137
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Harmonicity: Behavioral and Neural Evidence for Functionality in Auditory Scene Analysis

ORCID Icon, ORCID Icon & ORCID Icon
Pages 150-172 | Received 07 Aug 2018, Accepted 18 Mar 2019, Published online: 18 Jun 2019

References

  • Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. (1994). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature, 372, 669–672.
  • Bidelman, G., & Krishnan, A. (2009). Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem. The Journal of Neuroscience, 29(42), 13165–13171.
  • Bismarck, G. (1974). Sharpness as an attribute of the timbre of steady sounds. Acta Acustica United with Acustica, 30(3), 159–172.
  • Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11818–11823.
  • Bregman, A. S. (1994). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press.
  • Bregman, A. S. (2015). Progress in understanding auditory scene analysis. Music Perception: An Interdisciplinary Journal, 33(1), 12–19.
  • Cabe, P. A., & Pittenger, J. B. (2000). Human sensitivity to acoustic information from vessel filling. Journal of Experimental Psychology: Human Perception and Performance, 26(1), 313–324.
  • Caclin, A., McAdams, S., Smith, B. K., & Winsberg, S. (2005). Acoustic correlates of timbre space dimensions: A confirmatory study using synthetic tones. Journal of the Acoustical Society of America, 118, 471–482.
  • Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 14, 140–151.
  • Clapp, W. C., Kirk, I. J., Hamm, J. P., Shepherd, D., & Teyler, T. J. (2005). Induction of LTP in the human auditory cortex by sensory stimulation. European Journal of Neuroscience, 22, 1135–1140.
  • Collier, A. K., Wolf, D. H., Valdez, J. N., Turetsky, B. I., Elliott, M. A., Gur, R. E., & Gur, R. C. (2014). Comparison of auditory and visual oddball fMRI in schizophrenia. Schizophrenia Research, 158, 183–188.
  • Craig, A. (2003). Interoception: The sense of the physiological condition of the body. Current Opinions in Neurobiology, 13(4), 500–505.
  • Craig, A. (2009). How do you feel – now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10(1), 59–70.
  • Craik, F. I., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning and Behavior, 11, 671–684.
  • Critchley, H. D. (2005). Neural mechanisms of autonomic, affective, and cognitive integration. Journal of Comparative Neurology, 493(1), 154–166.
  • Damasio, A. R. (1999). The feeling of what happens: Body and emotion in the making of consciousness. New York: Harcourt Brace.
  • Elliott, T. M., Hamilton, L. S., & Theunissen, F. E. (2013). Acoustic structure of the five perceptual dimensions of timbre in orchestral instrument tones. The Journal of the Acoustical Society of America, 133(1), 389–404.
  • Fecteau, S., Armony, J. L., Joanette, Y., & Belin, P. (2004). Is voice processing species-specific in human auditory cortex? An fMRI study. NeuroImage, 23, 840–848.
  • Feynman, R. P., Leighton, R. B., & Sands, M. (1977). The Feynman lectures of physics (Vol. 1). Boston: Addison-Wesley.
  • Gibson, J. J. (1966). The ecological approach to visual perception. Mahwah, New Jersey: Lawrence Erlbaum Associates.
  • Giordano, B. L., & McAdams, S. (2006). Material identification of real impact sounds: Effects of size variation in steel, glass, wood, and plexiglass plates. Journal of the Acoustical Society of America, 119(2), 1171–1181.
  • Goldstein, A. (1980). Thrills in response to music and other stimuli. Physiological Psychology, 8(1), 126–129.
  • Gray, R. (2009). How do batters use visual, auditory, and tactile information about the success of a baseball swing? Research Quarterly for Exercise and Sport, 80(3), 491–501.
  • Green, A. C., Baerentsen, K. B., Stodkilde-Jorgensen, H., Roepstorff, A., & Vuust, P. (2012). Listen, learn, and like! Dorsolateral prefrontal cortex involved in the mere exposure effect in music. Neurology Research International, 2012.
  • Grey, J. M. (1977). Multidimensional perceptual scaling of musical timbres. The Journal of the Acoustical Society of America, 61(5), 1270–1277.
  • Hatherly, S. G. (1892). A treatise on byzantine music. London: A. Gardner.
  • Horovitz, S. G., Skudlarski, P., & Gore, J. C. (2002). Correlations and dissociations between BOLD signal and P300 amplitude in an auditory oddball task: A parametric approach to combining fMRI and ERP. Magnetic Resonance Imaging, 20(4), 319–325.
  • Hout, M. C., Papesh, M. H., & Goldinger, S. D. (2012). Multidimensional scaling. Wiley Interdisciplinary Reviews (Wires): Cognitive Science, 4, 93–103.
  • Huang, S., Belliveau, J. W., Tengshe, C., & Ahveninen, J. (2012). Brain networks of novelty-driven involuntary and cued voluntary auditory attention shifting. PloS one, 7, 8.
  • Huron, D. (2006). Is music an evolutionary adaptation? Annals of the New York Academy of Sciences, 930(1), 43–61.
  • Inui, K., Okamoto, H., Miki, K., Gunji, A., & Kakigi, R. (2005). Serial and parallel processing in the human auditory cortex: A magnetoencephalographic study. Cerebral Cortex, 16(1), 18–30.
  • Johansson, K. G. (2010). What chord was that? A study of strategies among ear players in rock music. In C. F. Thorgersen & S. Karlsen (Eds.), Music, education and innovation (pp. 17–32). Pitea, Sweden: University Press, Lulea University of Technology.
  • Johnston, I. (1989). Measured tones: The interplay of physics and music. New York: Adam Hilger.
  • Kim, D. I., Mathalon, D. H., Ford, J. M., Mannell, M., Turner, J. A., Brown, G. G., … Calhoun, V. D. (2009). Auditory oddball deficits in schizophrenia: An independent component analysis of the fMRI multisite function BIRN study. Schizophrenia Bulletin, 35(1), 67–81.
  • Kober, H., Barrett, L. F., Joseph, J., Bliss-Moreau, E., Lindquist, K., & Wager, T. D. (2008). Functional grouping and cortical-subcortical interactions in emotion: A meta-nalysis of neuroimaging studies. Neuroimage, 42(2), 998–1031.
  • Koelsch, S. (2010). Towards a neural basis of music-evoked emotions. Topics in Cognitive Science, 14(3), 131–137.
  • Koelsch, S., Fritz, T., & Schlaug, G. (2008). Amygdala activity can be modulated by unexpected chord functions during music listening. Neuroreport, 19(18), 1815–1819.
  • Koelsch, S., Fritz, T., von Cramon, D., Maller, K., & Friederici, A. (2006). Investigating emotion with music: An fMRI study. Human Brain Mapping, 27(3), 239–250.
  • Kruskal, J. B., & Wish, M. (1978). Multidimensional scaling. Sage university paper series on quantitative application in the social sciences. Beverly Hills and London: Sage Publications.
  • Leaver, A. M., & Rauschecker, J. P. (2010). Cortical representation of natural complex sounds: Effects of acoustic features and auditory object category. Journal of Neuroscience, 30(22), 7604–7612.
  • LeDoux, J. E. (1992). Emotion and the amygdala. In J. P. Aggleton (Ed.), The amygdala: Neurobiological aspects of emotion, memory, and mental dysfunction (pp. 339–351). New York: Wiley.
  • Lerdahl, F., & Jackendoff, R. (1983). A generative theory of tonal music. Cambridge, Massechusetts: MIT Press.
  • Masataka, N. (2006). Preference for consonance over dissonance by hearing newborns of deaf parents and of hearing parents. Developmental Science, 9(1), 46–50.
  • McBeath, M. K. (2018). Natural regularities and coupled predictive perceptual and cognitive biases: Why we evolved to systematically experience spatial illusions. In T. Hubbard (Ed.), Spatial biases in perception and cognition (pp. 278–294). Cambridge: Cambridge University Press.
  • McBeath, M. K., & Neuhoff, J. G. (2002). The Doppler effect is not what you think it is: Dramatic pitch change due to dynamic intensithy change. Psychonomic Bulletin and Review, 9(2), 306–313.
  • McDermott, J. H., & Oxenham, A. J. (2008). Music perception, pitch, and the auditory system. Current Opinions in Neurobiology, 18(4), 452–463.
  • McKeown, M. J., Makeig, S., Brown, G. G., Jung, T. P., Kindermann, S. S., Bell, A. J., & Sejnowski, T. J. (1998). Analysis of the fMRI data by blind separation into independent spatial components. Human Brain Mapping, 6(3), 160–188.
  • Neuhoff, J. G., & McBeath, M. K. (1996). The Doppler illusion: The influence of dynamic intensity change on perceived pitch. Journal of Experimental Psychology: Human Perception and Performance, 22(4), 970–985.
  • Optiz, B., Mecklinger, A., Cramon, D. Y., & Kruggel, F. (1999). Combining electrophysiological and hemodynamic measures of the auditory oddball. Psychophysiology, 36, 142–147.
  • Orinstein, A. J., & Stevens, M. C. (2014). Brain activity in predominantly-inattentive subtype attention-deficit/hyperactivity disorder during an auditory oddball attention task. Psychiatry Research, 223(2), 121–128.
  • Oxenham, A. J. (2018). How we hear: The perception and neural coding of sound. Annual Review of Psychology, 69, 27–50.
  • Patten, K. J. & McBeath, M. K. (2018). RotCorr and MDStat: New ways to optimize rotation of multidimensional scaling solutions. Paper presented at the 48th annual meeting of the Society for Computer in Psychology, New Orleans, LA, November 2018.
  • Paulus, M. P., & Stein, M. B. (2006). An insular view of anxiety. Biological Psychiatry, 60(4), 383–387.
  • Plomp, R., & Levelt, W. J. (1965). Tonal consonance and critical bandwidth. The Journal of the Acoustical Society of America, 38, 548–560.
  • Rameau, J. P. (1722/1971). Treatise on harmonics. New York: Dover Publications.
  • Roederer, J. G. (1995). The physics and psychophysics of music: An introduction. New York: Springer.
  • Scharine, A. A. (2002). Auditory scene analysis: The role of positive correlation of dynamic changes in intensity and frequency. Ph.D. Dissertation. AZ: Arizona State University.
  • Scharine, A. A., & McBeath, M. K. (in press). Natural regularity of correlated acoustic frequency and intensity in music and speech: Auditory scene analysis mechanisms account for integrality of pitch and loudness. Auditory Perception & Cognition.
  • Schellenberg, E. G., & Trehub, S. (1996b). Children’s discrimination of melodic intervals. Developmental Psychology, 32, 1039–1050.
  • Schellenberg, E. G., & Trehub, S. E. (1996a). Natural musical intervals: Evidence from infant listeners. Psychological Science, 7(5), 272–277.
  • Schmuckler, M. A. (1989). Expectations in music: Investigation of melodic and harmonic processes. Music Perception, 7(2), 109–150.
  • Schouten, J. F. (1968, August 21–28). The perception of timbre. The 6th international congress on acoustics, Tokyo, Japan, (35–44). Tokyo.
  • Seppanen, M., Hamalainen, J., Pesonen, A., & Tervaniemi, M. (2012). Music training enhances rapid neural plasticity of N1 and P2 source activation for unattended sounds. Frontiers in Human Neuroscience, 6, 43.
  • Shapira Lots, I., & Stone, L. (2008). Perception of musical consonance and dissonance: An outcome of neural synchronization. Journal of the Royal Society: Interface, 5(29), 1429–1434.
  • Shepard, R. N. (1964). Circularity in judgments of relative pitch. The Journal of the Acoustical Society of America, 36(12), 2346–2353.
  • Shepard, R. N. (1980). Multidimensional scaling, tree-fitting, and clustering. Science, 210(4468), 390–398.
  • Terhardt, E. (1977). The two-component theory of musical consonance. In E. F. Evans & J. P. Wilson (Eds.), Psychophysics and physiology of hearing (pp. 381–390). London: Academic Press.
  • Trainor, L. J., & Trehub, S. E. (1993a). Musical context effects in infants and adults: Key distance. Journal of Experimental Psychology: Human Perception and Performance, 19(3), 615.
  • Trainor, L. J., & Trehub, S. E. (1993b). What mediates infants’ and adults’ superior processing of the major over the augmented triad? Music Perception, 185–196.
  • van De Geer, J. P., Levelt, W. J., & Plomp, R. (1962). The connotation of musical consonance. Acta Psychologia, 20, 308–319.
  • Von Helmholtz, H. (1877/1930). On the sensations of tone as a physiological basis for the theory of music, Translated by Alexander J. Ellis. London: Longmans, Green, and Company.
  • Vytal, K., & Hamann, S. (2010). Neuroimaging support for discrete neural correlates of basic emotions: A voxel-based meta-analysis. Journal of Cognitive Neuroscience, 22(12), 2864–2885.
  • Wang, X. (2013). The harmonic organization of auditory cortex. Frontiers in Systems Neuroscience, 7, 114.
  • Weigl, M., Mecjlinger, A., & Rosburg, T. (2016). Transcranial direct current stimulations over the left dorsolateral prefrontal cortex modulates auditory mismatch negativity. Clinical Neurophysiology, 127(5), 2263–2272.
  • Wicker, B., Keysers, C., Plailly, J., Royet, J. P., Gallese, V., & Rizzolatti, G. (2003). Both of us disgusted in my insula. Neuron, 40(3), 655–664.
  • Wiseman, R. (2011). LaughLab: The scientific quest for the world’s funniest joke. London: Random House.
  • Worsely, K. A., & Friston, K. J. (1995). Analysis of fMRI time-series revisited-again. Neuroimage, 2(3), 173–181.
  • Wright, P., He, G., Shapira, N. A., Goodman, W. K., & Liu, Y. (2004). Disgust and the insula: FMRI responses to pictures of mutilation and contamination. Neuroreport, 15(15), 2347–2351.
  • Yarkoni, T. (2014). Neurosynth core tools v0.3.1. Zenoob. doi: 10.5281/zenodo.9925
  • Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wagner, T. D. (2011). NeuroSynth: Anew platform for large-scale automated synthesis of human functional neuroimaging data. Frontiers in Neuroinformatics Conference Abstracts: 4th INCF Congress of Neuroinformatics, Boston, MA.
  • Yost, W. A. (1992). Auditory image perception and analysis. Hearing Research, 56, 8–19.
  • Zajonc, R. B. (2001). Mere exposure: A gateway to the subliminal. Current Directions in Psychological Science, 10(6), 224.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.