38
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Graphene Quantum Dots Nanocomposite Membranes—State-of-the-art and Next-Generation Potential

Received 27 Mar 2024, Accepted 28 Jun 2024, Published online: 07 Jul 2024

References

  • Kausar, A. N-Doped Graphene and Polymer Sequent Nanocomposite—Nitty-gritties and Scoping Insights. Polym. Plast. Technol. Mater. 2023, 62(11), 1347–1363. DOI: 10.1080/25740881.2023.2207112.
  • Kausar, A. Technical Imprint of Polymer Nanocomposite Comprising Graphene Quantum Dot. Polym. Plast. Technol. Mater. 2019, 58(6), 597–617. DOI: 10.1080/25740881.2018.1563110.
  • Garreis, R.; Tong, C.; Terle, J.; Ruckriegel, M. J.; Gerber, J. D.; Gächter, L. M.; Watanabe, K.; Taniguchi, T.; Ihn, T.; Ensslin, K., et al. Long-Lived Valley States in Bilayer Graphene Quantum Dots. Nat. Phys. 2024, 20(3), 1–7. DOI: 10.1038/s41567-023-02334-7.
  • Ghosh, D.; Sarkar, K.; Devi, P.; Kim, K.-H.; Kumar, P. Current and Future Perspectives of Carbon and Graphene Quantum Dots: From Synthesis to Strategy for Building Optoelectronic and Energy Devices. Renewable Sustain. Energy Rev. 2021, 135, 110391. DOI: 10.1016/j.rser.2020.110391.
  • Wolski, P.; Panczyk, T.; Brzyska, A. Molecular Dynamics Simulations of Carbon Quantum Dots/Polyamidoamine Dendrimer Nanocomposites. J. Phys. Chem. C. 2023, 127(33), 16740–16750. DOI: 10.1021/acs.jpcc.3c04661.
  • Verma, A.; Kumar, P.; Singh, V. K.; Mishra, V.; Prakash, R. Introduction of Graphene Oxide Nanosheets in Self-Oriented Air-Stable Poly (3-Hexylthiophene-2, 5-Diyl) to Enhance the Ammonia Gas Sensing of a P-Channel Thin Film Transistor. Sens. Actuators B Chem. 2023, 385, 133661. DOI: 10.1016/j.snb.2023.133661.
  • Zeng, Z.; Li, W.; Li, Y.; Zhao, Z.; Lin, K.; Fan, X.; Zhu, M. Lubrication Behavior of Fluorescent Graphene Quantum Dots Hybrid Polyethylene Glycol Lubricant. Appl. Surf. Sci. 2023, 612, 155933. DOI: 10.1016/j.apsusc.2022.155933.
  • Sardar, S.; Roy, I.; Chakraborty, S.; Ghosh, A. B.; Bandyopadhyay, A. A Selective Approach Towards Synthesis of Poly (3‑Bromo Thiophene)/Graphene Quantum Dot Composites via in-Situ and ex-Situ Routes: Application in Light Emission and Photocurrent Generation. Electrochim. Acta 2021, 365, 137369. DOI: 10.1016/j.electacta.2020.137369.
  • Xu, G.; Wu, Z.; Xie, Z.; Wei, Z.; Li, J.; Qu, K.; Li, Y.; Cai, W. Graphene Quantum Dot Reinforced Hyperbranched Polyamide Proton Exchange Membrane for Direct Methanol Fuel Cell. Int. J. Hydrogen Energy. 2021, 46(15), 9782–9789. DOI: 10.1016/j.ijhydene.2020.06.303.
  • Chul Lim, H.; Jang, S. J.; Cho, Y.; Cho, H.; Venkataprasad, G.; Vinothkumar, V.; Shin, I. S.; Hyun Kim, T. Graphene Quantum Dot‐Doped PEDOT for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid. ChemElectrochem. 2022, 9(18), e202200557. DOI: 10.1002/celc.202200557.
  • Saravanan, S.; Sutha, S.; Sekar, S.; Vasudevan, N.; Nangai, E. K. Quantum Dots: Emerging Trends Toward Biosensing. In Carbon and Graphene Quantum Dots for Biomedical Applications, Kyusik, Y., Saravanan, G., Eds. Elsevier: Netherlands, 2023; pp 129–145.
  • Bushkova, O.; Sanginov, E.; Chernyuk, S.; Kayumov, R.; Shmygleva, L.; Dobrovolsky, Y. A.; Yaroslavtsev, A. Polymer Electrolytes Based on the Lithium Form of Nafion Sulfonic Cation-Exchange Membranes: Current State of Research and Prospects for Use in Electrochemical Power Sources. Membr. Membr. Technol. 2022, 4(6), 433–454. DOI: 10.1134/S2517751622070010.
  • Bi, R.; Zhang, R.; Shen, J.; Liu, Y.-N.; He, M.; You, X.; Su, Y.; Jiang, Z. Graphene Quantum Dots Engineered Nanofiltration Membrane for Ultrafast Molecular Separation. J. Membr. Sci. 2019, 572, 504–511. DOI: 10.1016/j.memsci.2018.11.044.
  • Andrianov, A.; Yantsen, O.; Efremov, R. State-Of-The-Art of Forward Osmosis Technology: Prospects and Limitations. Membr. Membr. Technol. 2023, 5(4), 276–289. DOI: 10.1134/S2517751623040029.
  • Masroor, S. Carbon Allotrope Composites: Basics, Properties, and Applications. In Carbon Allotropes and Composites: Materials for Environment Protection and Remediation; Chandrabhan, V., Chaudhery, M. H., Eds. New Jersy, United States: Wiley, 2023; pp 17–30.
  • Vindhyasarumi, A.; Anjali, K.; Sethulekshmi, A.; Jayan, J. S.; Deeraj, B.; Saritha, A.; Joseph, K. A Comprehensive Review on Recent Progress in Carbon Nano-Onion Based Polymer Nanocomposites. Eur. Polym. J. 2023, 194, 112143. DOI: 10.1016/j.eurpolymj.2023.112143.
  • Nyholm, N.; Espallargas, N. Functionalized Carbon Nanostructures as Lubricant Additives–A Review. Carbon. 2023, 201, 1200–1228. DOI: 10.1016/j.carbon.2022.10.035.
  • Vithalani, R.; Patel, D.; Modi, C. K.; Suthar, D. H. Glowing Photoluminescene in Carbon-Based Nanodots: Current State and Future Perspectives. J. Mater. Sci. 2020, 55(21), 8769–8792. DOI: 10.1007/s10853-020-04671-x.
  • Chen, S.; Liu, M.-X.; Yu, Y.-L.; Wang, J.-H. Room-Temperature Synthesis of Fluorescent Carbon-Based Nanoparticles and Their Application in Multidimensional Sensing. Sens. Actuators B Chem. 2019, 288, 749–756. DOI: 10.1016/j.snb.2019.03.067.
  • Barve, K.; Singh, U.; Yadav, P.; Bhatia, D. Carbon-Based Designer and Programmable Fluorescent Quantum Dots for Targeted Biological and Biomedical Applications. Mater. Chem. Front. 2023, 7(9), 1781–1802. DOI: 10.1039/D2QM01287A.
  • Banger, A.; Gautam, S.; Jadoun, S.; Jangid, N. K.; Srivastava, A.; Pulidindi, I. N.; Dwivedi, J.; Srivastava, M. Synthetic Methods and Applications of Carbon Nanodots. Catalysts. 2023, 13(5), 858. DOI: 10.3390/catal13050858.
  • Mahajan, M. R.; Patil, P. O. Design of Zero-Dimensional Graphene Quantum Dots Based Nanostructures for the Detection of Organophosphorus Pesticides in Food and Water: A Review. Inorg. Chem. Commun. 2022, 144, 109883. DOI: 10.1016/j.inoche.2022.109883.
  • Ge, X.; Chai, Z.; Shi, Q.; Liu, Y.; Wang, W. Graphene Superlubricity: A Review. Friction. 2023, 11, 1953–1973.
  • Hina, M.; Kamran, K.; Bashir, S.; Ahmed, J.; Ameer, D.; Jahanzaib, M.; Mubarik, S. ‘Extra Ordinary Properties of Graphene’: ‘Graphene: Fabrication, Properties and Applications’; Singapore: Springer, 2023; pp 21–52.
  • Shubha, B.; Praveen, B.; Bhat, V. Graphene-Calculation of Specific Surface Area. Int. J. Appl. Eng. Manag. Lett. 2023, 7(1), 91–97. DOI: 10.47992/IJAEML.2581.7000.0168.
  • Tiwari, S. K.; Pandey, R.; Wang, N.; Kumar, V.; Sunday, O. J.; Bystrzejewski, M.; Zhu, Y.; Mishra, Y. K. Progress in Diamanes and Diamanoids Nanosystems for Emerging Technologies. Adv. Sci. 2022, 9(11), 2105770. DOI: 10.1002/advs.202105770.
  • Fu, W.; Yin, J.; Cao, H.; Zhou, Z.; Zhang, J.; Fu, J.; Warner, J. H.; Wang, C.; Jia, X.; Greaves, G. N. Non‐Blinking Luminescence from Charged Single Graphene Quantum Dots. Adv.Mate. 2023, 35(40), 2304074. DOI: 10.1002/adma.202304074.
  • Jegannathan, P.; Yousefi, A. T.; Abd Karim, M. S.; Kadri, N. A. Enhancement of Graphene Quantum Dots Based Applications via Optimum Physical Chemistry: A Review. Biocybern. Biomed. Eng. 2018, 38(3), 481–497. DOI: 10.1016/j.bbe.2018.03.006.
  • Wang, Z.; Tang, M. The Cytotoxicity of Core-Shell or Non-Shell Structure Quantum Dots and Reflection on Environmental Friendly: A Review. Environ. Res. 2021, 194, 110593. DOI: 10.1016/j.envres.2020.110593.
  • Biswas, M. C.; Islam, M. T.; Nandy, P. K.; Hossain, M. M. Graphene Quantum Dots (GQDs) for Bioimaging and Drug Delivery Applications: A Review. ACS Mater. Lett. 2021, 3(6), 889–911. DOI: 10.1021/acsmaterialslett.0c00550.
  • Kang, S. H.; Lee, J.-Y.; Kim, S. K.; Byun, S.-H.; Choi, I.; Hong, S. J. Graphene Quantum Dots-Loaded Macrophages as a Biomimetic Delivery System for Bioimaging and Photodynamic Therapy. J. Drug Delivery Sci. Technol. 2023, 85, 104620. DOI: 10.1016/j.jddst.2023.104620.
  • Jana, S.; Dey, T.; Bhaktha, B. S.; Ray, S. K. Probing the Tunable Optical Properties of Highly Luminescent Functionalized Graphene Quantum Dots As Downconverters for Superior Detection of Ultraviolet Radiation. Mater. Today Nano. 2023, 24, 100400. DOI: 10.1016/j.mtnano.2023.100400.
  • Ravi, P. V.; Subramaniyam, V.; Saravanakumar, N.; Pattabiraman, A.; Pichumani, M. What Works and What Doesn’t When Graphene Quantum Dots Are Functionalized for Contemporary Applications? Coord. Chem. Rev. 2023, 493, 215270. DOI: 10.1016/j.ccr.2023.215270.
  • Lemine, A. S.; Zagho, M. M.; Altahtamouni, T.; Bensalah, N. Graphene a Promising Electrode Material for Supercapacitors—A Review. Int. J. Energy Res. 2018, 42(14), 4284–4300. DOI: 10.1002/er.4170.
  • Bracamonte, G. Insights Focused on Hybrid Graphene Modifications within the Nanoscale for Opto-Electronics Perspectives. Recent Prog. Mater. 2023, 5(3), 1–21. DOI: 10.21926/rpm.2303030.
  • Melezhik, A.; Smolsky, G.; Zelenin, A.; Neskoromnaya, E.; Alekhina, O.; Burakov, A.; Tkachev, A. Synthesis of Carbon Materials with Abnormally High Specific Surface Area. Adv. Mater. Technol. 2019, 2(14), 19–24. DOI: 10.17277/amt.2019.02.pp.019-024.
  • Rani, P.; Dalal, R.; Srivastava, S. Effect of Surface Modification on Optical and Electronic Properties of Graphene Quantum Dots. Appl. Surf. Sci. 2023, 609, 155379. DOI: 10.1016/j.apsusc.2022.155379.
  • Shaheen Shah, S.; Oladepo, S.; Ali Ehsan, M.; Iali, W.; Alenaizan, A.; Nahid Siddiqui, M.; Oyama, M.; Al‐Betar, A. R.; Aziz, M. A. Recent Progress in Polyaniline and Its Composites for Supercapacitors. Chem. Rec. 2023, 24(1), e202300105. DOI: 10.1002/tcr.202300105.
  • Zare, E. N.; Makvandi, P.; Ashtari, B.; Rossi, F.; Motahari, A.; Perale, G. Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: A Review. J. Med. Chem. 2019, 63(1), 1–22. DOI: 10.1021/acs.jmedchem.9b00803.
  • Yang, X.; Wang, X.; Lu, B.; Huang, B.; Xia, Y.; Lin, G. Biomass-Derived N, S Co-Doped Activated Carbon-Polyaniline Nanorod Composite Electrodes for High-Performance Supercapacitors. Appl. Surf. Sci. 2023, 639, 158191. DOI: 10.1016/j.apsusc.2023.158191.
  • Lan, D.; Wang, Y.; Wang, Y.; Zhu, X.; Li, H.; Guo, X.; Ren, J.; Guo, Z.; Wu, G. Impact Mechanisms of Aggregation State Regulation Strategies on the Microwave Absorption Properties of Flexible Polyaniline. J. Coll. Interf. Sci. 2023, 651, 494–503. DOI: 10.1016/j.jcis.2023.08.019.
  • Jang, S.; Cho, S. The Effects of Polyaniline Nanofibers and Graphene Flakes on the Electrical Properties and Mechanical Properties of ABS-Like Resin Composites Obtained by DLP 3D Printing. Polymers. 2023, 15(14), 3079. DOI: 10.3390/polym15143079.
  • Ouyang, L.; Huang, W.; Huang, M.; Qiu, B. Polyaniline Improves Granulation and Stability of Aerobic Granular Sludge. Adv. Compos. Hybrid Mater. 2022, 5(2), 1126–1136. DOI: 10.1007/s42114-022-00450-1.
  • Kausar, A. Reinforced Polyaniline Nanocomposite Nanofibers: Cutting-Edge Potential. Polym. Plast. Technol. & Mater. 2022, 61(10), 1088–1101. DOI: 10.1080/25740881.2022.2033772.
  • Kausar, A.; Ahmad, I. Conducting Polymer Nanocomposites for Electromagnetic Interference Shielding—Radical Developments. J. Compos. Sci. 2023, 7(6), 240. DOI: 10.3390/jcs7060240.
  • Maity, N.; Kuila, A.; Das, S.; Mandal, D.; Shit, A.; Nandi, A. K. Optoelectronic and Photovoltaic Properties of Graphene Quantum Dot–Polyaniline Nanostructures. J. Mater. Chem. A. 2015, 3(41), 20736–20748. DOI: 10.1039/C5TA06576C.
  • Ganganboina, A. B.; Doong, R.-A. Graphene Quantum Dots Decorated Gold-Polyaniline Nanowire for Impedimetric Detection of Carcinoembryonic Antigen. Sci. Rep. 2019, 9(1), 7214. DOI: 10.1038/s41598-019-43740-3.
  • Luk, C.; Chen, B.; Teng, K.; Tang, L.; Lau, S. P. Optically and Electrically Tunable Graphene Quantum Dot–Polyaniline Composite Films. J. Mater. Chem. C. 2014, 2(23), 4526–4532. DOI: 10.1039/C4TC00498A.
  • Kumar, M. S.; Das, P.; Yasoda, K. Y.; Kothurkar, N. K.; Malik, S.; Batabyal, S. K. Fabrication of Organic Nanocomposite of Polyaniline for Enhanced Electrochemical Performance. J. Energy Storage. 2020, 31, 101700. DOI: 10.1016/j.est.2020.101700.
  • Mondal, S.; Rana, U.; Malik, S. Graphene Quantum Dot-Doped Polyaniline Nanofiber as High Performance Supercapacitor Electrode Materials. Chem. Commun. 2015, 51(62), 12365–12368. DOI: 10.1039/C5CC03981A.
  • Lai, S. K.; Luk, C. M.; Tang, L.; Teng, K. S.; Lau, S. P. Photoresponse of Polyaniline-Functionalized Graphene Quantum Dots. Nanoscale. 2015, 7(12), 5338–5343. DOI: 10.1039/C4NR07565J.
  • Yadav, A.; Kumar, H.; Sharma, R.; Kumari, R.; Thakur, M. Quantum Dot Decorated Polyaniline Plastic as a Multifunctional Nanocomposite: Experimental and Theoretical Approach. Rsc. Adv. 2022, 12(37), 24063–24076. DOI: 10.1039/D2RA03554E.
  • Breczko, J.; Grzeskiewicz, B.; Gradzka, E.; Bobrowska, D. M.; Basa, A.; Goclon, J.; Winkler, K. Synthesis of Polyaniline Nanotubes Decorated with Graphene Quantum Dots: Structural & Electrochemical Studies. Electrochim. Acta. 2021, 388, 138614. DOI: 10.1016/j.electacta.2021.138614.
  • Beygisangchin, M.; Baghdadi, A. H.; Kamarudin, S. K.; Rashid, S. A.; Jakmunee, J.; Shaari, N. Recent Progress in Polyaniline and Its Composites; Synthesis, Properties, and Applications. Eur. Polym. J. 2024, 210, 112948. DOI: 10.1016/j.eurpolymj.2024.112948.
  • Zhou, X.; Ma, P.; Wang, A.; Yu, C.; Qian, T.; Wu, S.; Shen, J. Dopamine Fluorescent Sensors Based on Polypyrrole/Graphene Quantum Dots Core/Shell Hybrids. Biosens. Bioelectron. 2015, 64, 404–410. DOI: 10.1016/j.bios.2014.09.038.
  • Liu, R.; Mahurin, S. M.; Li, C.; Unocic, R. R.; Idrobo, J. C.; Gao, H.; Pennycook, S. J.; Dai, S. Dopamine as a Carbon Source: The Controlled Synthesis of Hollow Carbon Spheres and Yolk‐Structured Carbon Nanocomposites. Angew. Chem-Int. Ed. 2011, 50(30), 6799. DOI: 10.1002/anie.201102070.
  • Vatanpour, V.; Teber, O.; Mehrabi, M.; Koyuncu, I. Polyvinyl Alcohol-Based Separation Membranes: A Comprehensive Review on Fabrication Techniques, Applications and Future Prospective. Mater. Today Chem. 2023, 28, 101381. DOI: 10.1016/j.mtchem.2023.101381.
  • Riahi, Z.; Khan, A.; Rhim, J.-W.; Shin, G. H.; Kim, J. T. Gelatin/Poly (Vinyl Alcohol)-Based Dual Functional Composite Films Integrated with Metal-Organic Frameworks and Anthocyanin for Active and Intelligent Food Packaging. Int. J. Biol. Macromol. 2023, 249, 126040. DOI: 10.1016/j.ijbiomac.2023.126040.
  • Abral, H.; Atmajaya, A.; Mahardika, M.; Hafizulhaq, F.; Handayani, D.; Sapuan, S.; Ilyas, R. Effect of Ultrasonication Duration of Polyvinyl Alcohol (PVA) Gel on Characterizations of PVA Film. J. Mater. Res. Technol. 2020, 9(2), 2477–2486. DOI: 10.1016/j.jmrt.2019.12.078.
  • Nguyen, V. T.; Ha, L. Q.; Van, L. C. T.; Huynh, P. T. B.; Nguyen, D. M.; Nguyen, V. P.; Tran, T. H.; Hoang, D. Antibiotics Tetracycline Adsorption and Flame-Retardant Capacity of Eco-Friendly Aerogel-Based Nanocellulose, Graphene Oxide, Polyvinyl Alcohol, and Sodium Bicarbonate. J. Environ. Chem. Eng. 2023, 11(2), 109523. DOI: 10.1016/j.jece.2023.109523.
  • Rani, P.; Deshmukh, K.; Kadlec, J.; Karthik, T. K.; Pasha, S. K. Dielectric Properties of Graphene/nano-Fe2O3 Filled Poly (Vinyl Alcohol)/Chitosan Blends. Mater. Chem. Phys. 2023, 295, 126986. DOI: 10.1016/j.matchemphys.2022.126986.
  • Du, J.; Zhu, W.; She, X.; Yu, Q.; Yang, Q.; Zhang, D.; Chen, J. A Robust and Fluorescent Nanocomposite Hydrogel with an Interpenetrating Polymer Network Based on Graphene Quantum Dots. Polym. Eng. Sci. 2023, 63(7), 2169–2179. DOI: 10.1002/pen.26354.
  • Sattariazar, S.; Ebrahimi, S. N.; Arsalani, N. Enhancing the Properties of Electrospun Polyvinyl Alcohol/Oxidized Sodium Alginate Nanofibers with Fluorescence Carbon Dots: Preparation and Characterization. Int. J. Pharmaceutics. 2023, 644, 123358. DOI: 10.1016/j.ijpharm.2023.123358.
  • Li, M.; Chen, T.; Gooding, J. J.; Liu, J. Review of Carbon and Graphene Quantum Dots for Sensing. ACS Sens. 2019, 4(7), 1732–1748. DOI: 10.1021/acssensors.9b00514.
  • Das, R. C.; Gogoi, K. K.; Das, N. S.; Chowdhury, A. Optimization of Quantum Yield of Highly Luminescent Graphene Oxide Quantum Dots and Their Application in Resistive Memory Devices. Semicond. Sci. Technol. 2019, 34(12), 125016. DOI: 10.1088/1361-6641/ab5175.
  • Ogi, T.; Iwasaki, H.; Aishima, K.; Iskandar, F.; Wang, W.-N.; Takimiya, K.; Okuyama, K. Transient Nature of Graphene Quantum Dot Formation via a Hydrothermal Reaction. Rsc. Adv. 2014, 4(99), 55709–55715. DOI: 10.1039/C4RA09159K.
  • Liu, Z.; Li, F.; Luo, Y.; Li, M.; Hu, G.; Pu, X.; Tang, T.; Wen, J.; Li, X.; Li, W. Size Effect of Graphene Quantum Dots on Photoluminescence. Molecules. 2021, 26(13), 3922. DOI: 10.3390/molecules26133922.
  • Kharangarh, P. R.; Ravindra, N. M.; Singh, G.; Umapathy, S. Synthesis of Luminescent Graphene Quantum Dots from Biomass Waste Materials for Energy‐Related Applications—An Overview. Energy Storage. 2023, 5(3), e390. DOI: 10.1002/est2.390.
  • Nivedhitha, D. M.; Jeyanthi, S. Polyvinylidene Fluoride, an Advanced Futuristic Smart Polymer Material: A Comprehensive Review. Polym. Adv. Techs. 2023, 34(2), 474–505. DOI: 10.1002/pat.5914.
  • Chaurasiya, A.; Pal, P.; Vas, J. V.; Kumar, D.; Piramanayagam, S.; Singh, A.; Medwal, R.; Rawat, R. S. Nickel Ferrite Embedded Polyvinylidene Fluoride Composite Based Flexible Magneto-Electric Systems. Ceram. Int. 2020, 46(16), 25873–25880. DOI: 10.1016/j.ceramint.2020.07.070.
  • Schmitz, D. P.; Soares, B. G.; Barra, G. M.; Santana, L. Sandwich Structures Based on Fused Filament Fabrication 3D‐Printed Polylactic Acid Honeycomb and Poly (Vinylidene Fluoride) Nanocomposites for Microwave Absorbing Applications. Polym. Compos. 2023, 44(4), 2250–2261. DOI: 10.1002/pc.27240.
  • Chandran, A. M.; Varun, S.; Karumuthil, S. C.; Varghese, S.; Mural, P. K. S. Zinc Oxide Nanoparticles Coated with (3-Aminopropyl) Triethoxysilane As Additives for Boosting the Dielectric, Ferroelectric, and Piezoelectric Properties of Poly (Vinylidene Fluoride) Films for Energy Harvesting. Acs Appl. Nano Mater. 2021, 4(2), 1798–1809. DOI: 10.1021/acsanm.0c03214.
  • Adaval, A.; Chinya, I.; Bhatt, B. B.; Kumar, S.; Gupta, D.; Samajdar, I.; Aslam, M.; Turney, T. W.; Simon, G. P.; Bhattacharyya, A. R. Poly (Vinylidene Fluoride)/Graphene Oxide Nanocomposites for Piezoelectric Applications: Processing, Structure, Dielectric and Ferroelectric Properties. Nano-Struct. Nano-Object. 2022, 31, 100899. DOI: 10.1016/j.nanoso.2022.100899.
  • Jayasekara, A. S.; Cebe, P. Quantitative Analysis of Polar Crystalline Fractions in Poly (Vinylidene Fluoride) Electrospun Fibers and Electrosprayed Films. Polymer. 2023, 281, 126140. DOI: 10.1016/j.polymer.2023.126140.
  • Cerrada, M. L.; Arranz-Andrés, J.; Caballero-González, A.; Blázquez-Blázquez, E.; Pérez, E. The β Form in PVDF Nanocomposites with Carbon Nanotubes: Structural Features and Properties. Polymers. 2023, 15(6), 1491. DOI: 10.3390/polym15061491.
  • Batra, A.; Sampson, J.; Davis, A.; Currie, J.; Vaseashta, A. Electrospun Nanofibers Doped with PVDF and PLZT Nanoparticles for Potential Biomedical and Energy Harvesting Applications. J. Mater. Sci. Mater. Electron. 2023, 34(22), 1654. DOI: 10.1007/s10854-023-11066-6.
  • Badatya, S.; Kumar, A.; Sharma, C.; Srivastava, A. K.; Chaurasia, J. P.; Gupta, M. K. Transparent Flexible Graphene Quantum Dot-(PVDF-HFP) Piezoelectric Nanogenerator. Mater. Lett. 2021, 290, 129493. DOI: 10.1016/j.matlet.2021.129493.
  • Cho, S.; Lee, J. S.; Jang, J. Poly (Vinylidene Fluoride)/nh2-Treated Graphene Nanodot/Reduced Graphene Oxide Nanocomposites with Enhanced Dielectric Performance for Ultrahigh Energy Density Capacitor. ACS Appl. Mater. Interfaces. 2015, 7(18), 9668–9681. DOI: 10.1021/acsami.5b01430.
  • Zeng, Z.; Yu, D.; He, Z.; Liu, J.; Xiao, F.-X.; Zhang, Y.; Wang, R.; Bhattacharyya, D.; Tan, T. T. Y. Graphene Oxide Quantum Dots Covalently Functionalized PVDF Membrane with Significantly-Enhanced Bactericidal and Antibiofouling Performances. Sci. Rep. 2016, 6(1), 20142. DOI: 10.1038/srep20142.
  • Ellis, M. W.; Von Spakovsky, M. R.; Nelson, D. J. Fuel Cell Systems: Efficient, Flexible Energy Conversion for the 21st Century. Proc. IEEE 2001, 89(12), 1808–1818. DOI: 10.1109/5.975914.
  • Xing, P.; Robertson, G. P.; Guiver, M. D.; Mikhailenko, S. D.; Wang, K.; Kaliaguine, S. Synthesis and Characterization of Sulfonated Poly (Ether Ether Ketone) for Proton Exchange Membranes. J. Membr. Sci. 2004, 229(1–2), 95–106. DOI: 10.1016/j.memsci.2003.09.019.
  • Zhou, Y.; Chen, B. Investigation of Optimization and Evaluation Criteria for Flow Field in Proton Exchange Membrane Fuel Cell: A Critical Review. Renewable Sustain. Energy Rev. 2023, 185, 113584. DOI: 10.1016/j.rser.2023.113584.
  • Xu, G.; Li, J.; Ma, L.; Xiong, J.; Mansoor, M.; Cai, W.; Cheng, H. Performance Dependence of Swelling-Filling Treated Nafion Membrane on Nano-Structure of Macromolecular Filler. J. Membr. Sci. 2017, 534, 68–72. DOI: 10.1016/j.memsci.2017.04.016.
  • Palanisamy, G.; Oh, T. H.; Thangarasu, S. Modified Cellulose Proton-Exchange Membranes for Direct Methanol Fuel Cells. Polymers. 2023, 15(3), 659. DOI: 10.3390/polym15030659.
  • Chi, X.; Chen, F.; Mo, T.; Li, Y.; Wu, B. Optimal Operating Concentration Control for Direct Methanol Fuel Cell System by Considering Energy Conversion Efficiency. In Book Optimal Operating Concentration Control for Direct Methanol Fuel Cell System by Considering Energy Conversion Efficiency; Tokyo, Japan: IEEE, 2023; pp 364–368.
  • Devi, A. U.; Divya, K.; Kaleekkal, N. J.; Rana, D.; Nagendran, A. Tailored SpvdF-Co-HFP/SGO Nanocomposite Proton Exchange Membranes for Direct Methanol Fuel Cells. Polymer. 2018, 140, 22–32. DOI: 10.1016/j.polymer.2018.02.024.
  • Zakaria, Z.; Kamarudin, S. K.; Wahid, K. A. A. Polymer Electrolyte Membrane Modification in Direct Ethanol Fuel Cells: An Update. J. Appl. Polym. Sci. 2023, 140(4), e53383. DOI: 10.1002/app.53383.
  • Chang, Z.; Guan, L.; Zhang, J.; Zhang, W.; Ma, Q.; Shah, A.; Xing, L.; Su, H.; Xu, Q. Construction of Gradient Catalyst Layer Anode by Incorporating Covalent Organic Framework to Improve Performance of Direct Methanol Fuel Cells. Int. J. Hydrogen Energy. 2022, 47(87), 37013–37024. DOI: 10.1016/j.ijhydene.2022.08.249.
  • Nechitailov, A. A.; Volovitch, P.; Glebova, N. V.; Krasnova, A. Features of the Degradation of the Proton-Conducting Polymer Nafion in Highly Porous Electrodes of PEM Fuel Cells. Membranes. 2023, 13(3), 342. DOI: 10.3390/membranes13030342.
  • Ke, Y.; Yuan, W.; Liu, Q.; Zhou, F.; Guo, W.; Lin, Z.; Zhang, J.; Li, X.; Li, S.; Tang, Y. An Overview of Noncarbon Support Materials for Membrane Electrode Assemblies in Direct Methanol Fuel Cells: Fundamental and Applications. Mater. Des. 2023, 233, 112261. DOI: 10.1016/j.matdes.2023.112261.
  • Dong, D.; Zhang, M.; Xiao, Y.; Yang, Z.; Wang, K.; Fan, M. Quaternized Branched Polyethyleneimine Modified Nitrogen‐Doped Graphene Quantum Dots/Quaternized Polysulfone Composite Anion Exchange Membranes with Improved Performance. Macro Mater. Eng. 2022, 307(3), 2100787. DOI: 10.1002/mame.202100787.
  • Su, H.; Hu, Y. H. Recent Advances in Graphene‐Based Materials for Fuel Cell Applications. Energy Sci. Eng. 2021, 9(7), 958–983. DOI: 10.1002/ese3.833.
  • Yan, Y.; Hou, Y.; Yu, Z.; Tu, L.; Qin, S.; Lan, D.; Chen, S.; Sun, J.; Wang, S. B-Doped Graphene Quantum Dots Implanted into Bimetallic Organic Framework As a Highly Active and Robust Cathodic Catalyst in the Microbial Fuel Cell. Chemosphere. 2022, 286, 131908. DOI: 10.1016/j.chemosphere.2021.131908.
  • Shukla, A.; Dhanasekaran, P.; Nagaraju, N.; Bhat, S. D.; Pillai, V. K. A Facile Synthesis of Graphene Nanoribbon-Quantum Dot Hybrids and Their Application for Composite Electrolyte Membrane in Direct Methanol Fuel Cells. Electrochim. Acta. 2019, 297, 267–280. DOI: 10.1016/j.electacta.2018.11.162.
  • Linder, C.; Kedem, O. History of Nanofiltration Membranes from 1960 to 1990. Nanofiltration Princ. Appl. New Mater. 2021, 1, 1–34.
  • Covaliu-Mierlă, C. I.; Păunescu, O.; Iovu, H. Recent Advances in Membranes Used for Nanofiltration to Remove Heavy Metals from Wastewater: A Review. Membranes. 2023, 13(7), 643. DOI: 10.3390/membranes13070643.
  • Suresh, R.; Subramaniyan, R.; Chenniappan, M. Recent Advancements and Research Perspectives in Emerging and Advanced Wastewater Membrane Technologies. In Sustainable Industrial Wastewater Treatment and Pollution Control; Maulin, P. S., Eds. Springer: Singapore, 2023; pp 169–183.
  • McCutcheon, J. R.; Mauter, M. S. Fixing the Desalination Membrane Pipeline. Science. 2023, 380(6642), 242–244. DOI: 10.1126/science.ade5313.
  • Yu, C.; Yin, B. H.; Wang, Y.; Luo, S.; Wang, X. Advances in Membrane-Based Chiral Separation. Coord. Chem. Rev. 2023, 495, 215392. DOI: 10.1016/j.ccr.2023.215392.
  • Punrat, E.; Maksuk, C.; Chuanuwatanakul, S.; Wonsawat, W.; Chailapakul, O. Polyaniline/Graphene Quantum Dot-Modified Screen-Printed Carbon Electrode for the Rapid Determination of Cr (VI) Using Stopped-Flow Analysis Coupled with Voltammetric Technique. Talanta. 2016, 150, 198–205. DOI: 10.1016/j.talanta.2015.12.016.
  • Liu, J.; Wang, Z.; Li, W.; Wang, X.; Su, Y. Graphene Quantum Dots Enhanced Ultrathin Nanofilms and Arginine Engineered Nanofiltration Membranes with Ultra-High Separation Performance. Desalination. 2023, 547, 116232. DOI: 10.1016/j.desal.2022.116232.
  • Sreeprasad, T.; Nguyen, P.; Alshogeathri, A.; Hibbeler, L.; Martinez, F.; McNeil, N.; Berry, V. Graphene Quantum Dots Interfaced with Single Bacterial Spore for Bio-Electromechanical Devices: A Graphene Cytobot. Sci. Rep. 2015, 5(1), 9138. DOI: 10.1038/srep09138.
  • Yu, T.; Wu, C.; Chen, Z.; Zhang, M.; Hong, Z.; Guo, H.; Shao, W.; Xie, Q. A Facile Co-Deposition Approach to Construct Functionalized Graphene Quantum Dots Self-Cleaning Nanofiltration Membranes. Nanomaterials. 2021, 12(1), 41. DOI: 10.3390/nano12010041.
  • Zhang, C.; Wei, K.; Zhang, W.; Bai, Y.; Sun, Y.; Gu, J. Graphene Oxide Quantum Dots Incorporated into a Thin Film Nanocomposite Membrane with High Flux and Antifouling Properties for Low-Pressure Nanofiltration. ACS Appl. Mater. Interfaces. 2017, 9(12), 11082–11094. DOI: 10.1021/acsami.6b12826.
  • Tshangana, C.; Muleja, A. Graphene Oxide Quantum Dots Membrane: A Hybrid Filtration-Advanced Technology System to Enhance Process of Wastewater Reclamation. Chem. Pap. 2024, 78(2), 1317–1333. DOI: 10.1007/s11696-023-03187-3.
  • Gan, J. Y.; Chong, W. C.; Sim, L. C.; Koo, C. H.; Pang, Y. L.; Mahmoudi, E.; Mohammad, A. W. Novel Carbon Quantum Dots/Silver Blended Polysulfone Membrane with Improved Properties and Enhanced Performance in Tartrazine Dye Removal. Membranes. 2020, 10(8), 175. DOI: 10.3390/membranes10080175.
  • Lecaros, R. L. G.; Matira, A. R.; Tayo, L. L.; Hung, W.-S.; Hu, C.-C.; Tsai, H.-A.; Lee, K.-R.; Lai, J.-Y. Homostructured Graphene Oxide-Graphene Quantum Dots Nanocomposite-Based Membranes with Tunable Interlayer Spacing for the Purification of Butanol. Sep. Purif. Techn. 2022, 283, 120166. DOI: 10.1016/j.seppur.2021.120166.
  • Xiang, Q.; Huang, J.; Huang, H.; Mao, W.; Ye, Z. A Label-Free Electrochemical Platform for the Highly Sensitive Detection of Hepatitis B Virus DNA Using Graphene Quantum Dots. Rsc. Adv. 2018, 8(4), 1820–1825. DOI: 10.1039/C7RA11945C.
  • Sohal, N.; Singla, S.; Malode, S. J.; Basu, S.; Maity, B.; Shetti, N. P. Bioresource-Based Graphene Quantum Dots and Their Applications: A Review. Acs Appl. Nano Mater. 2023, 6(13), 10925–10943. DOI: 10.1021/acsanm.3c02185.
  • Aftab, R. A.; Khan, A. A. P.; Ayaz, M.; Nazim, M.; Asiri, A. M. ‘Graphene Quantum Dots for Optical application’: ‘Graphene Quantum Dots’; Netherlands: Elsevier, 2023; pp 211–225.
  • Zhao, J.; Chen, G.; Zhu, L.; Li, G. Graphene Quantum Dots-Based Platform for the Fabrication of Electrochemical Biosensors. Electrochem. Commun. 2011, 13(1), 31–33. DOI: 10.1016/j.elecom.2010.11.005.
  • Gerber, I. C.; Serp, P. A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts. Chem. Rev. 2019, 120(2), 1250–1349. DOI: 10.1021/acs.chemrev.9b00209.
  • Wu, J.-B.; Lin, M.-L.; Cong, X.; Liu, H.-N.; Tan, P.-H. Raman Spectroscopy of Graphene-Based Materials and Its Applications in Related Devices. Chem. Soc. Rev. 2018, 47(5), 1822–1873. DOI: 10.1039/C6CS00915H.
  • Tang, L.; Ji, R.; Li, X.; Teng, K. S.; Lau, S. P. Energy-Level Structure of Nitrogen-Doped Graphene Quantum Dots. J. Mater. Chem. C. 2013, 1(32), 4908–4915. DOI: 10.1039/c3tc30877d.
  • Niu, Y.; Chen, Y.; Bao, S.; Sun, H.; Wang, Y.; Ge, B.; Li, P.; Hou, Y. Fabrication of Polyarylate Thin-Film Nanocomposite Membrane Based on Graphene Quantum Dots Interlayer for Enhanced Gas Separation Performance. Sep. Purif. Techn. 2022, 293, 121035. DOI: 10.1016/j.seppur.2022.121035.
  • Vinoth, R.; Patil, I. M.; Pandikumar, A.; Kakade, B. A.; Huang, N. M.; Dionysios, D. D.; Neppolian, B. Synergistically Enhanced Electrocatalytic Performance of an N-Doped Graphene Quantum Dot-Decorated 3D MoS2–Graphene Nanohybrid for Oxygen Reduction Reaction. ACS Omega. 2016, 1(5), 971–980. DOI: 10.1021/acsomega.6b00275.
  • Feng, R.; Lei, W.; Sui, X.; Liu, X.; Qi, X.; Tang, K.; Liu, G.; Liu, M. Anchoring Black Phosphorus Quantum Dots on Molybdenum Disulfide Nanosheets: A 0D/2D Nanohybrid with Enhanced visible−and NIR −light Photoactivity. Appl. Catal. B Environ. 2018, 238, 444–453. DOI: 10.1016/j.apcatb.2018.07.052.
  • Kabel, J.; Sharma, S.; Acharya, A.; Zhang, D.; Yap, Y. K. Molybdenum Disulfide Quantum Dots: Properties, Synthesis, and Applications. C. 2021, 7(2), 45. DOI: 10.3390/c7020045.
  • Hau, H. H.; Duong, T. T. H.; Man, N. K.; Nga, T. T. V.; Xuan, C. T.; Le, D. T. T.; Van Toan, N.; Hung, C. M.; Van Duy, N.; Van Hieu, N. Enhanced NO2 Gas-Sensing Performance at Room Temperature Using Exfoliated MoS2 Nanosheets. Sens. Actuators A Phys. 2021, 332, 113137. DOI: 10.1016/j.sna.2021.113137.
  • Huang, Y.; Guo, J.; Kang, Y.; Ai, Y.; Li, C. M. Two Dimensional Atomically Thin MoS 2 Nanosheets and Their Sensing Applications. Nanoscale. 2015, 7(46), 19358–19376. DOI: 10.1039/C5NR06144J.
  • Ruiz, V.; Fernández, I.; Carrasco, P.; Cabañero, G.; Grande, H. J.; Herrán, J. Graphene Quantum Dots as a Novel Sensing Material for Low-Cost Resistive and Fast-Response Humidity Sensors. Sens. Actuators B Chem. 2015, 218, 73–77. DOI: 10.1016/j.snb.2015.04.092.
  • Zheng, P.; Wu, N. Fluorescence and Sensing Applications of Graphene Oxide and Graphene Quantum Dots: A Review. Chemistry–An Asian J. 2017, 12(18), 2343–2353. DOI: 10.1002/asia.201700814.
  • Yang, C.; Wang, Y.; Wu, Z.; Zhang, Z.; Hu, N.; Peng, C. Three-Dimensional MoS2/Reduced Graphene Oxide Nanosheets/Graphene Quantum Dots Hybrids for High-Performance Room-Temperature NO2 Gas Sensors. Nanomaterials. 2022, 12(6), 901. DOI: 10.3390/nano12060901.
  • Hong, S.-Z.; Huang, Q.-Y.; Wu, T.-M. The Room Temperature Highly Sensitive Ammonia Gas Sensor Based on Polyaniline and Nitrogen-Doped Graphene Quantum Dot-Coated Hollow Indium Oxide Nanofiber Composite. Polymers. 2021, 13(21), 3676. DOI: 10.3390/polym13213676.
  • Amooghin, A. E.; Sanaeepur, H.; Pedram, M. Z.; Omidkhah, M.; Kargari, A. New Advances in Polymeric Membranes for CO2 Separation. In Polymer Science: Research Advances, Practical Applications and Educational Aspects; Méndez-Vilas, A., Solano, A., Eds. Formatex Research Center: Badajoz, Spain, 2016; pp 354–368.
  • Drioli, E.; Ali, A.; Macedonio, F. Membrane Distillation: Recent Developments and Perspectives. Desalination. 2015, 356, 56–84. DOI: 10.1016/j.desal.2014.10.028.
  • Sanaeepur, H.; Amooghin, A. E.; Bandehali, S.; Moghadassi, A.; Matsuura, T.; Van der Bruggen, B. Polyimides in Membrane Gas Separation: Monomer’s Molecular Design and Structural Engineering. Prog. Polym. Sci. 2019, 91, 80–125. DOI: 10.1016/j.progpolymsci.2019.02.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.