308
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Stability analysis of Gauss-type proximal point method for metrically regular mappings

ORCID Icon | (Reviewing editor)
Article: 1490161 | Received 07 Mar 2018, Accepted 11 Jun 2018, Published online: 11 Jul 2018

References

  • Alom, M. A., Rashid, M. H., & Dey, K. K. (2016). Convergence analysis of general version of Gauss-type proximal point method for metrically regular mappings. Applied Mathematics, 7(11), 1248–1259. doi:10.4236/am.2016.711110
  • Anh, P. N., Muu, L. D., Nguyen, V. H., & Strodiot, J. J. (2005). Using the Banach contraction principle to implement the proximal point method for multivalued monotone variational inequalities. Journal Optim Theory Applications, 124, 285–306. doi:10.1007/s10957-004-0926-0
  • Aragón Artacho, F. J., Dontchev, A. L., & Geoffroy, M. H. (2007). Convergence of the proximal point method for metrically regular mappings. ESAIM Proceedings, 17, 1–8. doi:10.1051/proc:071701
  • Aragón Artacho, F. J., & Geoffroy, M. H. (2007). Uniformity and inexact version of a proximal point method for metrically regular mappings. Journal Mathematical Analysis Applications, 335, 168–183. doi:10.1016/j.jmaa.2007.01.050
  • Aubin, J. P. (1984). Lipschitz behavior of solutions to convex minimization problems. Mathematical Operational Researcher, 9, 87–111. doi:10.1287/moor.9.1.87
  • Aubin, J. P., & Frankowska, H. (1990). Set-valued analysis. Boston: Birkhäuser.
  • Auslender, A., & Teboulle, M. (2000). Lagrangian duality and related multiplier methods for variational inequality problems. SIAM Journal Optimization, 10, 1097–1115. doi:10.1137/S1052623499352656
  • Bauschke, H. H., Burke, J. V., Deutsch, F. R., Hundal, H. S., & Vanderwerff, J. (2005). D., A new proximal point iteration that converges weakly but not in norm. Proceedings Amer Mathematical Social, 133, 1829–1835. doi:10.1090/S0002-9939-05-07719-1
  • Dontchev, A. L. (1996a). The Graves theorem revisited. Journal Convex Analysis, 3, 45–53.
  • Dontchev, A. L. (1996b). Uniform convergence of the Newton method for Aubin continuous maps. Serdica Mathematical Journal, 22, 385–398.
  • Dontchev, A. L., & Hager, W. W. (1994). An inverse mapping theorem for set-valued maps. Proceedings Amer Mathematical Social, 121, 481–498. doi:10.1090/S0002-9939-1994-1215027-7
  • Dontchev, A. L., Lewis, A. S., & Rockafellar, R. T. (2002). The radius of metric regularity. Transactions AMS, 355, 493–517. doi:10.1090/S0002-9947-02-03088-X
  • Dontchev, A. L., & Rockafellar, R. T. (2001). Ample parameterization of variational inclusions. SIAM Journal Optimization, 12, 170–187. doi:10.1137/S1052623400371016
  • Dontchev, A. L., & Rockafellar, R. T. (2004). Regularity and conditioning of solution mappings in variational analysis. Set-Valued Anal, 12, 79–109. doi:10.1023/B:SVAN.0000023394.19482.30
  • Dontchev, A. L., & Rockafellar, R. T. (2009). Implicit functions and solution mappings: A view from variational analysis. New York: Dordrecht, Heidelberg, London, LLC.
  • Dontchev, A. L., & Rockafellar, R. T. (2013). Convergence of inexact Newton methods for generalized equations. Mathematical Program., Series B, 139, 115–137. doi:10.1007/s10107-013-0664-x
  • Ioffe, A. D. (2000). Metric regularity and subdifferential calculus. Russian Mathematical Surveys, 55, 501–558. doi:10.1070/RM2000v055n03ABEH000292
  • Ioffe, A. D., & Tikhomirov, V. M. (1979). Theory of extremal problems, studies in mathematics and its applications. Amsterdam, New York: North-Holland.
  • Krasnoselskii, M. A. (1955). Two observations about the method of successive approximations. Uspekhi Matematicheskikh Nauk, 10, 123–127.
  • Martinet, B. (1970). Régularisation d’inéquations variationnelles par approximations successives. Reviews French Informatics Rech Opér, 3, 154–158.
  • Mordukhovich, B. S. (1992). Sensitivity analysis in nonsmooth optimization: Theoretical aspects of industrial design ( (D. A. Field and V. Komkov, eds.)). SIAM Proceedings Applications Mathematical, 58, 32–46.
  • Mordukhovich, B. S. (1993). Complete characterization of opennes, metric regularity, and Lipschitzian properties of multifunctions. Transactions Amer Mathematical Social, 340(1), 1–35. doi:10.1090/S0002-9947-1993-1156300-4
  • Mordukhovich, B. S. (2006). Variational analysis and generalized differentiation I: Basic theory, Grundlehren Math Wiss 330. Berlin, Heidelberg, New York: Springer-Verlag.
  • Moreau, J. J. (1965). Proximité et dualité dans an espace hilbertien. Bullentin De La Societé Mathématique De France, 93, 273–299.
  • Penot, J. P. (1989). Metric regularity, openness and Lipschitzian behavior of multifunctions. Nonlinear Analysis, 13, 629–643. doi:10.1016/0362-546X(89)90083-7
  • Rashid, M. H., Jinhua, J. H., & Li, C. (2013). Convergence analysis of Gauss-type proximal point method for metric regular mappings. Journal Nonlinear Conv Analysis, 14(3), 627–635.
  • Rashid, M. H., & Yuan, Y. X. (2017, October 20). Convergence properties of a restricted Newton-type method for generalized equations with metrically regular mappings. Applicable Analysis. 1–21. Published online. doi: 10.1080/00036811.2017.1392018
  • Rockafellar, R. T. (1976a). Monotone operators and the proximal point algorithm. SIAM Journal Control Optimization, 14, 877–898. doi:10.1137/0314056
  • Rockafellar, R. T. (1976b). Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Mathematical Operational Researcher, 1, 97–116. doi:10.1287/moor.1.2.97
  • Rockafellar, R. T., & Wets, R. J.-B. (1997). Variational analysis. Berlin: Springer-Verlag.
  • Solodov, M. V., & Svaiter, B. F. (1999). A hybrid projection-proximal point algorithm. Journal Convex Analysis, 6(1), 59–70.
  • Yang, Z., & He, B. (2005). A relaxed approximate proximal point algorithm. Annals Operational Researcher, 133, 119–125. doi:10.1007/s10479-004-5027-9