0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Emerging Advancements in Hybrid Molybdenum Disulfide Polymeric Nanoarchitectures and Multifunctional Applications

ORCID Icon

References

  • Jangra, M.; Thakur, A.; Dam, S.; Chatterjee, S.; Hussain, S. Enhanced Dielectric Properties of MoS2/PVDF Free-Standing, Flexible Films for Energy Harvesting Applications. Mater. Today Commun. 2023, 34, 105109. DOI: 10.1016/j.mtcomm.2022.105109.
  • Sterniša, M.; Centa, U. G.; Drnovšek, A.; Remškar, M.; Možina, S. S. Pseudomonas fragi Biofilm on Stainless Steel (At Low Temperatures) Affects the Survival of Campylobacter jejuni and Listeria Monocytogenes and Their Control by a Polymer Molybdenum Oxide Nanocomposite Coating. Int. J. Food Microbiol. 2023, 394, 110159. DOI: 10.1016/j.ijfoodmicro.2023.110159.
  • Jadhav, P. S.; Humbe, S. S.; Joshi, G. M.; Deshmukh, R. R.; Kaleemulla, S. Polymer Blend Nanoarchitectonics with Exfoliated Molybdenum Disulphide/Polyvinyl Chloride/Nitrocellulose. J. Inorg. Organomet. Polym. Mater. 2023, 1–14.
  • Sethulekshmi, A. S.; Saritha, A.; Joseph, K.; Aprem, A. S.; Sisupal, S. B.; Nair, V. S.; Sidharth, G. Multifunctional Role of Tannic Acid in Improving the Mechanical, Thermal and Antimicrobial Properties of Natural rubber-molybdenum Disulfide Nanocomposites. Int. J. Biol. Macromol. 2023, 225, 351–360. DOI: 10.1016/j.ijbiomac.2022.11.054.
  • Mateen, M.; Cheong, W. C.; Zheng, C.; Talib, S. H.; Zhang, J.; Zhang, X.; Li, Y.; Chen, C.; Li, Y. Molybdenum Atomic Sites Embedded 1D Carbon Nitride Nanotubes as Highly Efficient Bifunctional Photocatalyst for Tetracycline Degradation and Hydrogen Evolution. Chem. Eng. J. 2023, 451, 138305. DOI: 10.1016/j.cej.2022.138305.
  • Chung, J. J.; Kim, T. H.; Saeed, M. A.; Shim, J. W. Laminated Indium-Oxide/Molybdenum-Oxide Nanocomposites for High-Work-Function Electrodes in Organic Photovoltaics and Capacitor Devices. Appl. Surf. Sci. 2023, 610, 155526. DOI: 10.1016/j.apsusc.2022.155526.
  • Lee, M. H.; Lin, C. C.; Kutner, W.; Thomas, J. L.; Lin, C. Y.; Iskierko, Z.; Lin, H. Y. Peptide-Imprinted Conductive Polymer on Continuous Monolayer Molybdenum Disulfide Transferred Electrodes for Electrochemical Sensing of Matrix Metalloproteinase-1 in Lung Cancer Culture Medium. Biosens. & Bioelectr. X. 2023, 13, 100258.
  • Yanalak, G.; Eroglu, Z.; Yılmaz, S.; Bas, S. Z.; Metin, O.; Patir, I. H. Metal Doped Black phosphorus/molybdenum Disulfide (BP/MoS2–Y (Y: Ni, Co)) Heterojunctions for the Photocatalytic Hydrogen Evolution and Electrochemical Nitrite Sensing Applications. Int. J. Hydrogen Energy. 2023, 48(38), 14238–14254. DOI: 10.1016/j.ijhydene.2022.12.258.
  • Jia, Z.; Zhang, X.; Qian, M.; Ma, S.; Jin, Y.; Xiong, Y. Design of ultra-thick graphene-molybdenum Disulfide Electrodes to Reduce Volume Expansion and Capacity Fading by First Principles. J. Alloys Compd. 2023, 939, 168623. DOI: 10.1016/j.jallcom.2022.168623.
  • Li, T.; Gao, S.; Li, K.; Liu, G.; Sheng, X.; Shang, D.; Wu, S.; Chen, S.; Wang, Y.; Wu, S. Tailoring the Phase Evolution of Molybdenum-Based Nanocrystals in Carbon Nanofibers for Enhanced Performance of lithium-ion Batteries. J. Alloys Compd. 2023, 934, 168042. DOI: 10.1016/j.jallcom.2022.168042.
  • Oğul, H.; Agar, O.; Bulut, F.; Kaçal, M. R.; Dilsiz, K.; Polat, H.; Akman, F. A Comparative Neutron and Gamma-Ray Radiation Shielding Investigation of Molybdenum and Boron Filled Polymer Composites. Appl. Radiat. Isot. 2023, 194, 110731. DOI: 10.1016/j.apradiso.2023.110731.
  • Tian, H.; Yang, S.; Wu, X.; Zhang, K. Two-dimensional Molybdenum Disulfide Oxide (O-MoS2) Enhanced Tight Ultrafiltration Membrane with Improved Molecular Separation Performance and Antifouling Properties. Colloids Surf. A 2023, 656, 130328. DOI: 10.1016/j.colsurfa.2022.130328.
  • Anand, K.; Kaur, R.; Arora, A.; Tripathi, S. K. Tuning of Linear and Non-linear Optical Properties of MoS2/PVA Nanocomposites via Ultrasonication. Opt. Mater. 2023, 137, 113523. DOI: 10.1016/j.optmat.2023.113523.
  • Hamdi, E.; Abdelwahab, A.; Farghali, A. A.; Rouby, W. M. E.; Carrasco-Marín, F. 2D Hierarchical NiMoO4 Nanosheets/Activated Carbon Nanocomposites for High Performance Supercapacitors: The Effect of Nickel to Molybdenum Ratios. Materials. 2023, 16(3), 1264. DOI: 10.3390/ma16031264.
  • Raza, S.; Hameed, M. U.; Ghasali, E.; Hayat, A.; Orooji, Y.; Lin, H.; Erk, N. Algae Extract Delamination of Molybdenum Disulfide and Surface Modification with Glycidyl Methacrylate and Polyaniline for the Elimination of Metal Ions from Wastewater. Environ. Res. 2023, 221, 115213. DOI: 10.1016/j.envres.2023.115213.
  • Ahangar, A. M.; Hedayati, M. A.; Maleki, M.; Ghanbari, H.; Valanezhad, A.; Watanabe, I. A Hydrophilic Carbon foam/molybdenum Disulfide Composite as A self-floating Solar Evaporator. RSC Adv. 2023, 13(3), 2181–2189. DOI: 10.1039/D2RA07810D.
  • Wang, X.; Liu, Y.; Fan, K.; Cheng, P.; Xia, H.; Xia, S. Utilization of Carboxyl Group-Grafted Molybdenum Disulfide for Enhancing the Performance of Thin-Film Nanocomposite Nano-Filtration Membranes. Desalination. 2023, 548, 116283. DOI: 10.1016/j.desal.2022.116283.
  • Sethulekshmi, A. S.; Saritha, A.; Joseph, K.; Aprem, A. S.; Sisupal, S. B.; Sidharth, G.; Nair, V. S. Tannic Acid as A Green Exfoliating Agent: A Sustainable Pathway Towards the Development of Natural rubber-molybdenum Disulfide Nanocomposites. Ind. Crops Prod. 2023, 192, 115978. DOI: 10.1016/j.indcrop.2022.115978.
  • Fall, B.; Sall, D. D.; Hémadi, M.; Diaw, A. K. D.; Fall, M.; Randriamahazaka, H.; Thomas, S. Highly Efficient non-enzymatic Electrochemical Glucose Sensor Based on Carbon Nanotubes Functionalized by Molybdenum Disulfide and Decorated with Nickel Nanoparticles (GCE/CNT/MoS2/NiNPs). Sens. Act. Rep. 2023, 5, 100136. DOI: 10.1016/j.snr.2022.100136.
  • Zhao, M.; Liu, L.; Zhang, B.; Sun, M.; Zhang, X.; Zhang, X.; Li, J.; Wang, L. Epoxy Composites with Functionalized Molybdenum Disulfide Nanoplatelet Additives. RSC Adv. 2018, 8(61), 35170–35178. DOI: 10.1039/C8RA07448H.
  • Chhetri, S.; Adak, N. C.; Samanta, P.; Mandal, N.; Kuila, T.; Murmu, N. C. Investigation of Mechanical and Thermal Properties of the Cetyltrimethylammonium Bromide Functionalized Molybdenum Disulfide (MoS2)/epoxy Composites. Polym. Bull. 2018, 75(1), 327–343. DOI: 10.1007/s00289-017-2037-8.
  • Zhou, K.; Liu, J.; Zeng, W.; Hu, Y.; Gui, Z. In Situ Synthesis, Morphology, and Fundamental Properties of polymer/MoS2 Nanocomposites. Compos. Sci. Technol. 2015, 107, 120–128. DOI: 10.1016/j.compscitech.2014.11.017.
  • Feng, X.; Wen, P.; Cheng, Y.; Liu, L.; Tai, Q.; Hu, Y.; Liew, K. M. Defect-free MoS2 Nanosheets: Advanced Nanofillers for Polymer Nanocomposites. Compos. A Appl. Sci. Manuf. 2016, 81, 61–68. DOI: 10.1016/j.compositesa.2015.11.002.
  • Wang, D.; Song, L.; Zhou, K.; Yu, X.; Hu, Y.; Wang, J. Anomalous nano-barrier Effects of Ultrathin Molybdenum Disulfide Nanosheets for Improving the Flame Retardance of Polymer Nanocomposites. J. Mater. Chem. A 2015, 3(27), 14307–14317. DOI: 10.1039/C5TA01720C.
  • Chen, B.; Ni, B.-J.; Liu, W.-T.; Ye, Q.-Y.; Liu, S.-Y.; Zhang, H.-X.; Yoon, K.-B. Mechanical Properties of Epoxy Nanocomposites Filled with Melamine Functionalized Molybdenum Disulfide. RSC Adv. 2018, 8(36), 20450–20455. DOI: 10.1039/C8RA02689K.
  • Eksik, O.; Gao, J.; Shojaee, A. S.; Thomas, A.; Chow, P.; Bartolucci, S. F.; Lucca, D. A.; Koratkar, N. Epoxy Nanocomposites with Two-Dimensional Transition Metal Dichalcogenide Additives. ACS Nano 2014, 8(5), 5282–5289. DOI: 10.1021/nn5014098.
  • Sahu, M.; Narashimhan, L.; Prakash, O.; Raichur, A. M. Noncovalently Functionalized Tungsten Disulfide Nanosheets for Enhanced Mechanical and Thermal Properties of Epoxy Nanocomposites. ACS Appl. Mater. Interfaces 2017, 9(16), 14347–14357. DOI: 10.1021/acsami.7b01608.
  • Amaral, L. O.; Daniel-da-Silva, A. L. MoS 2 and MoS 2 Nanocomposites for Adsorption and Photodegradation of Water Pollutants: A Review. Molecules 2022, 27(20), 6782. Zhao, X.; Ning, S.; Fu, W.; Pennycook, S.J.; Loh, K.P. Differentiating polymorphs in molybdenum disulfide via electron microscopy. Adv. Mater. 2018, 30, 1802397. DOI: 10.3390/molecules27206782.
  • Mohd Halim, S. N.; Ahmad, F.; Lokman, M. Q.; Sapingi, H. H. J.; Mohamad Taib, M. F.; Wan Nawawi, W. M. F.; Yahaya, H.; Abdul Rahman, M. A.; Shafie, S.; Harun, S. W. First Principles Study and Experimental Investigation of Graphene-Molybdenum Disulphide Nanocomposites Based Passive Saturable Absorber. Photonics 2022, 9(10), 704. DOI: 10.3390/photonics9100704.
  • Ahmadi, M.; Zabihi, O.; Li, Q.; Fakhrhoseini, S.; Naebe, M. A Hydrothermal-Assisted Ball Milling Approach for Scalable Production of High-Quality Func-tionalized MoS2 Nanosheets for Poly-mer Nanocomposites. Materials 2018, 11(10), 1931. DOI: 10.3390/ma11101931.
  • Ou, J. Z.; Chrimes, A. F.; Wang, Y.; Tang, S.-Y.; Strano, M. S.; Kalantar-zadeh, K. Ion-Driven Photoluminescence Modulation of Quasi-Two-Dimensional MoS 2 Nanoflakes for Applications in Biological Systems. Nano Lett 2014, 14(2), 857–863. DOI: 10.1021/nl4042356.
  • Wang, N.; Wei, F.; Qi, Y.; Li, H.; Lu, X.; Zhao, G.; Xu, Q. Synthesis of Strongly Fluorescent Molybdenum Disulfide Nanosheets for cell-targeted Labeling. ACS Appl. Mater. Interfaces 2014, 6(22), 19888–19894. DOI: 10.1021/am505305g.
  • Zhou, K.; Zhang, Q.; Liu, J.; Wang, B.; Jiang, S.; Shi, Y.; Hu, Y.; Gui, Z. Synergetic Effect of Ferrocene and MoS2 in Polystyrene Composites with Enhanced Thermal Stability, Flame Retardant and Smoke Suppression Properties. RSC Adv. 2014, 4(26), 13205–13214. DOI: 10.1039/c3ra46334f.
  • Qian, Y.; Su, W.; Li, L.; Fu, H.; Li, J.; Zhang, Y. Synthesis of 3D Hollow Layered Double Hydroxide-Molybdenum Disulfide Hybrid Materials and Their Application in Flame Retardant Thermoplastic Polyurethane. Polymers. 2022, 14(8), 1506. DOI: 10.3390/polym14081506.
  • Qian, Y.; Su, W.; Li, L.; Zhao, R.; Fu, H.; Li, J.; Zhang, P.; Guo, Q.; Ma, J. Cooperative Effect of ZIF-67-Derived Hollow NiCo-LDH and MoS2 on Enhancing the Flame Retardancy of Thermoplastic Polyurethane. Polymers. 2022, 14(11), 2204. DOI: 10.3390/polym14112204.
  • Zhou, K.; Liu, J.; Shi, Y.; Jiang, S.; Wang, D.; Hu, Y.; Gui, Z. MoS 2 Nanolayers Grown on Carbon Nanotubes: An Advanced Reinforcement for Epoxy Composites. ACS Appl. Mater. Interfaces. 2015, 7(11), 6070–6081. DOI: 10.1021/acsami.5b00762.
  • Haward, R. N. The Physics of Glassy Polymers; Springer Science & Business: Media, Berlin/Heidelberg Germany, 2012.
  • Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS 2 Transistors. Nat. Nanotechnol. 2011, 6(3), 147–150. DOI: 10.1038/nnano.2010.279.
  • Joensen, P.; Frindt, R.; Morrison, S. R. Single-layer MoS2. Mater. Res. Bull. 1986, 21(4), 457–461. DOI: 10.1016/0025-5408(86)90011-5.
  • Matusinovic, Z.; Shukla, R.; Manias, E.; Hogshead, C. G.; Wilkie, C. A. Polystyrene/molybdenum Disulfide and Poly(methyl Methacrylate)/molybdenum Disulfide Nanocomposites with Enhanced Thermal Stability. Polym. Degrad. Stab. 2012, 97(12), 2481–2486. DOI: 10.1016/j.polymdegradstab.2012.07.004.
  • Kim, S. K.; Wie, J. J.; Mahmood, Q.; Park, H. S. Anomalous Nanoinclusion Effects of 2D MoS2 and WS2 Nanosheets on the Mechanical Stiffness of Polymer Nanocomposites. Nanoscale. 2014, 6(13), 7430–7435. DOI: 10.1039/c4nr01208a.
  • Tian, H.; Wu, X.; Zhang, K. Tailoring Morphology and Properties of Tight Utrafiltration Membranes by Two-Dimensional Molybdenum Disulfide for Performance Improvement. Membranes. 2022, 12(11), 1071. DOI: 10.3390/membranes12111071.
  • Tian, H.; Wu, X.; Zhang, K. Polydopamine-Assisted Two- Dimensional Molybdenum Disulfide (MoS2)-Modified PES Tight Ultrafiltration Mixed-Matrix Membranes: Enhanced Dye Separation Performance. Membranes. 2021, 11(2), 96. DOI: 10.3390/membranes11020096.
  • Shriraj Rao, Y.; Shivamurthy, B.; Subbarao Mohan, N.; Shetty, N.; Mavinkere Rangappa, S.; Siengchin, S. Investigation of Tensile proper-ties, Hardness, and Morphology of h-BN and MoS 2 Filler Modified Carbon fabric/epoxy compo-sites. Cogent Eng. 2023, 10(1), 2178129. DOI: 10.1080/23311916.2023.2178129.
  • Zhang, S.; Guo, S.; Li, A.; Liu, D.; Sun, H.; Zhao, F. Low-cost Bauxite residue-MoS2 Possessing Adsorption and Photocatalysis Ability for Removing Organic Pollutants in Wastewater. Sep. Purif. Technol. 2022, 283, 120144. DOI: 10.1016/j.seppur.2021.120144.
  • Zhang, H. X.; Ko, E. B.; Park, J. H.; Moon, Y. K.; Zhang, X. Q.; Yoon, K. B. Preparation and Properties of PE/MoS2 Nanocomposites with an exfoliated-MoS2/MgCl2 -supported Ziegler–Natta Catalyst via an in Situ Polymerization. Compos. A. 2017, 93, 82–87. DOI: 10.1016/j.compositesa.2016.11.008.
  • Jin, Y. H.; Park, H. J.; Im, S. S.; Kwak, S. Y.; Kwak, S. Polyethylene/clay Nanocomposite by in Situ Exfoliation of Montmorillonite during Ziegler–Natta Polymerization of Ethylene. Macromol. Rapid Commun. 2002, 23(2), 135–140. DOI: 10.1002/1521-3927(20020101)23:2<135::AID-MARC135>3.0.CO;2-T.
  • Naffakh, M.; Marco, C.; Gómez-Fatou, M. Isothermal Crystallization Kinetics of Novel Isotactic polypropylene/MoS 2 Inorganic Nanotube Nanocomposites. In J. Phys. Chem. B, 2011; Vol. 115 pp 2248–2255. Polymers 2017, 9, 490 10 of 10.
  • Zhou, K.; Jiang, S.; Bao, C.; Song, L.; Wang, B.; Tang, G.; Hu, Y.; Gui, Z. Preparation of Poly(vinyl Alcohol) Nanocomposites with Molybdenum Disulfide (MoS2): Structural Characteristics and Markedly Enhanced Properties. RSC Adv. 2012, 2(31), 11695–11703. DOI: 10.1039/c2ra21719h.
  • Feng, X.; Xing, W.; Liu, J.; Qiu, S.; Hu, Y.; Liew, K. M. Reinforcement of organo-modified Molybdenum Disulfide Nanosheets on the Mechanical and Thermal Properties of Polyurethane Acrylate Films. Compos. Sci. Technol. 2016, 137, 188–195. DOI: 10.1016/j.compscitech.2016.11.002.
  • Özugur Uysal, B.; Nay R, S.; Açba, M.; Ç.t.r, B.; Durmaz, S.; Koço. Glu, S.; Yld.z, E.; Pekcan, Ö. 2D Materials (WS2, MoS2, MoSe2) Enhanced Polyacrylamide Gels for Multifunc-tional Applications. Gels. 2022, 8(8), 465. DOI: 10.3390/gels8080465.
  • Liang, H.; Bai, J.; Xu, T.; Li, C. Enhancing Photocatalytic Performance of Heterostructure MoS2/g-C3N4 Embeded in PAN Frameworks by Electrospining Process. Mater. Sci. Semicond. Process. 2021, 121, 105414. DOI: 10.1016/j.mssp.2020.105414.
  • Mahalakshmi, G.; Rajeswari, M.; Ponnarasi, P. Synthesis of few-layer g-C3N4 nanosheets-coated MoS2/TiO2 Heterojunction Photocatalysts for photo-degradation of Methyl Orange (MO) and 4 Nitrophenol (4-NP) Pollutants. Inorg. Chem. Commun. 2020, 120, 108146. DOI: 10.1016/j.inoche.2020.108146.
  • Mahalakshmi, G.; Rajeswari, M.; Ponnarasi, P. Fabrication of Dandelion clock-inspired Preparation of core-shell TiO2@MoS2 Composites for Unprecedented High Visible light-driven Photocatalytic Performance. J. Mater. Sci. Mater. Electron. 2020, 31(24), 22252–22264. DOI: 10.1007/s10854-020-04726-4.
  • Abraham, T.; Priyanka, R. N.; Joseph, S.; Plathanam, N. J.; Gigimol, M. G.; Mathew, B. Flower-like MoS2/BiFeO3 Doped Silver Orthophosphate Catalyst for visible-light Assisted Treatment of Refractory Organic Pollutants. Appl. Mater. Today. 2020, 21, 100845. DOI: 10.1016/j.apmt.2020.100845.
  • Khabiri, G.; Aboraia, A. M.; Soliman, M.; Guda, A. A.; Butova, V. V.; Yahia, I. S.; Soldatov, A. V. A Novel -Fe2O3@MoS2 QDs Heterostructure for Enhanced visible-light Photocatalytic Performance Using Ultrasonication Approach. Ceram. Int. 2020, 46(11), 19600–19608. DOI: 10.1016/j.ceramint.2020.05.021.
  • Chen, L.; Chuang, Y.; Nguyen, T. B.; Chang, J. H.; Lam, S. S.; Chen, C. W.; Dong, C. D. Novel Molybdenum Disulfide Heterostructures Nanohybrids with Enhanced visible-light-induced Photocatalytic Activity Towards Organic Dyes. J. Alloys. Compd. 2020, 848, 156448. DOI: 10.1016/j.jallcom.2020.156448.
  • Chen, L.; Huang, C. P.; Chuang, Y.; Nguyen, T. B.; Chen, C. W.; Dong, C. D. Z -scheme MoS 2 /Tio 2/graphene Nanohybrid Photocatalysts for Visible light-induced Degradation for Highly Efficient Water Disinfection and Antibacterial Activity. New J. Chem. 2022, 46(29), 14159–14169. DOI: 10.1039/D2NJ01824A.
  • Chen, L.; Chuang, Y.; Chen, C. W.; Dong, C. D. Facile Synthesis of MoS 2 /Zno Quantum Dots for Enhanced visible-light Photocatalytic Performance and Antibacterial Applications. Nano Struct. Nano Objects. 2022, 30, 100873. DOI: 10.1016/j.nanoso.2022.100873.
  • Ahamad, T.; Naushad, M.; Alzaharani, Y.; Alshehri, S. M. Photocatalytic Degradation of bisphenol-A with g-C3N4/MoS2–PANI Nanocomposite: Kinetics, Main Active Species, Intermediates and Pathways. J. Mol. Liq. 2020, 311, 113339. DOI: 10.1016/j.molliq.2020.113339.
  • Zou, X.; Zhao, X.; Zhang, J.; Lv, W.; Qiu, L.; Zhang, Z. Photocatalytic Degradation of Ranitidine and Reduction of Nitrosamine Dimethylamine Formation Potential over MXene–Ti3 C2 /Mos2 under Visible Light Irradiation. J. Hazard. Mater. 2021, 413, 125424. DOI: 10.1016/j.jhazmat.2021.125424.
  • Shi, Z.; Zhang, Y.; Duoerkun, G.; Cao, W.; Liu, T.; Zhang, L.; Liu, J.; Li, M.; Chen, Z. Fabrication of MoS 2 /Biobr Heterojunctions on Carbon Fibers as a Weaveable Photocatalyst for Tetracycline Hydrochloride Degradation and Cr(vi) Reduction under Visible Light. Environ. Sci. Nano. 2020, 7(9), 2708–2722. DOI: 10.1039/D0EN00551G.
  • Sahu, M.; Narasimhan, L.; Raichur, A. M.; Sover, A.; Ciobanu, R. C.; Lucanu, N.; Aradoaei, M. Improving Fracture Toughness of Tetrafunctional Epoxy with Functionalized 2D Molybdenum Disulfide Nanosheets. Polymers. 2021, 13(24), 4440. DOI: 10.3390/polym13244440.
  • Liu, C.; Li, M.; Shen, Q.; Chen, H. Preparation and Tribological Properties of Modified MoS2/SiC/Epoxy Composites. Materials 2021, 14(7), 1731. DOI: 10.3390/ma14071731.
  • Lee, H. S.; Min, S. W.; Park, M. K.; Lee, Y. T.; Jeon, P. J.; Kim, J. H.; Ryu, S.; Im, S. MoS 2 Nanosheets for Top-Gate Nonvolatile Memory Transistor Channel. Small. 2012, 8(20), 3111–3115. DOI: 10.1002/smll.201200752.
  • Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. MoS 2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2011, 133(19), 7296–7299. DOI: 10.1021/ja201269b.
  • Xiang, Q.; Yu, J.; Jaroniec, M. Synergetic Effect of MoS 2 and Graphene as Cocatalysts for Enhanced Photocatalytic H 2 Production Activity of TiO2 Nanoparticles. J. Am. Chem. Soc. 2012, 134(15), 6575–6578. DOI: 10.1021/ja302846n.
  • Kim, J.; Byun, S.; Smith, A. J.; Yu, J.; Huang, J. Enhanced Electrocatalytic Properties of transition-metal Dichalcogenides Sheets by Spontaneous Gold Nanoparticle Decoration. J. Phys. Chem. Lett. 2013, 4(8), 1227–1232. DOI: 10.1021/jz400507t.
  • Xie, A.; Lin, X.; Zhang, C.; Cheng, S.; Dong, W.; Wu, F. Oxygen Vacancy Mediated Polymerization of Pyrrole on MoO3 to Construct Dielectric Nanocomposites for Electromagnetic Waves Absorption Application. J. Alloys Compd. 2023, 938, 168523. DOI: 10.1016/j.jallcom.2022.168523.
  • Feng, W.; Chen, L.; Qin, M.; Zhou, X.; Zhang, Q.; Miao, Y.; Qiu, K.; Zhang, Y.; He, C. Flower-like PEGylated MoS2 Nanoflakes for near-infrared Photothermal Cancer Therapy. Sci. Rep. 2015, 5(1), 17422. DOI: 10.1038/srep17422.
  • Yin, W.; Yu, J.; Lv, F.; Yan, L.; Zheng, L. R.; Gu, Z.; Zhao, Y. Functionalized Nano-MoS 2 with Peroxidase Catalytic and Near-Infrared Photothermal Activities for Safe and Synergetic Wound Antibacterial Applications. ACS Nano. 2016, 10(12), 11000–11011. DOI: 10.1021/acsnano.6b05810.
  • Malagrino, T. R. S.; Godoy, A. P.; Barbosa, J. M.; Lima, A. G. T.; Sousa, N. C. O.; Pedrotti, J. J.; Garcia, P. S.; Paniago, R. M.; Andrade, L. M.; Domingues, S. H., et al. Multifunctional Hybrid MoS2-PEGylated/Au Nanostructures with Potential Theranostic Applications in Biomedicine. Nanomaterials 2022, 12, 2053. DOI: 10.3390/nano12122053.
  • Zhang, H.; Zhang, X.; Yoon, K. Preparation of Isotactic Polypropylene/Exfoliated MoS2 Nanocomposites via in Situ Intercalative Polymerization. Polymers 2017, 9(10), 490. DOI: 10.3390/polym9100490.
  • Massey, A. T.; Gusain, R.; Kumari, S.; Khatri, O. P. Hierarchical Microspheres of MoS2 Nanosheets: Efficient and Regenerative Adsorbent for Removal of Water-Soluble Dyes. Ind. Eng. Chem. Res. 2016, 55, 7124–7131. DOI: 10.1021/acs.iecr.6b01115.
  • Tong, S.; Deng, H.; Wang, L.; Huang, T.; Liu, S.; Wang, J. Multi-functional Nanohybrid of Ultrathin Molybdenum Disulfide Nanosheets Decorated with Cerium Oxide Nanoparticles for Preferential Uptake of Lead (II) Ions. Chem. Eng. J. 2018, 335, 22–31. DOI: 10.1016/j.cej.2017.10.056.
  • Jia, Q.; Huang, X.; Wang, G.; Diao, J.; Jiang, P. MoS2 Nanosheet Superstructures Based Polymer Composites for High-Dielectric and Electrical Energy Storage Applications. J. Phys. Chem. C. 2016, 120, 10206–10214.
  • Chai, W. S.; Cheun, J. Y.; Kumar, P. S.; Mubashir, M.; Majeed, Z.; Banat, F.; Ho, S.-H.; Show, P. L. A Review on Conventional and Novel Materials Towards Heavy Metal Adsorption in Wastewater Treatment Application. J. Clean. Prod. 2021, 296, 126589. DOI: 10.1016/j.jclepro.2021.126589.
  • Mohana Roopan, S.; Khan, M. A. MoS2 Based Ternary Composites: Review on Heterogeneous Materials as Catalyst for Photocatalytic Degradation. Catal. Rev. 2021, 1–74.
  • Rani, A.; Singh, K.; Sharma, P. Investigation of Visible Light Photocatalytic Degradation of Organic Dyes by MoS2 Nanosheets Synthesized by Different Routes. Bull. Mater. Sci. 2022, 45, 63. DOI: 10.1007/s12034-022-02655-y.
  • Lai, M. T. L.; Lee, K. M.; Yang, T. C. K.; Pan, G. T.; Lai, C. W.; Chen, C.-Y.; Johan, M. R.; Juan, J. C. The Improved Photocatalytic Activity of Highly Expanded MoS 2 under Visible Light Emitting Diodes. Nanoscale Adv. 2021, 3(4), 1106–1120. DOI: 10.1039/D0NA00936A.
  • Xu, H.; Zhu, J.; Ma, Q.; Ma, J.; Bai, H.; Chen, L.; Mu, S. Two-Dimensional MoS2: Structural Properties, Synthesis Methods, and Regulation Strategies toward Oxygen Reduction. Micromachines 2021, 12(3), 240. DOI: 10.3390/mi12030240.
  • Li, H.; Yu, K.; Lei, X.; Guo, B.; Li, C.; Fu, H.; Zhu, Z. Synthesis of the MoS2 @cuo Heterogeneous Structure with Improved Photocatalysis Performance and H 2 O Adsorption Analysis. Dalton Trans. 2015, 44, 10438–10447. DOI: 10.1039/C5DT01125F.
  • Trang Phan, T. T.; Truong, T. T.; Huu, H. T.; Nguyen, L. T.; Nguyen, V. T.; Nguyen, H. L.; Vo, V. Visible Light-Driven Mn-MoS2/rGO Composite Photocatalysts for the Photocatalytic Degradation of Rhodamine B. J. Chem. 2020, 2020, 6285484. DOI: 10.1155/2020/6285484.
  • Gopal, R.; Chinnapan, M. M.; Bojarajan, A. K.; Rotte, N. K.; Ponraj, J. S.; Ganesan, R.; Atanas, I.; Nadarajah, M.; Manavalan, R. K.; Gaspar, J. Facile Synthesis and Defect Optimization of 2D-layered MoS2 on TiO2 Heterostructure for Industrial Effluent, Wastewater Treatments. Sci. Rep. 2020, 10, 21625. DOI: 10.1038/s41598-020-78268-4.
  • Jilani, A.; Melaibari, A. A. MoS 2 -Cu/CuO@graphene Heterogeneous Photocatalysis for Enhanced Photocatalytic Degradation of MB from Water. Polymers. 2022, 14(16), 3259. DOI: 10.3390/polym14163259.
  • Matusinovic, Z.; Shukla, R.; Manias, E.; Hogshead, C.; Wilkie, C. Polystyrene/molybdenum disul-fide and Poly (Methyl Methacrylate)/molybdenum Disulfide Nanocomposites with Enhanced ther-mal Stability. Polym. Degrad. Stab. 2012, 97(12), 2481e2486.
  • Wang, Y.; Suo, J.; Wang, D.; Wei, L.; Hou, P.; Pan, J.; Zhu, H. Oriented Molybdenum disulfide-silica/hydrogenated Nitrile Butadiene Rubber Composites: Effects of Nanosheets on Mechanical and Dielectric Properties. Chin J Aeronaut. 2023, 36(1), 413–422. DOI: 10.1016/j.cja.2022.06.007.
  • Idumah, C. I. Molybdenum Disulfide Polymeric Nanoarchitectures and Applications: A Review. 2023. doi:10.1002/pen.26421.
  • Idumah, C. I. Recent Advancements in Fire Retardant Mechanisms of Carbon Nanotubes, Graphene, and Fullerene Polymeric Nanoarchitectures. J. Anal. Appl. Pyrolysis. 2023, 174, 106113. DOI: 10.1016/j.jaap.2023.106113.
  • Idumah, C. I., Ogbu, J. E. Flame Retardant Mechanisms of Montmorillonites, Layered Double Hydroxides and Molybdenum Disulfide Polymeric Nanoarchitectures for Safety in Extreme Environments. Polym. Plast. Technol. Eng. 2024, 63(6), 639–666. DOI: 10.1080/25740881.2023.2301294.
  • Lin, J.; Hou, Y.; Ding, L.; Wang, Y.; Jinhu, H.; Dong, P.; Wang, Q.; Mingliang, M. Synthesis of FePP@ MoS2@ Ni‐MOF Composites for Improving Thermal and Flame Retardant Safety Properties of Polyurea. J. Appl. Polym. Sci. 2024, 141(17), e55295. DOI: 10.1002/app.55295.
  • Odera, R. S.; Idumah, C. I.; Ezeani, E. O.; Okpechi, V. U.; Madu, I. O.; Oyeoka, H. C.; Ugwu, S. C.; Ogbu, J. E. Novel Advancements in Flame Retardant Mechanisms of Halloysite Nanotubes Polymeric Nanoarchitectures. Polym. Plast. Technol. Eng. 2024, 63(3), 312–345. DOI: 10.1080/25740881.2023.2288596.
  • Ogbu, J. E.; Idumah, C. I. Metal Organic Frameworks (Mofs)@ Conducting Polymeric Nanoarchitectures for Electrochemical Energy Storage Applications. Polym. Plast. Technol. Eng. 2024, 63(8), 939–974. DOI: 10.1080/25740881.2024.2310529.
  • Idumah, C. I.; Iwuchukwu, F. U.; Okoye, I.; Ogbu, J. E. Flame Retardant Mechanisms of Metal Organic Frameworks (Mofs) Polymeric Nanoarchitectures. Polym. Plast. Technol. Eng. 2024, 63(2), 161–187. DOI: 10.1080/25740881.2023.2280600.
  • Idumah, C. I. Recently Emerging Trends in Flame Retardancy of Phosphorene Polymeric Nanocomposites and Applications. J. Anal. Appl. Pyrolysis. 2023, 169, 105855. DOI: 10.1016/j.jaap.2022.105855.
  • Idumah, C. I. Emerging Advancements in Flame Retardancy of Polypropylene Nanocomposites. J. Thermoplast. Compos. Mater. 2022, 35(12), 2665–2704. DOI: 10.1177/0892705720930782.
  • Idumah, C. I. Recently Emerging Advancements in Thermal Conductivity and Flame Retardancy of MXene Polymeric Nanoarchitectures. Polym. Plast. Technol. Eng. 2022, 62(4), 510–546. DOI: 10.1080/25740881.2022.2121220.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.