, A.; Goulding, K. H.; Robinson, P. K.; Simpkins, I.; Trevan, M. D. Stability of Alginate‐Immobilized Algal Cells. Biotechnol. Bioeng. 1986, 28(2), 210–216. DOI: 10.1002/bit.260280210.
  • Abasalizadeh, F., Moghaddam, S.V., Alizadeh, E., Akbari, E., Kashani, E., Fazljou, S.M.B., Torbati, M. and Akbarzadeh, A. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. Journal of biological engineering. 2020, 14, 1–22.
  • Mirzaie, Z.; Reisi-Vanani, A.; Barati, M. Polyvinyl Alcohol-Sodium Alginate Blend, Composited with 3D-Graphene Oxide As a Controlled Release System for Curcumin. J. Drug. Delivery Sci. Technol. 2019, 50, 380–387. DOI: 10.1016/j.jddst.2019.02.005.
  • Unagolla, J. M.; Jayasuriya, A. C. Drug Transport Mechanisms and in vitro Release Kinetics of Vancomycin Encapsulated Chitosan-Alginate Polyelectrolyte Microparticles as a Controlled Drug Delivery System. Eur. J. Pharm. Sci. 2018, 114, 199–209. DOI: 10.1016/j.ejps.2017.12.012.
  • Agnihotri, S. A.; Mallikarjuna, N. N.; Aminabhavi, T. M. Recent Advances on Chitosan-Based Micro-And Nanoparticles in Drug Delivery. J. Controlled Release 2004, 100(1), 5–28. DOI: 10.1016/j.jconrel.2004.08.010.
  • Sudhakar, K.; Moloi, S. J.; Rao, K. M. Graphene Oxide/Poly (N-Isopropyl Acrylamide)/Sodium Alginate-Based Dual Responsive Composite Beads for Controlled Release Characteristics of Chemotherapeutic Agent. Iran. Polym J. 2017, 26(7), 521–530. DOI: 10.1007/s13726-017-0543-z.
  • Gan, L.; Li, H.; Chen, L.; Xu, L.; Liu, J.; Geng, A.; Mei, C.; Shang, S. Graphene Oxide Incorporated Alginate Hydrogel Beads for the Removal of Various Organic Dyes and Bisphenol a in Water. Colloid Polym. Sci. 2018, 296(3), 607–615. DOI: 10.1007/s00396-018-4281-3.
  • Saidi, M.; Dabbaghi, A.; Rahmani, S. Swelling and Drug Delivery Kinetics of Click-Synthesized Hydrogels Based on Various Combinations of PEG and Star-Shaped PCL: Influence of Network Parameters on Swelling and Release Behavior. Polym. Bull. 2020, 77(8), 3989–4010. DOI: 10.1007/s00289-019-02948-z.
  • Henkelman, S.; Rakhorst, G.; Blanton, J.; van Oeveren, W. Standardization of Incubation Conditions for Hemolysis Testing of Biomaterials. Mater. Sci. Eng. C 2009, 29(5), 1650–1654. DOI: 10.1016/j.msec.2009.01.002.
  • Gamboa, J. M.; Leong, K. W. In Vitro and in vivo Models for the Study of Oral Delivery of Nanoparticles. Advanced Drug Delivery Reviews. Adv. Drug Delivery Rev. 2013, 65(6), 800–810. DOI: 10.1016/j.addr.2013.01.003.
  • Hecq, J.; Siepmann, F.;; Siepmann, J.; Amighi, K.; Goole, J. Development and Evaluation of Chitosan and Chitosan Derivative Nanoparticles Containing Insulin for Oral Administration. Drug Develop. Indust Pharm. 2015, 41(12), 2037–2044. DOI: 10.3109/03639045.2015.1044904.
  • Upadhyay, M.; Adena, S. K. R.; Vardhan, H.; Yadav, S. K.; Mishra, B. Locust Bean Gum and Sodium Alginate Based Interpenetrating Polymeric Network Microbeads Encapsulating Capecitabine: Improved Pharmacokinetics, Cytotoxicity & in Vivo Antitumor Activity. Mater. Sci. Eng. C. 2019, 104, 109958. DOI: 10.1016/j.msec.2019.109958.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.