1,300
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Neural Mechanisms Underlying the Auditory Looming Bias

, , &
Pages 60-73 | Received 15 Jan 2021, Accepted 20 Aug 2021, Published online: 20 Sep 2021

References

  • Bach, D. R., Furl, N., Barnes, G., & Dolan, R. J. (2015). Sustained magnetic responses in temporal cortex reflect instantaneous significance of approaching and receding sounds. PLOS ONE, 10(7), e0134060.
  • Bach, D. R., Neuhoff, J. G., Perrig, W., & Seifritz, E. (2009). Looming sounds as warning signals: The function of motion cues. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 74(1), 28–33.
  • Bach, D. R., Schächinger, H., Neuhoff, J. G., Esposito, F., Salle, F. D., Lehmann, C., … Seifritz, E. (2008). Rising sound intensity: An intrinsic warning cue activating the amygdala. Cerebral Cortex, 18(1), 145–150.
  • Baumgartner, R. (2017). Data from “Asymmetries in behavioral and neural responses to spectral cues demonstrate the generality of auditory looming bias.” Zenodo. doi:https://doi.org/10.5281/zenodo.832899
  • Baumgartner, R., Reed, D. K., Tóth, B., Best, V., Majdak, P., Colburn, H. S., & Shinn-Cunningham, B. (2017). Asymmetries in behavioral and neural responses to spectral cues demonstrate the generality of auditory looming bias. Proceedings of the National Academy of Sciences, 114(36), 9743–9748.
  • Best, V., Baumgartner, R., Lavandier, M., Majdak, P., & Kopčo, N. (2020). Sound externalization: A review of recent research. Trends in Hearing, 24, 2331216520948390.
  • Bidelman, G. M., & Myers, M. H. (2020). Frontal cortex selectively overrides auditory processing to bias perception for looming sonic motion. Brain Research, 1726, 146507.
  • Bizley, J. K., & Cohen, Y. E. (2013). The what, where and how of auditory-object perception. Nature Reviews Neuroscience, 14(10), 693–707.
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, N.J.: L. Erlbaum Associates
  • Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21.
  • Deneux, T., Kempf, A., Daret, A., Ponsot, E., & Bathellier, B. (2016). Temporal asymmetries in auditory coding and perception reflect multi-layered nonlinearities. Nature Communications, 7(1). doi:https://doi.org/10.1038/ncomms12682.
  • Engelen, T., Zhan, M., Sack, A. T., & de Gelder, B. (2018). Dynamic interactions between emotion perception and action preparation for reacting to social threat: A combined cTBS-fMRI study. ENeuro, 5(3), 3.
  • Ghazanfar, A. A., Neuhoff, J. G., & Logothetis, N. K. (2002). Auditory looming perception in rhesus monkeys. Proceedings of the National Academy of Sciences of the United States of America, 99(24), 15755–15757.
  • Gramfort, A., Papadopoulo, T., Olivi, E., & Clerc, M. (2010). OpenMEEG: Opensource software for quasistatic bioelectromagnetics. BioMedical Engineering OnLine, 9(1), 45.
  • Herrmann, B., Augereau, T., & Johnsrude, I. S. (2020). Neural responses and perceptual sensitivity to sound depend on sound-level statistics. Scientific Reports, 10(1), 9571.
  • Lobier, M., Siebenhühner, F., Palva, S., & Palva, J. M. (2014). Phase transfer entropy: A novel phase-based measure for directed connectivity in networks coupled by oscillatory interactions. NeuroImage, 85, 853–872.
  • Majdak, P., Baumgartner, R., & Jenny, C. (2020). Formation of three-dimensional auditory space. In J. Blauert & J. Braasch (Eds.), The technology of binaural understanding (pp. 115–149). Springer International Publishing. doi:https://doi.org/10.1007/978-3-030-00386-9_5
  • Makeig, S., Debener, S., Onton, J., & Delorme, A. (2004). Mining event-related brain dynamics. Trends in Cognitive Sciences, 8(5), 204–210.
  • Mäkinen, V., Tiitinen, H., & May, P. (2005). Auditory event-related responses are generated independently of ongoing brain activity. NeuroImage, 24(4), 961–968.
  • Marek, S., & Dosenbach, N. U. F. (2018). The frontoparietal network: Function, electrophysiology, and importance of individual precision mapping. Dialogues in Clinical Neuroscience, 20(2), 133–140.
  • Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164(1), 177–190.
  • McGuire, A. B., Gillath, O., & Vitevitch, M. S. (2016). Effects of mental resource availability on looming task performance. Attention, Perception, & Psychophysics, 78(1), 107–113.
  • Morrongiello, B. A., Hewitt, K. L., & Gotowiec, A. (1991). Infants’ discrimination of relative distance in the auditory modality: Approaching versus receding sound sources. Infant Behavior and Development, 14(2), 187–208.
  • Neuhoff, J. G. (1998). Perceptual bias for rising tones. Nature, 395(6698), 123–124.
  • Neuhoff, J. G. (2001). An adaptive bias in the perception of looming auditory motion. Ecological Psychology, 13(2), 87–110.
  • Neuhoff, J. G. (2016). Looming sounds are perceived as faster than receding sounds. Cognitive Research: Principles and Implications, 1. doi:https://doi.org/10.1186/s41235-016-0017-4
  • Neuhoff, J. G., Long, K. L., & Worthington, R. C. (2012). Strength and physical fitness predict the perception of looming sounds. Evolution and Human Behavior, 33(4), 318–322.
  • Neuhoff, J. G., Planisek, R., & Seifritz, E. (2009). Adaptive sex differences in auditory motion perception: Looming sounds are special. Journal of Experimental Psychology: Human Perception and Performance, 35(1), 225–234.
  • Nieuwenhuys, R. (1984). Anatomy of the auditory pathways, with emphasis on the brain stem. Advances in Oto-Rhino-Laryngology, 34, 25–38.
  • Orioli, G., Bremner, A. J., & Farroni, T. (2018). Multisensory perception of looming and receding objects in human newborns. Current Biology, 28(22), R1294–R1295.
  • Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details. Methods and Findings in Experimental and Clinical Pharmacology. 24 (Suppl D), 5–12.
  • Romei, V., Murray, M. M., Cappe, C., & Thut, G. (2009). Preperceptual and stimulus-selective enhancement of low-level human visual cortex excitability by sounds. Current Biology, 19(21), 1799–1805.
  • Rushworth, M. F. S., Walton, M. E., Kennerley, S. W., & Bannerman, D. M. (2004). Action sets and decisions in the medial frontal cortex. Trends in Cognitive Sciences, 8(9), 410–417.
  • Seifritz, E., Neuhoff, J. G., Bilecen, D., Scheffler, K., Mustovic, H., Schächinger, H., … Di Salle, F. (2002). Neural processing of auditory looming in the human brain. Current Biology, 12(24), 2147–2151.
  • Singh-Curry, V., & Husain, M. (2009). The functional role of the inferior parietal lobe in the dorsal and ventral stream dichotomy. Neuropsychologia, 47(6), 1434–1448.
  • Stam, C. J., & van Straaten, E. C. W. (2012). The organization of physiological brain networks. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 123(6), 1067–1087.
  • Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011). Brainstorm: A user-friendly application for MEG/EEG analysis. Computational Intelligence and Neuroscience, 2011, 1–13.
  • Teghtsoonian, R., Teghtsoonian, M., & Canévet, G. (2005). Sweep-induced acceleration in loudness change and the “bias for rising intensities.” Perception & Psychophysics, 67(4), 699–712.
  • van der Heijden, K., Rauschecker, J. P., de Gelder, B., & Formisano, E. (2019). Cortical mechanisms of spatial hearing. Nature Reviews Neuroscience, 20(10), 609–623.
  • van Diessen, E., Numan, T., van Dellen, E., van der Kooi, A. W., Boersma, M., Hofman, D., … Stam, C. J. (2015). Opportunities and methodological challenges in EEG and MEG resting state functional brain network research. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 126(8), 1468–1481.
  • Vicente, R., Wibral, M., Lindner, M., & Pipa, G. (2011). Transfer entropy—A model-free measure of effective connectivity for the neurosciences. Journal of Computational Neuroscience, 30(1), 45–67.
  • Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., & Buckner, R. L. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100(6), 3328–3342.
  • Warren, J. D., Zielinski, B. A., Green, G. G. R., Rauschecker, J. P., & Griffiths, T. D. (2002). Perception of sound-source motion by the human brain. Neuron, 34(1), 139–148.